mirror of https://github.com/ArduPilot/ardupilot
258 lines
10 KiB
C++
258 lines
10 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include "AP_MotorsCoax.h"
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// init
|
|
void AP_MotorsCoax::init(motor_frame_class frame_class, motor_frame_type frame_type)
|
|
{
|
|
// make sure 6 output channels are mapped
|
|
for (uint8_t i = 0; i < 6; i++) {
|
|
add_motor_num(CH_1 + i);
|
|
}
|
|
|
|
// set the motor_enabled flag so that the main ESC can be calibrated like other frame types
|
|
motor_enabled[AP_MOTORS_MOT_5] = true;
|
|
motor_enabled[AP_MOTORS_MOT_6] = true;
|
|
|
|
// setup actuator scaling
|
|
for (uint8_t i = 0; i < NUM_ACTUATORS; i++) {
|
|
SRV_Channels::set_angle(SRV_Channels::get_motor_function(i), AP_MOTORS_COAX_SERVO_INPUT_RANGE);
|
|
}
|
|
|
|
_mav_type = MAV_TYPE_COAXIAL;
|
|
|
|
// record successful initialisation if what we setup was the desired frame_class
|
|
set_initialised_ok(frame_class == MOTOR_FRAME_COAX);
|
|
}
|
|
|
|
// set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus)
|
|
void AP_MotorsCoax::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type)
|
|
{
|
|
set_initialised_ok(frame_class == MOTOR_FRAME_COAX);
|
|
}
|
|
|
|
// set update rate to motors - a value in hertz
|
|
void AP_MotorsCoax::set_update_rate(uint16_t speed_hz)
|
|
{
|
|
// record requested speed
|
|
_speed_hz = speed_hz;
|
|
|
|
uint32_t mask =
|
|
1U << AP_MOTORS_MOT_5 |
|
|
1U << AP_MOTORS_MOT_6 ;
|
|
rc_set_freq(mask, _speed_hz);
|
|
}
|
|
|
|
void AP_MotorsCoax::output_to_motors()
|
|
{
|
|
switch (_spool_state) {
|
|
case SpoolState::SHUT_DOWN:
|
|
// sends minimum values out to the motors
|
|
rc_write_angle(AP_MOTORS_MOT_1, _roll_radio_passthrough * AP_MOTORS_COAX_SERVO_INPUT_RANGE);
|
|
rc_write_angle(AP_MOTORS_MOT_2, _pitch_radio_passthrough * AP_MOTORS_COAX_SERVO_INPUT_RANGE);
|
|
rc_write_angle(AP_MOTORS_MOT_3, -_roll_radio_passthrough * AP_MOTORS_COAX_SERVO_INPUT_RANGE);
|
|
rc_write_angle(AP_MOTORS_MOT_4, -_pitch_radio_passthrough * AP_MOTORS_COAX_SERVO_INPUT_RANGE);
|
|
rc_write(AP_MOTORS_MOT_5, output_to_pwm(0));
|
|
rc_write(AP_MOTORS_MOT_6, output_to_pwm(0));
|
|
break;
|
|
case SpoolState::GROUND_IDLE:
|
|
// sends output to motors when armed but not flying
|
|
for (uint8_t i = 0; i < NUM_ACTUATORS; i++) {
|
|
rc_write_angle(AP_MOTORS_MOT_1 + i, _spin_up_ratio * _actuator_out[i] * AP_MOTORS_COAX_SERVO_INPUT_RANGE);
|
|
}
|
|
set_actuator_with_slew(_actuator[AP_MOTORS_MOT_5], actuator_spin_up_to_ground_idle());
|
|
set_actuator_with_slew(_actuator[AP_MOTORS_MOT_6], actuator_spin_up_to_ground_idle());
|
|
rc_write(AP_MOTORS_MOT_5, output_to_pwm(_actuator[AP_MOTORS_MOT_5]));
|
|
rc_write(AP_MOTORS_MOT_6, output_to_pwm(_actuator[AP_MOTORS_MOT_6]));
|
|
break;
|
|
case SpoolState::SPOOLING_UP:
|
|
case SpoolState::THROTTLE_UNLIMITED:
|
|
case SpoolState::SPOOLING_DOWN:
|
|
// set motor output based on thrust requests
|
|
for (uint8_t i = 0; i < NUM_ACTUATORS; i++) {
|
|
rc_write_angle(AP_MOTORS_MOT_1 + i, _actuator_out[i] * AP_MOTORS_COAX_SERVO_INPUT_RANGE);
|
|
}
|
|
set_actuator_with_slew(_actuator[AP_MOTORS_MOT_5], thrust_to_actuator(_thrust_yt_ccw));
|
|
set_actuator_with_slew(_actuator[AP_MOTORS_MOT_6], thrust_to_actuator(_thrust_yt_cw));
