ardupilot/libraries/AP_HAL_ChibiOS/CanIface.cpp

1237 lines
36 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2014 Pavel Kirienko
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Siddharth Bharat Purohit
*/
#include "AP_HAL_ChibiOS.h"
#if HAL_WITH_UAVCAN
#include <cassert>
#include <cstring>
#include "CANClock.h"
#include "CANInternal.h"
#include "CANSerialRouter.h"
#include <AP_UAVCAN/AP_UAVCAN_SLCAN.h>
# include <hal.h>
# if !defined(STM32H7XX)
#include "CANIface.h"
#if CH_KERNEL_MAJOR == 2
# if !(defined(STM32F10X_CL) || defined(STM32F2XX) || defined(STM32F3XX) || defined(STM32F4XX))
// IRQ numbers
# define CAN1_RX0_IRQn USB_LP_CAN1_RX0_IRQn
# define CAN1_TX_IRQn USB_HP_CAN1_TX_IRQn
// IRQ vectors
# if !defined(CAN1_RX0_IRQHandler) || !defined(CAN1_TX_IRQHandler)
# define CAN1_TX_IRQHandler USB_HP_CAN1_TX_IRQHandler
# define CAN1_RX0_IRQHandler USB_LP_CAN1_RX0_IRQHandler
# endif
# endif
#endif
#if (CH_KERNEL_MAJOR == 3 || CH_KERNEL_MAJOR == 4 || CH_KERNEL_MAJOR == 5 || CH_KERNEL_MAJOR == 6)
#define CAN1_TX_IRQHandler STM32_CAN1_TX_HANDLER
#define CAN1_RX0_IRQHandler STM32_CAN1_RX0_HANDLER
#define CAN1_RX1_IRQHandler STM32_CAN1_RX1_HANDLER
#define CAN2_TX_IRQHandler STM32_CAN2_TX_HANDLER
#define CAN2_RX0_IRQHandler STM32_CAN2_RX0_HANDLER
#define CAN2_RX1_IRQHandler STM32_CAN2_RX1_HANDLER
#endif
/* STM32F3's only CAN inteface does not have a number. */
#if defined(STM32F3XX)
#define RCC_APB1ENR_CAN1EN RCC_APB1ENR_CANEN
#define RCC_APB1RSTR_CAN1RST RCC_APB1RSTR_CANRST
#define CAN1_TX_IRQn CAN_TX_IRQn
#define CAN1_RX0_IRQn CAN_RX0_IRQn
#define CAN1_RX1_IRQn CAN_RX1_IRQn
#define CAN1_TX_IRQHandler CAN_TX_IRQHandler
#define CAN1_RX0_IRQHandler CAN_RX0_IRQHandler
#define CAN1_RX1_IRQHandler CAN_RX1_IRQHandler
#endif
namespace ChibiOS_CAN
{
namespace
{
CanIface* ifaces[UAVCAN_STM32_NUM_IFACES] =
{
UAVCAN_NULLPTR
#if UAVCAN_STM32_NUM_IFACES > 1
, UAVCAN_NULLPTR
#endif
};
inline void handleTxInterrupt(uavcan::uint8_t iface_index)
{
UAVCAN_ASSERT(iface_index < UAVCAN_STM32_NUM_IFACES);
uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt();
if (utc_usec > 0)
{
utc_usec--;
}
if (ifaces[iface_index] != UAVCAN_NULLPTR)
{
ifaces[iface_index]->handleTxInterrupt(utc_usec);
}
else
{
UAVCAN_ASSERT(0);
}
}
inline void handleRxInterrupt(uavcan::uint8_t iface_index, uavcan::uint8_t fifo_index)
{
UAVCAN_ASSERT(iface_index < UAVCAN_STM32_NUM_IFACES);
uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt();
if (utc_usec > 0)
{
utc_usec--;
}
if (ifaces[iface_index] != UAVCAN_NULLPTR)
{
ifaces[iface_index]->handleRxInterrupt(fifo_index, utc_usec);
}
else
{
UAVCAN_ASSERT(0);
}
}
} // namespace
#if AP_UAVCAN_SLCAN_ENABLED
SLCANRouter CanIface::_slcan_router;
#endif
/*
* CanIface::RxQueue
*/
void CanIface::RxQueue::registerOverflow()
{
if (overflow_cnt_ < 0xFFFFFFFF)
{
overflow_cnt_++;
}
}
void CanIface::RxQueue::push(const uavcan::CanFrame& frame, const uint64_t& utc_usec, uavcan::CanIOFlags flags)
{
buf_[in_].frame = frame;
buf_[in_].utc_usec = utc_usec;
buf_[in_].flags = flags;
in_++;
if (in_ >= capacity_)
{
in_ = 0;
}
len_++;
if (len_ > capacity_)
{
len_ = capacity_;
registerOverflow();
out_++;
if (out_ >= capacity_)
{
out_ = 0;
}
}
}
void CanIface::RxQueue::pop(uavcan::CanFrame& out_frame, uavcan::uint64_t& out_utc_usec, uavcan::CanIOFlags& out_flags)
{
if (len_ > 0)
{
out_frame = buf_[out_].frame;
out_utc_usec = buf_[out_].utc_usec;
out_flags = buf_[out_].flags;
out_++;
if (out_ >= capacity_)
{
out_ = 0;
}
len_--;
}
else { UAVCAN_ASSERT(0); }
}
void CanIface::RxQueue::reset()
{
in_ = 0;
out_ = 0;
len_ = 0;
overflow_cnt_ = 0;
}
/*
* CanIface
*/
const uavcan::uint32_t CanIface::TSR_ABRQx[CanIface::NumTxMailboxes] =
{
bxcan::TSR_ABRQ0,
bxcan::TSR_ABRQ1,
bxcan::TSR_ABRQ2
};
int CanIface::computeTimings(const uavcan::uint32_t target_bitrate, Timings& out_timings)
{
if (target_bitrate < 1)
