5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-15 05:08:41 -04:00
ardupilot/ArduSub/control_auto.cpp
2018-09-19 13:22:46 +10:00

767 lines
27 KiB
C++

#include "Sub.h"
/*
* control_auto.cpp
* Contains the mission, waypoint navigation and NAV_CMD item implementation
*
* While in the auto flight mode, navigation or do/now commands can be run.
* Code in this file implements the navigation commands
*/
// auto_init - initialise auto controller
bool Sub::auto_init()
{
if (!position_ok() || mission.num_commands() < 2) {
return false;
}
auto_mode = Auto_Loiter;
// stop ROI from carrying over from previous runs of the mission
// To-Do: reset the yaw as part of auto_wp_start when the previous command was not a wp command to remove the need for this special ROI check
if (auto_yaw_mode == AUTO_YAW_ROI) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// initialise waypoint and spline controller
wp_nav.wp_and_spline_init();
// clear guided limits
guided_limit_clear();
// start/resume the mission (based on MIS_RESTART parameter)
mission.start_or_resume();
return true;
}
// auto_run - runs the appropriate auto controller
// according to the current auto_mode
// should be called at 100hz or more
void Sub::auto_run()
{
mission.update();
// call the correct auto controller
switch (auto_mode) {
case Auto_WP:
case Auto_CircleMoveToEdge:
auto_wp_run();
break;
case Auto_Circle:
auto_circle_run();
break;
case Auto_Spline:
auto_spline_run();
break;
case Auto_NavGuided:
#if NAV_GUIDED == ENABLED
auto_nav_guided_run();
#endif
break;
case Auto_Loiter:
auto_loiter_run();
break;
case Auto_TerrainRecover:
auto_terrain_recover_run();
break;
}
}
// auto_wp_start - initialises waypoint controller to implement flying to a particular destination
void Sub::auto_wp_start(const Vector3f& destination)
{
auto_mode = Auto_WP;
// initialise wpnav (no need to check return status because terrain data is not used)
wp_nav.set_wp_destination(destination, false);
// initialise yaw
// To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI
if (auto_yaw_mode != AUTO_YAW_ROI) {
set_auto_yaw_mode(get_default_auto_yaw_mode(false));
}
}
// auto_wp_start - initialises waypoint controller to implement flying to a particular destination
void Sub::auto_wp_start(const Location_Class& dest_loc)
{
auto_mode = Auto_WP;
// send target to waypoint controller
if (!wp_nav.set_wp_destination(dest_loc)) {
// failure to set destination can only be because of missing terrain data
failsafe_terrain_on_event();
return;
}
// initialise yaw
// To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI
if (auto_yaw_mode != AUTO_YAW_ROI) {
set_auto_yaw_mode(get_default_auto_yaw_mode(false));
}
}
// auto_wp_run - runs the auto waypoint controller
// called by auto_run at 100hz or more
void Sub::auto_wp_run()
{
// if not armed set throttle to zero and exit immediately
if (!motors.armed()) {
// To-Do: reset waypoint origin to current location because vehicle is probably on the ground so we don't want it lurching left or right on take-off
// (of course it would be better if people just used take-off)
// call attitude controller
// Sub vehicles do not stabilize roll/pitch/yaw when disarmed
motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.pilot_input) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
// TODO logic for terrain tracking target going below fence limit
// TODO implement waypoint radius individually for each waypoint based on cmd.p2
// TODO fix auto yaw heading to switch to something appropriate when mission complete and switches to loiter
failsafe_terrain_set_status(wp_nav.update_wpnav());
///////////////////////
// update xy outputs //
float lateral_out, forward_out;
translate_wpnav_rp(lateral_out, forward_out);
// Send to forward/lateral outputs
motors.set_lateral(lateral_out);
motors.set_forward(forward_out);
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control.update_z_controller();
////////////////////////////
// update attitude output //
// get pilot desired lean angles
float target_roll, target_pitch;
get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);
} else {
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, get_auto_heading(), true);
}
}
// auto_spline_start - initialises waypoint controller to implement flying to a particular destination using the spline controller