|
|
rc_write(AP_MOTORS_MOT_5, output_to_pwm(_actuator[AP_MOTORS_MOT_5]));
|
|
rc_write(AP_MOTORS_MOT_6, output_to_pwm(_actuator[AP_MOTORS_MOT_6]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
|
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
|
uint16_t AP_MotorsCoax::get_motor_mask()
|
|
{
|
|
uint32_t motor_mask =
|
|
1U << AP_MOTORS_MOT_5 |
|
|
1U << AP_MOTORS_MOT_6;
|
|
uint16_t mask = motor_mask_to_srv_channel_mask(motor_mask);
|
|
|
|
// add parent's mask
|
|
mask |= AP_MotorsMulticopter::get_motor_mask();
|
|
|
|
return mask;
|
|
}
|
|
|
|
// sends commands to the motors
|
|
void AP_MotorsCoax::output_armed_stabilizing()
|
|
{
|
|
float roll_thrust; // roll thrust input value, +/- 1.0
|
|
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
|
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
|
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
|
|
float throttle_avg_max; // throttle thrust average maximum value, 0.0 - 1.0
|
|
float thrust_min_rpy; // the minimum throttle setting that will not limit the roll and pitch output
|
|
float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
|
|
float thrust_out; //
|
|
float rp_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits
|
|
float actuator_allowed = 0.0f; // amount of yaw we can fit in
|
|
|
|
// apply voltage and air pressure compensation
|
|
const float compensation_gain = get_compensation_gain();
|
|
roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain;
|
|
pitch_thrust = (_pitch_in + _pitch_in_ff) * compensation_gain;
|
|
yaw_thrust = (_yaw_in + _yaw_in_ff) * compensation_gain;
|
|
throttle_thrust = get_throttle() * compensation_gain;
|
|
throttle_avg_max = _throttle_avg_max * compensation_gain;
|
|
|
|
// sanity check throttle is above zero and below current limited throttle
|
|
if (throttle_thrust <= 0.0f) {
|
|
throttle_thrust = 0.0f;
|
|
limit.throttle_lower = true;
|
|
}
|
|
if (throttle_thrust >= _throttle_thrust_max) {
|
|
throttle_thrust = _throttle_thrust_max;
|
|
limit.throttle_upper = true;
|
|
}
|
|
|
|
throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, _throttle_thrust_max);
|
|
|
|
float rp_thrust_max = MAX(fabsf(roll_thrust), fabsf(pitch_thrust));
|
|
|
|
// calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw
|
|
if (is_zero(rp_thrust_max)) {
|
|
rp_scale = 1.0f;
|
|
} else {
|
|
rp_scale = constrain_float((1.0f - MIN(fabsf(yaw_thrust), 0.5f * (float)_yaw_headroom / 1000.0f)) / rp_thrust_max, 0.0f, 1.0f);
|
|
if (rp_scale < 1.0f) {
|
|
limit.roll = true;
|
|
limit.pitch = true;
|
|
}
|
|
}
|
|
|
|
actuator_allowed = 2.0f * (1.0f - rp_scale * rp_thrust_max);
|
|
if (fabsf(yaw_thrust) > actuator_allowed) {
|
|
yaw_thrust = constrain_float(yaw_thrust, -actuator_allowed, actuator_allowed);
|
|
limit.yaw = true;
|
|
}
|
|
|
|
// calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces
|
|
thrust_min_rpy = MAX(fabsf(rp_scale * rp_thrust_max), fabsf(yaw_thrust));
|
|
|
|
thr_adj = throttle_thrust - throttle_avg_max;
|
|
if (thr_adj < (thrust_min_rpy - throttle_avg_max)) {
|
|
// Throttle can't be reduced to the desired level because this would reduce airflow over
|
|
// the control surfaces preventing roll and pitch reaching the desired level.