{
return -ErrInvalidBitRate;
}
/*
* Hardware configuration
*/
const uavcan::uint32_t pclk = STM32_PCLK1;
static const int MaxBS1 = 16;
static const int MaxBS2 = 8;
/*
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG
* CAN in Automation, 2003
*
* According to the source, optimal quanta per bit are:
* Bitrate Optimal Maximum
* 1000 kbps 8 10
* 500 kbps 16 17
* 250 kbps 16 17
* 125 kbps 16 17
*/
const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17;
UAVCAN_ASSERT(max_quanta_per_bit <= (MaxBS1 + MaxBS2));
static const int MaxSamplePointLocation = 900;
/*
* Computing (prescaler * BS):
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified
* let:
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit
* PRESCALER_BS = PRESCALER * BS
* ==>
* PRESCALER_BS = PCLK / BITRATE
*/
const uavcan::uint32_t prescaler_bs = pclk / target_bitrate;
/*
* Searching for such prescaler value so that the number of quanta per bit is highest.
*/
uavcan::uint8_t bs1_bs2_sum = uavcan::uint8_t(max_quanta_per_bit - 1);
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0)
{
if (bs1_bs2_sum <= 2)
{
return -ErrInvalidBitRate; // No solution
}
bs1_bs2_sum--;
}
const uavcan::uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum);
if ((prescaler < 1U) || (prescaler > 1024U))
{
return -ErrInvalidBitRate; // No solution
}
/*
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum.
* We need to find the values so that the sample point is as close as possible to the optimal value.
*
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *)
* {{bs2 -> (1 + bs1)/7}}
*
* Hence:
* bs2 = (1 + bs1) / 7
* bs1 = (7 * bs1_bs2_sum - 1) / 8
*
* Sample point location can be computed as follows:
* Sample point location = (1 + bs1) / (1 + bs1 + bs2)
*
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one:
* - With rounding to nearest
* - With rounding to zero
*/
struct BsPair
{
uavcan::uint8_t bs1;
uavcan::uint8_t bs2;
uavcan::uint16_t sample_point_permill;
BsPair() :
bs1(0),
bs2(0),
sample_point_permill(0)
{ }
BsPair(uavcan::uint8_t bs1_bs2_sum, uavcan::uint8_t arg_bs1) :
bs1(arg_bs1),
bs2(uavcan::uint8_t(bs1_bs2_sum - bs1)),
sample_point_permill(uavcan::uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2)))
{
UAVCAN_ASSERT(bs1_bs2_sum > arg_bs1);
}
bool isValid() const { return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2); }
};
// First attempt with rounding to nearest
BsPair solution(bs1_bs2_sum, uavcan::uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8));
if (solution.sample_point_permill > MaxSamplePointLocation)
{
// Second attempt with rounding to zero
solution = BsPair(bs1_bs2_sum, uavcan::uint8_t((7 * bs1_bs2_sum - 1) / 8));
}
/*
* Final validation
* Helpful Python:
* def sample_point_from_btr(x):
* assert 0b0011110010000000111111000000000 & x == 0
* ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511
* return (1+ts1+1)/(1+ts1+1+ts2+1)
*
*/
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid())
{
UAVCAN_ASSERT(0);
return -ErrLogic;
}
UAVCAN_STM32_LOG("Timings: quanta/bit: %d, sample point location: %.1f%%",
int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F);
out_timings.prescaler = uavcan::uint16_t(prescaler - 1U);
out_timings.sjw = 0; // Which means one
out_timings.bs1 = uavcan::uint8_t(solution.bs1 - 1);
out_timings.bs2 = uavcan::uint8_t(solution.bs2 - 1);
return 0;
}
uavcan::int16_t CanIface::send(const uavcan::CanFrame& frame, uavcan::MonotonicTime tx_deadline,
uavcan::CanIOFlags flags)
{
if (frame.isErrorFrame() || frame.dlc > 8)
{
return -ErrUnsupportedFrame;
}
/*
* Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because
* it is possible that the highest-priority frame between select() and send() could have been
* replaced with a lower priority one due to TX timeout. But we don't do this check because:
*
* - It is a highly unlikely scenario.