// seg_end_type can be SEGMENT_END_STOP, SEGMENT_END_STRAIGHT or SEGMENT_END_SPLINE. If Straight or Spline the next_destination should be provided
void Sub::auto_spline_start(const Location_Class& destination, bool stopped_at_start,
AC_WPNav::spline_segment_end_type seg_end_type,
const Location_Class& next_destination)
{
auto_mode = Auto_Spline;
// initialise wpnav
if (!wp_nav.set_spline_destination(destination, stopped_at_start, seg_end_type, next_destination)) {
// failure to set destination can only be because of missing terrain data
failsafe_terrain_on_event();
return;
}
// initialise yaw
// To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI
if (auto_yaw_mode != AUTO_YAW_ROI) {
set_auto_yaw_mode(get_default_auto_yaw_mode(false));
}
}
// auto_spline_run - runs the auto spline controller
// called by auto_run at 100hz or more
void Sub::auto_spline_run()
{
// if not armed set throttle to zero and exit immediately
if (!motors.armed()) {
// To-Do: reset waypoint origin to current location because vehicle is probably on the ground so we don't want it lurching left or right on take-off
// (of course it would be better if people just used take-off)
// Sub vehicles do not stabilize roll/pitch/yaw when disarmed
attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.pilot_input) {
// get pilot's desired yaw rat
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
wp_nav.update_spline();
float lateral_out, forward_out;
translate_wpnav_rp(lateral_out, forward_out);
// Send to forward/lateral outputs
motors.set_lateral(lateral_out);
motors.set_forward(forward_out);
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control.update_z_controller();
// get pilot desired lean angles
float target_roll, target_pitch;
get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);
} else {
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, get_auto_heading(), true);
}
}
// auto_circle_movetoedge_start - initialise waypoint controller to move to edge of a circle with it's center at the specified location
// we assume the caller has set the circle's circle with circle_nav.set_center()
// we assume the caller has performed all required GPS_ok checks
void Sub::auto_circle_movetoedge_start(const Location_Class &circle_center, float radius_m)
{
// convert location to vector from ekf origin
Vector3f circle_center_neu;
if (!circle_center.get_vector_from_origin_NEU(circle_center_neu)) {
// default to current position and log error
circle_center_neu = inertial_nav.get_position();
Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_FAILED_CIRCLE_INIT);
}
circle_nav.set_center(circle_center_neu);
// set circle radius
if (!is_zero(radius_m)) {
circle_nav.set_radius(radius_m * 100.0f);
}
// check our distance from edge of circle
Vector3f circle_edge_neu;
circle_nav.get_closest_point_on_circle(circle_edge_neu);
float dist_to_edge = (inertial_nav.get_position() - circle_edge_neu).length();
// if more than 3m then fly to edge
if (dist_to_edge > 300.0f) {
// set the state to move to the edge of the circle
auto_mode = Auto_CircleMoveToEdge;
// convert circle_edge_neu to Location_Class
Location_Class circle_edge(circle_edge_neu);
// convert altitude to same as command
circle_edge.set_alt_cm(circle_center.alt, circle_center.get_alt_frame());
// initialise wpnav to move to edge of circle
if (!wp_nav.set_wp_destination(circle_edge)) {
// failure to set destination can only be because of missing terrain data
failsafe_terrain_on_event();
}
// if we are outside the circle, point at the edge, otherwise hold yaw
const Vector3f &curr_pos = inertial_nav.get_position();
float dist_to_center = norm(circle_center_neu.x - curr_pos.x, circle_center_neu.y - curr_pos.y);
if (dist_to_center > circle_nav.get_radius() && dist_to_center > 500) {
set_auto_yaw_mode(get_default_auto_yaw_mode(false));
} else {
// vehicle is within circle so hold yaw to avoid spinning as we move to edge of circle
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
} else {
auto_circle_start();
}
}
// auto_circle_start - initialises controller to fly a circle in AUTO flight mode
// assumes that circle_nav object has already been initialised with circle center and radius
void Sub::auto_circle_start()
{
auto_mode = Auto_Circle;
