ardupilot/libraries/AP_HAL_ChibiOS/shared_dma.cpp

215 lines
6.0 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include "shared_dma.h"
/*
code to handle sharing of DMA channels between peripherals
*/
#if CH_CFG_USE_SEMAPHORES == TRUE
using namespace ChibiOS;
Shared_DMA::dma_lock Shared_DMA::locks[SHARED_DMA_MAX_STREAM_ID+1];
void Shared_DMA::init(void)
{
for (uint8_t i=0; i<SHARED_DMA_MAX_STREAM_ID; i++) {
chBSemObjectInit(&locks[i].semaphore, false);
}
}
// constructor
Shared_DMA::Shared_DMA(uint8_t _stream_id1,
uint8_t _stream_id2,
dma_allocate_fn_t _allocate,
dma_deallocate_fn_t _deallocate)
{
stream_id1 = _stream_id1;
stream_id2 = _stream_id2;
allocate = _allocate;
deallocate = _deallocate;
}
//remove any assigned deallocator or allocator
void Shared_DMA::unregister()
{
if (stream_id1 < SHARED_DMA_MAX_STREAM_ID &&
locks[stream_id1].obj == this) {
locks[stream_id1].deallocate(this);
locks[stream_id1].obj = nullptr;
}
if (stream_id2 < SHARED_DMA_MAX_STREAM_ID &&
locks[stream_id2].obj == this) {
locks[stream_id2].deallocate(this);
locks[stream_id2].obj = nullptr;
}
}
// lock one stream
void Shared_DMA::lock_stream(uint8_t stream_id)
{
if (stream_id < SHARED_DMA_MAX_STREAM_ID) {
chBSemWait(&locks[stream_id].semaphore);
}
}
// unlock one stream
void Shared_DMA::unlock_stream(uint8_t stream_id)
{
if (stream_id < SHARED_DMA_MAX_STREAM_ID) {
chBSemSignal(&locks[stream_id].semaphore);
}
}
// unlock one stream from an IRQ handler
void Shared_DMA::unlock_stream_from_IRQ(uint8_t stream_id)
{
if (stream_id < SHARED_DMA_MAX_STREAM_ID) {
chBSemSignalI(&locks[stream_id].semaphore);
}
}
// lock one stream, non-blocking
bool Shared_DMA::lock_stream_nonblocking(uint8_t stream_id)
{
if (stream_id < SHARED_DMA_MAX_STREAM_ID) {
return chBSemWaitTimeout(&locks[stream_id].semaphore, 1) == MSG_OK;
}
return true;
}
// lock the DMA channels
void Shared_DMA::lock_core(void)
{
// see if another driver has DMA allocated. If so, call their
// deallocation function
if (stream_id1 < SHARED_DMA_MAX_STREAM_ID &&
locks[stream_id1].obj && locks[stream_id1].obj != this) {
locks[stream_id1].deallocate(locks[stream_id1].obj);
locks[stream_id1].obj = nullptr;
}
if (stream_id2 < SHARED_DMA_MAX_STREAM_ID &&
locks[stream_id2].obj && locks[stream_id2].obj != this) {
locks[stream_id2].deallocate(locks[stream_id2].obj);
locks[stream_id2].obj = nullptr;
}
if ((stream_id1 < SHARED_DMA_MAX_STREAM_ID && locks[stream_id1].obj == nullptr) ||
(stream_id2 < SHARED_DMA_MAX_STREAM_ID && locks[stream_id2].obj == nullptr)) {
// allocate the DMA channels and put our deallocation function in place
allocate(this);
if (stream_id1 < SHARED_DMA_MAX_STREAM_ID) {
locks[stream_id1].deallocate = deallocate;
locks[stream_id1].obj = this;
}
if (stream_id2 < SHARED_DMA_MAX_STREAM_ID) {
locks[stream_id2].deallocate = deallocate;
locks[stream_id2].obj = this;
}
}
#ifdef STM32_DMA_STREAM_ID_ANY
else if (stream_id1 == STM32_DMA_STREAM_ID_ANY ||
stream_id2 == STM32_DMA_STREAM_ID_ANY) {
// call allocator without needing locking
allocate(this);
}
#endif
have_lock = true;
}
// lock the DMA channels, blocking method
void Shared_DMA::lock(void)
{
lock_stream(stream_id1);
lock_stream(stream_id2);
lock_core();
}
// lock the DMA channels, non-blocking
bool Shared_DMA::lock_nonblock(void)
{
if (!lock_stream_nonblocking(stream_id1)) {
chSysDisable();
if (locks[stream_id1].obj != nullptr && locks[stream_id1].obj != this) {
locks[stream_id1].obj->contention = true;
}
chSysEnable();
contention = true;
return false;
}
if (!lock_stream_nonblocking(stream_id2)) {
unlock_stream(stream_id1);
chSysDisable();
if (locks[stream_id2].obj != nullptr && locks[stream_id2].obj != this) {
locks[stream_id2].obj->contention = true;
}
chSysEnable();
contention = true;
return false;
}
lock_core();
return true;
}
// unlock the DMA channels
void Shared_DMA::unlock(void)
{
osalDbgAssert(have_lock, "must have lock");
unlock_stream(stream_id2);
unlock_stream(stream_id1);
have_lock = false;
}
// unlock the DMA channels from a lock zone
void Shared_DMA::unlock_from_lockzone(void)
{
osalDbgAssert(have_lock, "must have lock");
if (stream_id2 < SHARED_DMA_MAX_STREAM_ID) {
unlock_stream_from_IRQ(stream_id2);
chSchRescheduleS();
}
if (stream_id1 < SHARED_DMA_MAX_STREAM_ID) {
unlock_stream_from_IRQ(stream_id1);
chSchRescheduleS();
}
have_lock = false;
}
// unlock the DMA channels from an IRQ
void Shared_DMA::unlock_from_IRQ(void)
{
osalDbgAssert(have_lock, "must have lock");
unlock_stream_from_IRQ(stream_id2);
unlock_stream_from_IRQ(stream_id1);
have_lock = false;
}
/*
lock all channels - used on reboot to ensure no sensor DMA is in
progress
*/
void Shared_DMA::lock_all(void)
{
for (uint8_t i=0; i<SHARED_DMA_MAX_STREAM_ID; i++) {
lock_stream(i);
}
}
#endif // CH_CFG_USE_SEMAPHORES