*
* - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new
* frame can only have higher priority, which doesn't break the logic.
*
* - If high-priority frames are timing out in the TX queue, there's probably a lot of other
* issues to take care of before this one becomes relevant.
*
* - It takes CPU time. Not just CPU time, but critical section time, which is expensive.
*/
CriticalSectionLocker lock;
/*
* Seeking for an empty slot
*/
uavcan::uint8_t txmailbox = 0xFF;
if ((can_->TSR & bxcan::TSR_TME0) == bxcan::TSR_TME0)
{
txmailbox = 0;
}
else if ((can_->TSR & bxcan::TSR_TME1) == bxcan::TSR_TME1)
{
txmailbox = 1;
}
else if ((can_->TSR & bxcan::TSR_TME2) == bxcan::TSR_TME2)
{
txmailbox = 2;
}
else
{
return 0; // No transmission for you.
}
peak_tx_mailbox_index_ = uavcan::max(peak_tx_mailbox_index_, txmailbox); // Statistics
/*
* Setting up the mailbox
*/
bxcan::TxMailboxType& mb = can_->TxMailbox[txmailbox];
if (frame.isExtended())
{
mb.TIR = ((frame.id & uavcan::CanFrame::MaskExtID) << 3) | bxcan::TIR_IDE;
}
else
{
mb.TIR = ((frame.id & uavcan::CanFrame::MaskStdID) << 21);
}
if (frame.isRemoteTransmissionRequest())
{
mb.TIR |= bxcan::TIR_RTR;
}
mb.TDTR = frame.dlc;
mb.TDHR = (uavcan::uint32_t(frame.data[7]) << 24) |
(uavcan::uint32_t(frame.data[6]) << 16) |
(uavcan::uint32_t(frame.data[5]) << 8) |
(uavcan::uint32_t(frame.data[4]) << 0);
mb.TDLR = (uavcan::uint32_t(frame.data[3]) << 24) |
(uavcan::uint32_t(frame.data[2]) << 16) |
(uavcan::uint32_t(frame.data[1]) << 8) |
(uavcan::uint32_t(frame.data[0]) << 0);
mb.TIR |= bxcan::TIR_TXRQ; // Go.
/*
* Registering the pending transmission so we can track its deadline and loopback it as needed
*/
TxItem& txi = pending_tx_[txmailbox];
txi.deadline = tx_deadline;
txi.frame = frame;
txi.loopback = (flags & uavcan::CanIOFlagLoopback) != 0;
txi.abort_on_error = (flags & uavcan::CanIOFlagAbortOnError) != 0;
txi.pending = true;
return 1;
}
uavcan::int16_t CanIface::receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic,
uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags)
{
out_ts_monotonic = clock::getMonotonic(); // High precision is not required for monotonic timestamps
uavcan::uint64_t utc_usec = 0;
{
CriticalSectionLocker lock;
if (rx_queue_.getLength() == 0)
{
return 0;
}
rx_queue_.pop(out_frame, utc_usec, out_flags);
}
out_ts_utc = uavcan::UtcTime::fromUSec(utc_usec);
return 1;
}
uavcan::int16_t CanIface::configureFilters(const uavcan::CanFilterConfig* filter_configs,
uavcan::uint16_t num_configs)
{
if (num_configs <= NumFilters)
{
CriticalSectionLocker lock;
can_->FMR |= bxcan::FMR_FINIT;
// Slave (CAN2) gets half of the filters
can_->FMR &= ~0x00003F00UL;
can_->FMR |= static_cast<uint32_t>(NumFilters) << 8;
can_->FFA1R = 0x0AAAAAAA; // FIFO's are interleaved between filters
can_->FM1R = 0; // Identifier Mask mode
can_->FS1R = 0x7ffffff; // Single 32-bit for all
const uint8_t filter_start_index = (self_index_ == 0) ? 0 : NumFilters;
if (num_configs == 0)
{
can_->FilterRegister[filter_start_index].FR1 = 0;
can_->FilterRegister[filter_start_index].FR2 = 0;
can_->FA1R = 1 << filter_start_index;
}
else
{
for (uint8_t i = 0; i < NumFilters; i++)
{
if (i < num_configs)
{
uint32_t id = 0;
uint32_t mask = 0;
const uavcan::CanFilterConfig* const cfg = filter_configs + i;
if ((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF))
{
id = (cfg->id & uavcan::CanFrame::MaskExtID) << 3;
mask = (cfg->mask & uavcan::CanFrame::MaskExtID) << 3;
id |= bxcan::RIR_IDE;
}
else
{
id = (cfg->id & uavcan::CanFrame::MaskStdID) << 21; // Regular std frames, nothing fancy.