// initialise circle controller
circle_nav.init(circle_nav.get_center());
}
// auto_circle_run - circle in AUTO flight mode
// called by auto_run at 100hz or more
void Sub::auto_circle_run()
{
// call circle controller
circle_nav.update();
float lateral_out, forward_out;
translate_circle_nav_rp(lateral_out, forward_out);
// Send to forward/lateral outputs
motors.set_lateral(lateral_out);
motors.set_forward(forward_out);
// call z-axis position controller
pos_control.update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), circle_nav.get_yaw(), true);
}
#if NAV_GUIDED == ENABLED
// auto_nav_guided_start - hand over control to external navigation controller in AUTO mode
void Sub::auto_nav_guided_start()
{
auto_mode = Auto_NavGuided;
// call regular guided flight mode initialisation
guided_init(true);
// initialise guided start time and position as reference for limit checking
guided_limit_init_time_and_pos();
}
// auto_nav_guided_run - allows control by external navigation controller
// called by auto_run at 100hz or more
void Sub::auto_nav_guided_run()
{
// call regular guided flight mode run function
guided_run();
}
#endif // NAV_GUIDED
// auto_loiter_start - initialises loitering in auto mode
// returns success/failure because this can be called by exit_mission
bool Sub::auto_loiter_start()
{
// return failure if GPS is bad
if (!position_ok()) {
return false;
}
auto_mode = Auto_Loiter;
Vector3f origin = inertial_nav.get_position();
// calculate stopping point
Vector3f stopping_point;
pos_control.get_stopping_point_xy(stopping_point);
pos_control.get_stopping_point_z(stopping_point);
// initialise waypoint controller target to stopping point
wp_nav.set_wp_origin_and_destination(origin, stopping_point);
// hold yaw at current heading
set_auto_yaw_mode(AUTO_YAW_HOLD);
return true;
}
// auto_loiter_run - loiter in AUTO flight mode
// called by auto_run at 100hz or more
void Sub::auto_loiter_run()
{
// if not armed set throttle to zero and exit immediately
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// Sub vehicles do not stabilize roll/pitch/yaw when disarmed
attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
return;
}
// accept pilot input of yaw
float target_yaw_rate = 0;
if (!failsafe.pilot_input) {
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
// set motors to full range
motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint and z-axis position controller
failsafe_terrain_set_status(wp_nav.update_wpnav());
///////////////////////
// update xy outputs //
float lateral_out, forward_out;
translate_wpnav_rp(lateral_out, forward_out);
// Send to forward/lateral outputs
motors.set_lateral(lateral_out);
motors.set_forward(forward_out);
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control.update_z_controller();
// get pilot desired lean angles
float target_roll, target_pitch;
get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);
}
// get_default_auto_yaw_mode - returns auto_yaw_mode based on WP_YAW_BEHAVIOR parameter
// set rtl parameter to true if this is during an RTL
uint8_t Sub::get_default_auto_yaw_mode(bool rtl)
{
switch (g.wp_yaw_behavior) {
case WP_YAW_BEHAVIOR_NONE:
return AUTO_YAW_HOLD;
break;
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL:
if (rtl) {
return AUTO_YAW_HOLD;
} else {
return AUTO_YAW_LOOK_AT_NEXT_WP;
}
break;
case WP_YAW_BEHAVIOR_LOOK_AHEAD:
return AUTO_YAW_LOOK_AHEAD;
break;
case WP_YAW_BEHAVIOR_CORRECT_XTRACK:
return AUTO_YAW_CORRECT_XTRACK;
break;
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP:
default:
return AUTO_YAW_LOOK_AT_NEXT_WP;
break;
}
}
// set_auto_yaw_mode - sets the yaw mode for auto
void Sub::set_auto_yaw_mode(uint8_t yaw_mode)
{
// return immediately if no change
if (auto_yaw_mode == yaw_mode) {
return;
}
auto_yaw_mode = yaw_mode;
// perform initialisation
switch (auto_yaw_mode) {
case AUTO_YAW_LOOK_AT_NEXT_WP:
// wpnav will initialise heading when wpnav's set_destination method is called
break;
case AUTO_YAW_ROI:
// point towards a location held in yaw_look_at_WP
yaw_look_at_WP_bearing = ahrs.yaw_sensor;
break;
case AUTO_YAW_LOOK_AT_HEADING:
// keep heading pointing in the direction held in yaw_look_at_heading
// caller should set the yaw_look_at_heading
break;
case AUTO_YAW_LOOK_AHEAD:
// Commanded Yaw to automatically look ahead.
