ardupilot/libraries/AP_Compass/AP_Compass_AK09916.cpp

501 lines
13 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Driver by Andrew Tridgell, Nov 2016
*/
#include "AP_Compass_AK09916.h"
#include <assert.h>
#include <AP_HAL/AP_HAL.h>
#include <utility>
#include <AP_Math/AP_Math.h>
#include <stdio.h>
#include <AP_InertialSensor/AP_InertialSensor_Invensensev2.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
extern const AP_HAL::HAL &hal;
#define REG_COMPANY_ID 0x00
#define REG_DEVICE_ID 0x01
#define REG_ST1 0x10
#define REG_HXL 0x11
#define REG_HXH 0x12
#define REG_HYL 0x13
#define REG_HYH 0x14
#define REG_HZL 0x15
#define REG_HZH 0x16
#define REG_TMPS 0x17
#define REG_ST2 0x18
#define REG_CNTL1 0x30
#define REG_CNTL2 0x31
#define REG_CNTL3 0x32
#define REG_ICM_WHOAMI 0x00
#define REG_ICM_PWR_MGMT_1 0x06
#define REG_ICM_INT_PIN_CFG 0x0f
#define ICM_WHOAMI_VAL 0xEA
#define AK09915_Device_ID 0x10
#define AK09916_Device_ID 0x09
#define AK09918_Device_ID 0x0c
#define AK09916_MILLIGAUSS_SCALE 10.0f
extern const AP_HAL::HAL &hal;
struct PACKED sample_regs {
uint8_t st1;
int16_t val[3];
uint8_t tmps;
uint8_t st2;
};
AP_Compass_AK09916::AP_Compass_AK09916(AP_AK09916_BusDriver *bus,
bool force_external,
enum Rotation rotation)
: _bus(bus)
, _force_external(force_external)
, _rotation(rotation)
{
}
AP_Compass_AK09916::~AP_Compass_AK09916()
{
delete _bus;
}
AP_Compass_Backend *AP_Compass_AK09916::probe(AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev,
bool force_external,
enum Rotation rotation)
{
if (!dev) {
return nullptr;
}
AP_AK09916_BusDriver *bus = new AP_AK09916_BusDriver_HALDevice(std::move(dev));
if (!bus) {
return nullptr;
}
AP_Compass_AK09916 *sensor = new AP_Compass_AK09916(bus, force_external, rotation);
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
AP_Compass_Backend *AP_Compass_AK09916::probe_ICM20948(AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev,
AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev_icm,
bool force_external,
enum Rotation rotation)
{
if (!dev || !dev_icm) {
return nullptr;
}
dev->get_semaphore()->take_blocking();
/* Allow ICM20x48 to shortcut auxiliary bus and host bus */
uint8_t rval;
uint16_t whoami;
uint8_t retries = 5;
if (!dev_icm->read_registers(REG_ICM_WHOAMI, &rval, 1) ||
rval != ICM_WHOAMI_VAL) {
// not an ICM_WHOAMI
goto fail;
}
do {
// reset then bring sensor out of sleep mode
if (!dev_icm->write_register(REG_ICM_PWR_MGMT_1, 0x80)) {
goto fail;
}
hal.scheduler->delay(10);
if (!dev_icm->write_register(REG_ICM_PWR_MGMT_1, 0x00)) {
goto fail;
}
hal.scheduler->delay(10);
// see if ICM20948 is sleeping
if (!dev_icm->read_registers(REG_ICM_PWR_MGMT_1, &rval, 1)) {
goto fail;
}
if ((rval & 0x40) == 0) {
break;
}
} while (retries--);
if (rval & 0x40) {
// it didn't come out of sleep
goto fail;
}
// initially force i2c bypass off
dev_icm->write_register(REG_ICM_INT_PIN_CFG, 0x00);
hal.scheduler->delay(1);
// now check if a AK09916 shows up on the bus. If it does then
// we have both a real AK09916 and a ICM20948 with an embedded
// AK09916. In that case we will fail the driver load and use
// the main AK09916 driver
if (dev->read_registers(REG_COMPANY_ID, (uint8_t *)&whoami, 2)) {
// a device is replying on the AK09916 I2C address, don't
// load the ICM20948
hal.console->printf("ICM20948: AK09916 bus conflict\n");
goto fail;
}
// now force bypass on
dev_icm->write_register(REG_ICM_INT_PIN_CFG, 0x02);
hal.scheduler->delay(1);
dev->get_semaphore()->give();
return probe(std::move(dev), force_external, rotation);
fail:
dev->get_semaphore()->give();
return nullptr;
}
// un-named, assume SPI for compat
AP_Compass_Backend *AP_Compass_AK09916::probe_ICM20948(uint8_t inv2_instance,
enum Rotation rotation)
{
return probe_ICM20948_SPI(inv2_instance,rotation);
}
AP_Compass_Backend *AP_Compass_AK09916::probe_ICM20948_SPI(uint8_t inv2_instance,
enum Rotation rotation)
{
#if HAL_INS_ENABLED
AP_InertialSensor &ins = AP::ins();
AP_AK09916_BusDriver *bus =
new AP_AK09916_BusDriver_Auxiliary(ins, HAL_INS_INV2_SPI, inv2_instance, HAL_COMPASS_AK09916_I2C_ADDR);
if (!bus) {
return nullptr;
}
AP_Compass_AK09916 *sensor = new AP_Compass_AK09916(bus, false, rotation);
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
#else
return nullptr;
#endif
}
AP_Compass_Backend *AP_Compass_AK09916::probe_ICM20948_I2C(uint8_t inv2_instance,
enum Rotation rotation)
{
AP_InertialSensor &ins = AP::ins();
AP_AK09916_BusDriver *bus =
new AP_AK09916_BusDriver_Auxiliary(ins, HAL_INS_INV2_I2C, inv2_instance, HAL_COMPASS_AK09916_I2C_ADDR);
if (!bus) {
return nullptr;
}
AP_Compass_AK09916 *sensor = new AP_Compass_AK09916(bus, false, rotation);
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
bool AP_Compass_AK09916::init()
{
AP_HAL::Semaphore *bus_sem = _bus->get_semaphore();
if (!bus_sem) {
return false;
}
_bus->get_semaphore()->take_blocking();
if (!_bus->configure()) {
hal.console->printf("AK09916: Could not configure the bus\n");
goto fail;
}
if (!_reset()) {
goto fail;
}
if (!_check_id()) {
hal.console->printf("AK09916: Wrong id\n");
goto fail;
}
if (!_setup_mode()) {
hal.console->printf("AK09916: Could not setup mode\n");
goto fail;
}
if (!_bus->start_measurements()) {
hal.console->printf("AK09916: Could not start measurements\n");
goto fail;
}
_initialized = true;
/* register the compass instance in the frontend */
_bus->set_device_type(_devtype);
if (!register_compass(_bus->get_bus_id(), _compass_instance)) {
goto fail;
}
set_dev_id(_compass_instance, _bus->get_bus_id());
if (_force_external) {
set_external(_compass_instance, true);
}
set_rotation(_compass_instance, _rotation);
bus_sem->give();
_bus->register_periodic_callback(10000, FUNCTOR_BIND_MEMBER(&AP_Compass_AK09916::_update, void));
return true;
fail:
bus_sem->give();
return false;
}
void AP_Compass_AK09916::read()
{
if (!_initialized) {
return;
}
drain_accumulated_samples(_compass_instance);
}
void AP_Compass_AK09916::_make_adc_sensitivity_adjustment(Vector3f& field) const
{
static const float ADC_16BIT_RESOLUTION = 0.15f;
field *= ADC_16BIT_RESOLUTION;
}
void AP_Compass_AK09916::_update()
{
struct sample_regs regs = {0};
Vector3f raw_field;
if (!_bus->block_read(REG_ST1, (uint8_t *) &regs, sizeof(regs))) {
return;
}
if (!(regs.st1 & 0x01)) {
return;
}
/* Check for overflow. See AK09916's datasheet*/
if ((regs.st2 & 0x08)) {
return;
}
raw_field = Vector3f(regs.val[0], regs.val[1], regs.val[2]);
if (is_zero(raw_field.x) && is_zero(raw_field.y) && is_zero(raw_field.z)) {
return;
}
_make_adc_sensitivity_adjustment(raw_field);
raw_field *= AK09916_MILLIGAUSS_SCALE;
#ifdef HAL_AK09916_HEATER_OFFSET
/*
the internal AK09916 can be impacted by the magnetic field from
a heater. We use the heater duty cycle to correct for the error
*/
if (AP_HAL::Device::devid_get_bus_type(_bus->get_bus_id()) == AP_HAL::Device::BUS_TYPE_SPI) {
auto *bc = AP::boardConfig();
if (bc) {
raw_field += HAL_AK09916_HEATER_OFFSET * bc->get_heater_duty_cycle() * 0.01;
}
}
#endif
accumulate_sample(raw_field, _compass_instance, 10);
}
bool AP_Compass_AK09916::_check_id()
{
for (int i = 0; i < 5; i++) {