mask = (cfg->mask & uavcan::CanFrame::MaskStdID) << 21; // Boring.
}
if (cfg->id & uavcan::CanFrame::FlagRTR)
{
id |= bxcan::RIR_RTR;
}
if (cfg->mask & uavcan::CanFrame::FlagEFF)
{
mask |= bxcan::RIR_IDE;
}
if (cfg->mask & uavcan::CanFrame::FlagRTR)
{
mask |= bxcan::RIR_RTR;
}
can_->FilterRegister[filter_start_index + i].FR1 = id;
can_->FilterRegister[filter_start_index + i].FR2 = mask;
can_->FA1R |= (1 << (filter_start_index + i));
}
else
{
can_->FA1R &= ~(1 << (filter_start_index + i));
}
}
}
can_->FMR &= ~bxcan::FMR_FINIT;
return 0;
}
return -ErrFilterNumConfigs;
}
bool CanIface::waitMsrINakBitStateChange(bool target_state)
{
const unsigned Timeout = 1000;
for (unsigned wait_ack = 0; wait_ack < Timeout; wait_ack++)
{
const bool state = (can_->MSR & bxcan::MSR_INAK) != 0;
if (state == target_state)
{
return true;
}
#if CH_KERNEL_MAJOR >= 5
::chThdSleep(chTimeMS2I(1));
#else
::chThdSleep(MS2ST(1));
#endif
}
return false;
}
int CanIface::init(const uavcan::uint32_t bitrate, const OperatingMode mode)
{
/*
* We need to silence the controller in the first order, otherwise it may interfere with the following operations.
*/
{
CriticalSectionLocker lock;
can_->MCR &= ~bxcan::MCR_SLEEP; // Exit sleep mode
can_->MCR |= bxcan::MCR_INRQ; // Request init
can_->IER = 0; // Disable interrupts while initialization is in progress
}
if (!waitMsrINakBitStateChange(true))
{
UAVCAN_STM32_LOG("MSR INAK not set");
can_->MCR = bxcan::MCR_RESET;
return -ErrMsrInakNotSet;
}
/*
* Object state - interrupts are disabled, so it's safe to modify it now
*/
rx_queue_.reset();
error_cnt_ = 0;
served_aborts_cnt_ = 0;
uavcan::fill_n(pending_tx_, NumTxMailboxes, TxItem());
peak_tx_mailbox_index_ = 0;
had_activity_ = false;
/*
* CAN timings for this bitrate
*/
Timings timings;
const int timings_res = computeTimings(bitrate, timings);
if (timings_res < 0)
{
can_->MCR = bxcan::MCR_RESET;
return timings_res;
}
UAVCAN_STM32_LOG("Timings: presc=%u sjw=%u bs1=%u bs2=%u",
unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2));
/*
* Hardware initialization (the hardware has already confirmed initialization mode, see above)
*/
can_->MCR = bxcan::MCR_ABOM | bxcan::MCR_AWUM | bxcan::MCR_INRQ; // RM page 648
can_->BTR = ((timings.sjw & 3U) << 24) |
((timings.bs1 & 15U) << 16) |
((timings.bs2 & 7U) << 20) |
(timings.prescaler & 1023U) |
((mode == SilentMode) ? bxcan::BTR_SILM : 0);
can_->IER = bxcan::IER_TMEIE | // TX mailbox empty
bxcan::IER_FMPIE0 | // RX FIFO 0 is not empty
bxcan::IER_FMPIE1; // RX FIFO 1 is not empty
can_->MCR &= ~bxcan::MCR_INRQ; // Leave init mode
if (!waitMsrINakBitStateChange(false))
{
UAVCAN_STM32_LOG("MSR INAK not cleared");
can_->MCR = bxcan::MCR_RESET;
return -ErrMsrInakNotCleared;
}
/*
* Default filter configuration
*/
if (self_index_ == 0)
{
can_->FMR |= bxcan::FMR_FINIT;
can_->FMR &= 0xFFFFC0F1;
can_->FMR |= static_cast<uavcan::uint32_t>(NumFilters) << 8; // Slave (CAN2) gets half of the filters
can_->FFA1R = 0; // All assigned to FIFO0 by default
can_->FM1R = 0; // Indentifier Mask mode
#if UAVCAN_STM32_NUM_IFACES > 1
can_->FS1R = 0x7ffffff; // Single 32-bit for all
can_->FilterRegister[0].FR1 = 0; // CAN1 accepts everything
can_->FilterRegister[0].FR2 = 0;
can_->FilterRegister[NumFilters].FR1 = 0; // CAN2 accepts everything
can_->FilterRegister[NumFilters].FR2 = 0;