yaw_look_ahead_bearing = ahrs.yaw_sensor;
break;
case AUTO_YAW_RESETTOARMEDYAW:
// initial_armed_bearing will be set during arming so no init required
break;
}
}
// set_auto_yaw_look_at_heading - sets the yaw look at heading for auto mode
void Sub::set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, uint8_t relative_angle)
{
// get current yaw target
int32_t curr_yaw_target = attitude_control.get_att_target_euler_cd().z;
// get final angle, 1 = Relative, 0 = Absolute
if (relative_angle == 0) {
// absolute angle
yaw_look_at_heading = wrap_360_cd(angle_deg * 100);
} else {
// relative angle
if (direction < 0) {
angle_deg = -angle_deg;
}
yaw_look_at_heading = wrap_360_cd((angle_deg*100+curr_yaw_target));
}
// get turn speed
// TODO actually implement this, right now, yaw_look_at_heading_slew is unused
// see AP_Float _slew_yaw in AC_AttitudeControl
if (is_zero(turn_rate_dps)) {
// default to regular auto slew rate
yaw_look_at_heading_slew = AUTO_YAW_SLEW_RATE;
} else {
int32_t turn_rate = (wrap_180_cd(yaw_look_at_heading - curr_yaw_target) / 100) / turn_rate_dps;
yaw_look_at_heading_slew = constrain_int32(turn_rate, 1, 360); // deg / sec
}
// set yaw mode
set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING);
// TO-DO: restore support for clockwise and counter clockwise rotation held in cmd.content.yaw.direction. 1 = clockwise, -1 = counterclockwise
}
// set_auto_yaw_roi - sets the yaw to look at roi for auto mode
void Sub::set_auto_yaw_roi(const Location &roi_location)
{
// if location is zero lat, lon and altitude turn off ROI
if (roi_location.alt == 0 && roi_location.lat == 0 && roi_location.lng == 0) {
// set auto yaw mode back to default assuming the active command is a waypoint command. A more sophisticated method is required to ensure we return to the proper yaw control for the active command
set_auto_yaw_mode(get_default_auto_yaw_mode(false));
#if MOUNT == ENABLED
// switch off the camera tracking if enabled
if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
camera_mount.set_mode_to_default();
}
#endif // MOUNT == ENABLED
} else {
#if MOUNT == ENABLED
// check if mount type requires us to rotate the quad
if (!camera_mount.has_pan_control()) {
roi_WP = pv_location_to_vector(roi_location);
set_auto_yaw_mode(AUTO_YAW_ROI);
}
// send the command to the camera mount
camera_mount.set_roi_target(roi_location);
// TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below)
// 0: do nothing
// 1: point at next waypoint
// 2: point at a waypoint taken from WP# parameter (2nd parameter?)
// 3: point at a location given by alt, lon, lat parameters
// 4: point at a target given a target id (can't be implemented)
#else
// if we have no camera mount aim the quad at the location
roi_WP = pv_location_to_vector(roi_location);
set_auto_yaw_mode(AUTO_YAW_ROI);
#endif // MOUNT == ENABLED
}
}
// get_auto_heading - returns target heading depending upon auto_yaw_mode
// 100hz update rate
float Sub::get_auto_heading()
{
switch (auto_yaw_mode) {
case AUTO_YAW_ROI:
// point towards a location held in roi_WP
return get_roi_yaw();
break;
case AUTO_YAW_LOOK_AT_HEADING:
// keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed
return yaw_look_at_heading;
break;
case AUTO_YAW_LOOK_AHEAD:
// Commanded Yaw to automatically look ahead.
return get_look_ahead_yaw();
break;
case AUTO_YAW_RESETTOARMEDYAW:
// changes yaw to be same as when quad was armed
return initial_armed_bearing;
break;
case AUTO_YAW_CORRECT_XTRACK: {
// TODO return current yaw if not in appropriate mode
// Bearing of current track (centidegrees)
float track_bearing = get_bearing_cd(wp_nav.get_wp_origin(), wp_nav.get_wp_destination());
// Bearing from current position towards intermediate position target (centidegrees)
float desired_angle = pos_control.get_bearing_to_target();
float angle_error = wrap_180_cd(desired_angle - track_bearing);
float angle_limited = constrain_float(angle_error, -g.xtrack_angle_limit * 100.0f, g.xtrack_angle_limit * 100.0f);
return wrap_360_cd(track_bearing + angle_limited);
}
break;
case AUTO_YAW_LOOK_AT_NEXT_WP:
default:
// point towards next waypoint.