uint8_t deviceid = 0;
/* Read AK09916's id */
if (_bus->register_read(REG_DEVICE_ID, &deviceid)) {
switch (deviceid) {
case AK09915_Device_ID:
_devtype = DEVTYPE_AK09915;
return true;
case AK09916_Device_ID:
_devtype = DEVTYPE_AK09916;
return true;
case AK09918_Device_ID:
_devtype = DEVTYPE_AK09918;
return true;
}
}
}
return false;
}
bool AP_Compass_AK09916::_setup_mode() {
return _bus->register_write(REG_CNTL2, 0x08); //Continuous Mode 2
}
bool AP_Compass_AK09916::_reset()
{
return _bus->register_write(REG_CNTL3, 0x01); //Soft Reset
}
/* AP_HAL::I2CDevice implementation of the AK09916 */
AP_AK09916_BusDriver_HALDevice::AP_AK09916_BusDriver_HALDevice(AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev)
: _dev(std::move(dev))
{
}
bool AP_AK09916_BusDriver_HALDevice::block_read(uint8_t reg, uint8_t *buf, uint32_t size)
{
return _dev->read_registers(reg, buf, size);
}
bool AP_AK09916_BusDriver_HALDevice::register_read(uint8_t reg, uint8_t *val)
{
return _dev->read_registers(reg, val, 1);
}
bool AP_AK09916_BusDriver_HALDevice::register_write(uint8_t reg, uint8_t val)
{
return _dev->write_register(reg, val);
}
AP_HAL::Semaphore *AP_AK09916_BusDriver_HALDevice::get_semaphore()
{
return _dev->get_semaphore();
}
AP_HAL::Device::PeriodicHandle AP_AK09916_BusDriver_HALDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
{
return _dev->register_periodic_callback(period_usec, cb);
}
/* AK09916 on an auxiliary bus of IMU driver */
AP_AK09916_BusDriver_Auxiliary::AP_AK09916_BusDriver_Auxiliary(AP_InertialSensor &ins, uint8_t backend_id,
uint8_t backend_instance, uint8_t addr)
{
/*
* Only initialize members. Fails are handled by configure or while
* getting the semaphore
*/
#if HAL_INS_ENABLED
_bus = ins.get_auxiliary_bus(backend_id, backend_instance);
if (!_bus) {
return;
}
_slave = _bus->request_next_slave(addr);
#endif
}
AP_AK09916_BusDriver_Auxiliary::~AP_AK09916_BusDriver_Auxiliary()
{
/* After started it's owned by AuxiliaryBus */
if (!_started) {
delete _slave;
}
}
bool AP_AK09916_BusDriver_Auxiliary::block_read(uint8_t reg, uint8_t *buf, uint32_t size)
{
if (_started) {
/*
* We can only read a block when reading the block of sample values -
* calling with any other value is a mistake
*/
if (reg != REG_ST1) {
return false;
}
int n = _slave->read(buf);
return n == static_cast<int>(size);
}
int r = _slave->passthrough_read(reg, buf, size);
return r > 0 && static_cast<uint32_t>(r) == size;
}
bool AP_AK09916_BusDriver_Auxiliary::register_read(uint8_t reg, uint8_t *val)
{
return _slave->passthrough_read(reg, val, 1) == 1;
}
bool AP_AK09916_BusDriver_Auxiliary::register_write(uint8_t reg, uint8_t val)
{
return _slave->passthrough_write(reg, val) == 1;
}
AP_HAL::Semaphore *AP_AK09916_BusDriver_Auxiliary::get_semaphore()
{
return _bus ? _bus->get_semaphore() : nullptr;
}
bool AP_AK09916_BusDriver_Auxiliary::configure()
{
if (!_bus || !_slave) {
return false;
}
return true;
}
bool AP_AK09916_BusDriver_Auxiliary::start_measurements()
{
if (_bus->register_periodic_read(_slave, REG_ST1, sizeof(sample_regs)) < 0) {
return false;
}
_started = true;
return true;
}
AP_HAL::Device::PeriodicHandle AP_AK09916_BusDriver_Auxiliary::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
{
return _bus->register_periodic_callback(period_usec, cb);
}
// set device type within a device class
void AP_AK09916_BusDriver_Auxiliary::set_device_type(uint8_t devtype)
{
_bus->set_device_type(devtype);
}
// return 24 bit bus identifier
uint32_t AP_AK09916_BusDriver_Auxiliary::get_bus_id(void) const
{
return _bus->get_bus_id();
}