can_->FA1R = 1 | (1 << NumFilters); // One filter per each iface
#else
can_->FS1R = 0x1fff;
can_->FilterRegister[0].FR1 = 0;
can_->FilterRegister[0].FR2 = 0;
can_->FA1R = 1;
#endif
can_->FMR &= ~bxcan::FMR_FINIT;
}
return 0;
}
void CanIface::handleTxMailboxInterrupt(uavcan::uint8_t mailbox_index, bool txok, const uavcan::uint64_t utc_usec)
{
UAVCAN_ASSERT(mailbox_index < NumTxMailboxes);
had_activity_ = had_activity_ || txok;
TxItem& txi = pending_tx_[mailbox_index];
if (txi.loopback && txok && txi.pending)
{
rx_queue_.push(txi.frame, utc_usec, uavcan::CanIOFlagLoopback);
}
txi.pending = false;
}
void CanIface::handleTxInterrupt(const uavcan::uint64_t utc_usec)
{
// TXOK == false means that there was a hardware failure
if (can_->TSR & bxcan::TSR_RQCP0)
{
const bool txok = can_->TSR & bxcan::TSR_TXOK0;
can_->TSR = bxcan::TSR_RQCP0;
handleTxMailboxInterrupt(0, txok, utc_usec);
}
if (can_->TSR & bxcan::TSR_RQCP1)
{
const bool txok = can_->TSR & bxcan::TSR_TXOK1;
can_->TSR = bxcan::TSR_RQCP1;
handleTxMailboxInterrupt(1, txok, utc_usec);
}
if (can_->TSR & bxcan::TSR_RQCP2)
{
const bool txok = can_->TSR & bxcan::TSR_TXOK2;
can_->TSR = bxcan::TSR_RQCP2;
handleTxMailboxInterrupt(2, txok, utc_usec);
}
update_event_.signalFromInterrupt();
pollErrorFlagsFromISR();
}
void CanIface::handleRxInterrupt(uavcan::uint8_t fifo_index, uavcan::uint64_t utc_usec)
{
UAVCAN_ASSERT(fifo_index < 2);
volatile uavcan::uint32_t* const rfr_reg = (fifo_index == 0) ? &can_->RF0R : &can_->RF1R;
if ((*rfr_reg & bxcan::RFR_FMP_MASK) == 0)
{
UAVCAN_ASSERT(0); // Weird, IRQ is here but no data to read
return;
}
/*
* Register overflow as a hardware error
*/
if ((*rfr_reg & bxcan::RFR_FOVR) != 0)
{
error_cnt_++;
}
/*
* Read the frame contents
*/
uavcan::CanFrame frame;
const bxcan::RxMailboxType& rf = can_->RxMailbox[fifo_index];
if ((rf.RIR & bxcan::RIR_IDE) == 0)
{
frame.id = uavcan::CanFrame::MaskStdID & (rf.RIR >> 21);
}
else
{
frame.id = uavcan::CanFrame::MaskExtID & (rf.RIR >> 3);
frame.id |= uavcan::CanFrame::FlagEFF;
}
if ((rf.RIR & bxcan::RIR_RTR) != 0)
{
frame.id |= uavcan::CanFrame::FlagRTR;
}
frame.dlc = rf.RDTR & 15;
frame.data[0] = uavcan::uint8_t(0xFF & (rf.RDLR >> 0));
frame.data[1] = uavcan::uint8_t(0xFF & (rf.RDLR >> 8));
frame.data[2] = uavcan::uint8_t(0xFF & (rf.RDLR >> 16));
frame.data[3] = uavcan::uint8_t(0xFF & (rf.RDLR >> 24));
frame.data[4] = uavcan::uint8_t(0xFF & (rf.RDHR >> 0));
frame.data[5] = uavcan::uint8_t(0xFF & (rf.RDHR >> 8));
frame.data[6] = uavcan::uint8_t(0xFF & (rf.RDHR >> 16));
frame.data[7] = uavcan::uint8_t(0xFF & (rf.RDHR >> 24));
*rfr_reg = bxcan::RFR_RFOM | bxcan::RFR_FOVR | bxcan::RFR_FULL; // Release FIFO entry we just read
/*
* Store with timeout into the FIFO buffer and signal update event
*/
rx_queue_.push(frame, utc_usec, 0);
#if AP_UAVCAN_SLCAN_ENABLED
_slcan_router.route_frame_to_slcan(this, frame, utc_usec);
#endif
had_activity_ = true;
update_event_.signalFromInterrupt();
pollErrorFlagsFromISR();
}
void CanIface::pollErrorFlagsFromISR()
{
const uavcan::uint8_t lec = uavcan::uint8_t((can_->ESR & bxcan::ESR_LEC_MASK) >> bxcan::ESR_LEC_SHIFT);
if (lec != 0)
{
can_->ESR = 0;
error_cnt_++;
// Serving abort requests
for (int i = 0; i < NumTxMailboxes; i++) // Dear compiler, may I suggest you to unroll this loop please.