|
|
thr_adj = MIN(thrust_min_rpy, throttle_avg_max) - throttle_avg_max;
|
|
}
|
|
|
|
// calculate the throttle setting for the lift fan
|
|
thrust_out = throttle_avg_max + thr_adj;
|
|
// compensation_gain can never be zero
|
|
_throttle_out = thrust_out / compensation_gain;
|
|
|
|
if (fabsf(yaw_thrust) > thrust_out) {
|
|
yaw_thrust = constrain_float(yaw_thrust, -thrust_out, thrust_out);
|
|
limit.yaw = true;
|
|
}
|
|
|
|
_thrust_yt_ccw = thrust_out + 0.5f * yaw_thrust;
|
|
_thrust_yt_cw = thrust_out - 0.5f * yaw_thrust;
|
|
|
|
// limit thrust out for calculation of actuator gains
|
|
float thrust_out_actuator = constrain_float(MAX(_throttle_hover * 0.5f, thrust_out), 0.5f, 1.0f);
|
|
|
|
if (is_zero(thrust_out)) {
|
|
limit.roll = true;
|
|
limit.pitch = true;
|
|
}
|
|
// force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared
|
|
// static thrust is proportional to the airflow velocity squared
|
|
// therefore the torque of the roll and pitch actuators should be approximately proportional to
|
|
// the angle of attack multiplied by the static thrust.
|
|
_actuator_out[0] = roll_thrust / thrust_out_actuator;
|
|
_actuator_out[1] = pitch_thrust / thrust_out_actuator;
|
|
if (fabsf(_actuator_out[0]) > 1.0f) {
|
|
limit.roll = true;
|
|
_actuator_out[0] = constrain_float(_actuator_out[0], -1.0f, 1.0f);
|
|
}
|
|
if (fabsf(_actuator_out[1]) > 1.0f) {
|
|
limit.pitch = true;
|
|
_actuator_out[1] = constrain_float(_actuator_out[1], -1.0f, 1.0f);
|
|
}
|
|
_actuator_out[2] = -_actuator_out[0];
|
|
_actuator_out[3] = -_actuator_out[1];
|
|
}
|
|
|
|
// output_test_seq - spin a motor at the pwm value specified
|
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
|
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
|
void AP_MotorsCoax::output_test_seq(uint8_t motor_seq, int16_t pwm)
|
|
{
|
|
// exit immediately if not armed
|
|
if (!armed()) {
|
|
return;
|
|
}
|
|
|
|
// output to motors and servos
|
|
switch (motor_seq) {
|
|
case 1:
|
|
// flap servo 1
|
|
rc_write(AP_MOTORS_MOT_1, pwm);
|
|
break;
|
|
case 2:
|
|
// flap servo 2
|
|
rc_write(AP_MOTORS_MOT_2, pwm);
|
|
break;
|
|
case 3:
|
|
// flap servo 3
|
|
rc_write(AP_MOTORS_MOT_3, pwm);
|
|
break;
|
|
case 4:
|
|
// flap servo 4
|
|
rc_write(AP_MOTORS_MOT_4, pwm);
|
|
break;
|
|
case 5:
|
|
// motor 1
|
|
rc_write(AP_MOTORS_MOT_5, pwm);
|
|
break;
|
|
case 6:
|
|
// motor 2
|
|
rc_write(AP_MOTORS_MOT_6, pwm);
|
|
break;
|
|
default:
|
|
// do nothing
|
|
break;
|
|
}
|
|
}
|