ardupilot/libraries/AP_IOMCU/iofirmware/mixer.cpp

213 lines
6.8 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
mixer for failsafe operation when FMU is dead
*/
#include <AP_HAL/AP_HAL.h>
#include <SRV_Channel/SRV_Channel.h>
#include "iofirmware.h"
#define ANGLE_SCALE ((int32_t)4500)
#define RANGE_SCALE ((int32_t)1000)
/*
return a RC input value scaled from -4500 to 4500
*/
int16_t AP_IOMCU_FW::mix_input_angle(uint8_t channel, uint16_t radio_in) const
{
const uint16_t &rc_min = mixing.rc_min[channel];
const uint16_t &rc_max = mixing.rc_max[channel];
const uint16_t &rc_trim = mixing.rc_trim[channel];
const uint16_t &reversed = mixing.rc_reversed[channel];
int16_t ret = 0;
if (radio_in > rc_trim && rc_max != rc_trim) {
ret = (ANGLE_SCALE * (int32_t)(radio_in - rc_trim)) / (int32_t)(rc_max - rc_trim);
} else if (radio_in < rc_trim && rc_trim != rc_min) {
ret = (ANGLE_SCALE * (int32_t)(radio_in - rc_trim)) / (int32_t)(rc_trim - rc_min);
}
if (reversed) {
ret = -ret;
}
return ret;
}
/*
return a RC input value scaled from 0 to 1000
*/
int16_t AP_IOMCU_FW::mix_input_range(uint8_t channel, uint16_t radio_in) const
{
const uint16_t &rc_min = mixing.rc_min[channel];
const uint16_t &rc_max = mixing.rc_max[channel];
const uint16_t &reversed = mixing.rc_reversed[channel];
int16_t ret = 0;
if (radio_in > rc_max) {
ret = RANGE_SCALE;
} else if (radio_in < rc_min) {
ret = -RANGE_SCALE;
} else {
ret = (RANGE_SCALE * (int32_t)(radio_in - rc_min)) / (int32_t)(rc_max - rc_min);
}
if (reversed) {
ret = -ret;
}
return ret;
}
/*
return an output pwm giving an angle for a servo channel
*/
uint16_t AP_IOMCU_FW::mix_output_angle(uint8_t channel, int16_t angle) const
{
const uint16_t &srv_min = mixing.servo_min[channel];
const uint16_t &srv_max = mixing.servo_max[channel];
const uint16_t &srv_trim = mixing.servo_trim[channel];
const uint16_t &reversed = mixing.servo_reversed[channel];
if (reversed) {
angle = -angle;
}
angle = constrain_int16(angle, -ANGLE_SCALE, ANGLE_SCALE);
if (angle > 0) {
return srv_trim + ((int32_t)angle * (int32_t)(srv_max - srv_trim)) / ANGLE_SCALE;
}
return srv_trim - (-(int32_t)angle * (int32_t)(srv_trim - srv_min)) / ANGLE_SCALE;
}
/*
return an output pwm giving an range for a servo channel
*/
uint16_t AP_IOMCU_FW::mix_output_range(uint8_t channel, int16_t value) const
{
const uint16_t &srv_min = mixing.servo_min[channel];
const uint16_t &srv_max = mixing.servo_max[channel];
const uint16_t &reversed = mixing.servo_reversed[channel];
value = constrain_int16(value, 0, RANGE_SCALE);
if (reversed) {
value = RANGE_SCALE - value;
}
return srv_min + ((int32_t)value * (int32_t)(srv_max - srv_min)) / RANGE_SCALE;
}
/*
elevon and vtail mixer
*/
int16_t AP_IOMCU_FW::mix_elevon_vtail(int16_t angle1, int16_t angle2, bool first_output) const
{
if (first_output) {
return (angle2 - angle1) * mixing.mixing_gain / 1000;
}
return (angle1 + angle2) * mixing.mixing_gain / 1000;
}
/*
run mixer. This is used when FMU is not providing inputs, or when
the OVERRIDE_CHAN is high. It allows for manual fixed wing flight
*/
void AP_IOMCU_FW::run_mixer(void)
{
int16_t rcin[4] {};
int16_t &roll = rcin[0];
int16_t &pitch = rcin[1];
int16_t &throttle = rcin[2];
int16_t &rudder = rcin[3];
// get RC input angles
for (uint8_t i=0;i<4; i++) {
if (mixing.rc_channel[i] > 0 && mixing.rc_channel[i] <= IOMCU_MAX_CHANNELS) {
uint8_t chan = mixing.rc_channel[i]-1;
if (i == 2 && !mixing.throttle_is_angle) {
rcin[i] = mix_input_range(i, rc_input.pwm[chan]);
} else {
rcin[i] = mix_input_angle(i, rc_input.pwm[chan]);
}
}
}
for (uint8_t i=0; i<IOMCU_MAX_CHANNELS; i++) {
SRV_Channel::Aux_servo_function_t function = (SRV_Channel::Aux_servo_function_t)mixing.servo_function[i];
uint16_t &pwm = reg_direct_pwm.pwm[i];
switch (function) {
case SRV_Channel::k_manual:
pwm = rc_input.pwm[i];
break;
case SRV_Channel::k_rcin1 ... SRV_Channel::k_rcin16:
pwm = rc_input.pwm[(uint8_t)(function - SRV_Channel::k_rcin1)];
break;
case SRV_Channel::k_aileron:
case SRV_Channel::k_aileron_with_input:
case SRV_Channel::k_flaperon_left:
case SRV_Channel::k_flaperon_right:
pwm = mix_output_angle(i, roll);
break;
case SRV_Channel::k_elevator:
case SRV_Channel::k_elevator_with_input:
pwm = mix_output_angle(i, pitch);
break;
case SRV_Channel::k_rudder:
case SRV_Channel::k_steering:
pwm = mix_output_angle(i, rudder);
break;
case SRV_Channel::k_throttle:
case SRV_Channel::k_throttleLeft:
case SRV_Channel::k_throttleRight:
if (mixing.throttle_is_angle) {
pwm = mix_output_angle(i, throttle);
} else {
pwm = mix_output_range(i, throttle);
}
break;
case SRV_Channel::k_flap:
case SRV_Channel::k_flap_auto:
// zero flaps
pwm = mix_output_range(i, 0);
break;
case SRV_Channel::k_elevon_left:
case SRV_Channel::k_dspoilerLeft1:
case SRV_Channel::k_dspoilerLeft2:
// treat differential spoilers as elevons
pwm = mix_output_angle(i, mix_elevon_vtail(roll, pitch, true));
break;
case SRV_Channel::k_elevon_right:
case SRV_Channel::k_dspoilerRight1:
case SRV_Channel::k_dspoilerRight2:
// treat differential spoilers as elevons
pwm = mix_output_angle(i, mix_elevon_vtail(roll, pitch, false));
break;
case SRV_Channel::k_vtail_left:
pwm = mix_output_angle(i, mix_elevon_vtail(rudder, pitch, false));
break;
case SRV_Channel::k_vtail_right:
pwm = mix_output_angle(i, mix_elevon_vtail(rudder, pitch, true));
break;
default:
break;
}
}
}