{
TxItem& txi = pending_tx_[i];
if (txi.pending && txi.abort_on_error)
{
can_->TSR = TSR_ABRQx[i];
txi.pending = false;
served_aborts_cnt_++;
}
}
}
}
void CanIface::discardTimedOutTxMailboxes(uavcan::MonotonicTime current_time)
{
CriticalSectionLocker lock;
for (int i = 0; i < NumTxMailboxes; i++)
{
TxItem& txi = pending_tx_[i];
if (txi.pending && txi.deadline < current_time)
{
can_->TSR = TSR_ABRQx[i]; // Goodnight sweet transmission
txi.pending = false;
error_cnt_++;
}
}
}
bool CanIface::canAcceptNewTxFrame(const uavcan::CanFrame& frame) const
{
/*
* We can accept more frames only if the following conditions are satisfied:
* - There is at least one TX mailbox free (obvious enough);
* - The priority of the new frame is higher than priority of all TX mailboxes.
*/
{
static const uavcan::uint32_t TME = bxcan::TSR_TME0 | bxcan::TSR_TME1 | bxcan::TSR_TME2;
const uavcan::uint32_t tme = can_->TSR & TME;
if (tme == TME) // All TX mailboxes are free (as in freedom).
{
return true;
}
if (tme == 0) // All TX mailboxes are busy transmitting.
{
return false;
}
}
/*
* The second condition requires a critical section.
*/
CriticalSectionLocker lock;
for (int mbx = 0; mbx < NumTxMailboxes; mbx++)
{
if (pending_tx_[mbx].pending && !frame.priorityHigherThan(pending_tx_[mbx].frame))
{
return false; // There's a mailbox whose priority is higher or equal the priority of the new frame.
}
}
return true; // This new frame will be added to a free TX mailbox in the next @ref send().
}
bool CanIface::isRxBufferEmpty() const
{
CriticalSectionLocker lock;
return rx_queue_.getLength() == 0;
}
uavcan::uint64_t CanIface::getErrorCount() const
{
CriticalSectionLocker lock;
return error_cnt_ + rx_queue_.getOverflowCount();
}
unsigned CanIface::getRxQueueLength() const
{
CriticalSectionLocker lock;
return rx_queue_.getLength();
}
bool CanIface::hadActivity()
{
CriticalSectionLocker lock;
const bool ret = had_activity_;
had_activity_ = false;
return ret;
}
/*
* CanDriver
*/
uavcan::CanSelectMasks CanDriver::makeSelectMasks(const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces]) const
{
uavcan::CanSelectMasks msk;
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) {
CanIface* iface = ifaces[if_int_to_gl_index_[i]];
msk.read |= (iface->isRxBufferEmpty() ? 0 : 1) << i;
if (pending_tx[i] != UAVCAN_NULLPTR)
{
msk.write |= (iface->canAcceptNewTxFrame(*pending_tx[i]) ? 1 : 0) << i;
}
}
return msk;
}
bool CanDriver::hasReadableInterfaces() const
{
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) {
if (!ifaces[if_int_to_gl_index_[i]]->isRxBufferEmpty()) {
return true;
}
}
return false;
}
uavcan::int16_t CanDriver::select(uavcan::CanSelectMasks& inout_masks,
const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces],
const uavcan::MonotonicTime blocking_deadline)
{
const uavcan::CanSelectMasks in_masks = inout_masks;
const uavcan::MonotonicTime time = clock::getMonotonic();
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) {
CanIface* iface = ifaces[if_int_to_gl_index_[i]];
iface->discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots
{
CriticalSectionLocker cs_locker;
iface->pollErrorFlagsFromISR();
}
}
inout_masks = makeSelectMasks(pending_tx); // Check if we already have some of the requested events
if ((inout_masks.read & in_masks.read) != 0 ||
(inout_masks.write & in_masks.write) != 0)
{
return 1;
}
(void)update_event_.wait(blocking_deadline - time); // Block until timeout expires or any iface updates
inout_masks = makeSelectMasks(pending_tx); // Return what we got even if none of the requested events are set
return 1; // Return value doesn't matter as long as it is non-negative
}
void CanDriver::initOnce()
{
/*
* CAN1, CAN2
*/
{
CriticalSectionLocker lock;
RCC->APB1ENR |= RCC_APB1ENR_CAN1EN;
RCC->APB1RSTR |= RCC_APB1RSTR_CAN1RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN1RST;
# if UAVCAN_STM32_NUM_IFACES > 1
RCC->APB1ENR |= RCC_APB1ENR_CAN2EN;
RCC->APB1RSTR |= RCC_APB1RSTR_CAN2RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN2RST;
# endif
}
/*
* IRQ
*/
{
CriticalSectionLocker lock;
nvicEnableVector(CAN1_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(CAN1_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(CAN1_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
# if UAVCAN_STM32_NUM_IFACES > 1
nvicEnableVector(CAN2_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(CAN2_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(CAN2_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
# endif
}
}
int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode)
{
int res = 0;
UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode));
static bool initialized_once = false;
if (!initialized_once)
{
initialized_once = true;
UAVCAN_STM32_LOG("First initialization");
initOnce();
}
/*
* CAN1
*/
UAVCAN_STM32_LOG("Initing iface 0...");
ifaces[0] = &if0_; // This link must be initialized first,
res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet;
if (res < 0) // a typical race condition.
{
UAVCAN_STM32_LOG("Iface 0 init failed %i", res);
ifaces[0] = UAVCAN_NULLPTR;
goto fail;
}
/*
* CAN2
*/
#if UAVCAN_STM32_NUM_IFACES > 1
UAVCAN_STM32_LOG("Initing iface 1...");
ifaces[1] = &if1_; // Same thing here.
res = if1_.init(bitrate, mode);
if (res < 0)
{
UAVCAN_STM32_LOG("Iface 1 init failed %i", res);
ifaces[1] = UAVCAN_NULLPTR;
goto fail;
}
#endif
UAVCAN_STM32_LOG("CAN drv init OK");
UAVCAN_ASSERT(res >= 0);
return res;
fail:
UAVCAN_STM32_LOG("CAN drv init failed %i", res);
UAVCAN_ASSERT(res < 0);
return res;
}
void CanDriver::initOnce(uavcan::uint8_t can_number, bool enable_irqs)
{
/*
* CAN1, CAN2
*/
{
CriticalSectionLocker lock;
if (can_number == 0) {
RCC->APB1ENR |= RCC_APB1ENR_CAN1EN;
RCC->APB1RSTR |= RCC_APB1RSTR_CAN1RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN1RST;
}
# if UAVCAN_STM32_NUM_IFACES > 1
else if (can_number == 1) {
RCC->APB1ENR |= RCC_APB1ENR_CAN2EN;
RCC->APB1RSTR |= RCC_APB1RSTR_CAN2RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN2RST;
}
# endif
}
if (!enable_irqs) {
return;
}
/*
* IRQ
*/
{
CriticalSectionLocker lock;
if (can_number == 0) {
nvicEnableVector(CAN1_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(CAN1_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(CAN1_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
}
# if UAVCAN_STM32_NUM_IFACES > 1
else if (can_number == 1) {
nvicEnableVector(CAN2_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(CAN2_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
nvicEnableVector(CAN2_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK);
}
# endif
}
}
int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode, uavcan::uint8_t can_number)
{
int res = 0;
UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode));
if (can_number > UAVCAN_STM32_NUM_IFACES) {
res = -1;
goto fail;
}
static bool initialized_once[UAVCAN_STM32_NUM_IFACES] = {false};
if (!initialized_once[can_number]) {
initialized_once[can_number] = true;
initialized_by_me_[can_number] = true;
if (can_number == 1 && !initialized_once[0]) {
UAVCAN_STM32_LOG("Iface 0 is not initialized yet but we need it for Iface 1, trying to init it");
UAVCAN_STM32_LOG("Enabling CAN iface 0");
initOnce(0, false);
UAVCAN_STM32_LOG("Initing iface 0...");
res = if0_.init(bitrate, mode);
if (res < 0) {
UAVCAN_STM32_LOG("Iface 0 init failed %i", res);
goto fail;
}
}
UAVCAN_STM32_LOG("Enabling CAN iface %d", can_number);
initOnce(can_number, true);
} else if (!initialized_by_me_[can_number]) {
UAVCAN_STM32_LOG("CAN iface %d initialized in another CANDriver!", can_number);
res = -2;
goto fail;
}
if (can_number == 0) {
/*
* CAN1
*/
UAVCAN_STM32_LOG("Initing iface 0...");
ifaces[0] = &if0_; // This link must be initialized first,
res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet;
if (res < 0) // a typical race condition.
{
UAVCAN_STM32_LOG("Iface 0 init failed %i", res);
ifaces[0] = UAVCAN_NULLPTR;
goto fail;
}
} else if (can_number == 1) {
/*
* CAN2
*/
#if UAVCAN_STM32_NUM_IFACES > 1
UAVCAN_STM32_LOG("Initing iface 1...");
ifaces[1] = &if1_; // Same thing here.
res = if1_.init(bitrate, mode);
if (res < 0)
{
UAVCAN_STM32_LOG("Iface 1 init failed %i", res);
ifaces[1] = UAVCAN_NULLPTR;
goto fail;
}
#endif
}
if_int_to_gl_index_[num_ifaces_++] = can_number;
UAVCAN_STM32_LOG("CAN drv init OK");
UAVCAN_ASSERT(res >= 0);
return res;
fail:
UAVCAN_STM32_LOG("CAN drv init failed %i", res);
UAVCAN_ASSERT(res < 0);
return res;
}
CanIface* CanDriver::getIface(uavcan::uint8_t iface_index)
{
if (iface_index < num_ifaces_)
{
return ifaces[if_int_to_gl_index_[iface_index]];
}
return UAVCAN_NULLPTR;
}
bool CanDriver::hadActivity()
{
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) {
if (ifaces[if_int_to_gl_index_[i]]->hadActivity()) {
return true;
}
}
return false;
}
} // namespace uavcan_stm32
/*
* Interrupt handlers
*/
extern "C"
{
UAVCAN_STM32_IRQ_HANDLER(CAN1_TX_IRQHandler);
UAVCAN_STM32_IRQ_HANDLER(CAN1_TX_IRQHandler)
{
UAVCAN_STM32_IRQ_PROLOGUE();
ChibiOS_CAN::handleTxInterrupt(0);
UAVCAN_STM32_IRQ_EPILOGUE();
}
UAVCAN_STM32_IRQ_HANDLER(CAN1_RX0_IRQHandler);
UAVCAN_STM32_IRQ_HANDLER(CAN1_RX0_IRQHandler)
{
UAVCAN_STM32_IRQ_PROLOGUE();
ChibiOS_CAN::handleRxInterrupt(0, 0);
UAVCAN_STM32_IRQ_EPILOGUE();
}
UAVCAN_STM32_IRQ_HANDLER(CAN1_RX1_IRQHandler);
UAVCAN_STM32_IRQ_HANDLER(CAN1_RX1_IRQHandler)
{
UAVCAN_STM32_IRQ_PROLOGUE();
ChibiOS_CAN::handleRxInterrupt(0, 1);
UAVCAN_STM32_IRQ_EPILOGUE();
}
# if UAVCAN_STM32_NUM_IFACES > 1
#if !defined(CAN2_TX_IRQHandler)
# error "Misconfigured build1"
#endif
#if !defined(CAN2_RX0_IRQHandler)
# error "Misconfigured build2"
#endif
#if !defined(CAN2_RX1_IRQHandler)
# error "Misconfigured build3"
#endif
UAVCAN_STM32_IRQ_HANDLER(CAN2_TX_IRQHandler);
UAVCAN_STM32_IRQ_HANDLER(CAN2_TX_IRQHandler)
{
UAVCAN_STM32_IRQ_PROLOGUE();
ChibiOS_CAN::handleTxInterrupt(1);
UAVCAN_STM32_IRQ_EPILOGUE();
}
UAVCAN_STM32_IRQ_HANDLER(CAN2_RX0_IRQHandler);
UAVCAN_STM32_IRQ_HANDLER(CAN2_RX0_IRQHandler)
{
UAVCAN_STM32_IRQ_PROLOGUE();
ChibiOS_CAN::handleRxInterrupt(1, 0);
UAVCAN_STM32_IRQ_EPILOGUE();
}
UAVCAN_STM32_IRQ_HANDLER(CAN2_RX1_IRQHandler);
UAVCAN_STM32_IRQ_HANDLER(CAN2_RX1_IRQHandler)
{
UAVCAN_STM32_IRQ_PROLOGUE();
ChibiOS_CAN::handleRxInterrupt(1, 1);
UAVCAN_STM32_IRQ_EPILOGUE();
}
# endif
} // extern "C"
#endif //!defined(STM32H7XX)
#endif //HAL_WITH_UAVCAN