// we don't use wp_bearing because we don't want the vehicle to turn too much during flight
return wp_nav.get_yaw();
break;
}
}
// Return true if it is possible to recover from a rangefinder failure
bool Sub::auto_terrain_recover_start()
{
// Check rangefinder status to see if recovery is possible
switch (rangefinder.status_orient(ROTATION_PITCH_270)) {
case RangeFinder::RangeFinder_OutOfRangeLow:
case RangeFinder::RangeFinder_OutOfRangeHigh:
// RangeFinder_Good if just one valid sample was obtained recently, but ::rangefinder_state.alt_healthy
// requires several consecutive valid readings for wpnav to accept rangefinder data
case RangeFinder::RangeFinder_Good:
auto_mode = Auto_TerrainRecover;
break;
// Not connected or no data
default:
return false; // Rangefinder is not connected, or has stopped responding
}
// Initialize recovery timeout time
fs_terrain_recover_start_ms = AP_HAL::millis();
// Stop mission
mission.stop();
// Reset xy target
loiter_nav.clear_pilot_desired_acceleration();
loiter_nav.init_target();
// Reset z axis controller
pos_control.relax_alt_hold_controllers(motors.get_throttle_hover());
// initialize vertical speeds and leash lengths
pos_control.set_speed_z(wp_nav.get_speed_down(), wp_nav.get_speed_up());
pos_control.set_accel_z(wp_nav.get_accel_z());
// Reset vertical position and velocity targets
pos_control.set_alt_target(inertial_nav.get_altitude());
pos_control.set_desired_velocity_z(inertial_nav.get_velocity_z());
gcs().send_text(MAV_SEVERITY_WARNING, "Attempting auto failsafe recovery");
return true;
}
// Attempt recovery from terrain failsafe
// If recovery is successful resume mission
// If recovery fails revert to failsafe action
void Sub::auto_terrain_recover_run()
{
float target_climb_rate = 0;
static uint32_t rangefinder_recovery_ms = 0;
// if not armed set throttle to zero and exit immediately
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
return;
}
switch (rangefinder.status_orient(ROTATION_PITCH_270)) {
case RangeFinder::RangeFinder_OutOfRangeLow:
target_climb_rate = wp_nav.get_speed_up();
rangefinder_recovery_ms = 0;
break;
case RangeFinder::RangeFinder_OutOfRangeHigh:
target_climb_rate = wp_nav.get_speed_down();
rangefinder_recovery_ms = 0;
break;
case RangeFinder::RangeFinder_Good: // exit on success (recovered rangefinder data)
target_climb_rate = 0; // Attempt to hold current depth
if (rangefinder_state.alt_healthy) {
// Start timer as soon as rangefinder is healthy
if (rangefinder_recovery_ms == 0) {
rangefinder_recovery_ms = AP_HAL::millis();
pos_control.relax_alt_hold_controllers(motors.get_throttle_hover()); // Reset alt hold targets
}
// 1.5 seconds of healthy rangefinder means we can resume mission with terrain enabled
if (AP_HAL::millis() > rangefinder_recovery_ms + 1500) {
gcs().send_text(MAV_SEVERITY_INFO, "Terrain failsafe recovery successful!");
failsafe_terrain_set_status(true); // Reset failsafe timers
failsafe.terrain = false; // Clear flag
auto_mode = Auto_Loiter; // Switch back to loiter for next iteration
mission.resume(); // Resume mission
rangefinder_recovery_ms = 0; // Reset for subsequent recoveries
}
}
break;
// Not connected, or no data
default:
// Terrain failsafe recovery has failed, terrain data is not available
// and rangefinder is not connected, or has stopped responding
gcs().send_text(MAV_SEVERITY_CRITICAL, "Terrain failsafe recovery failure: No Rangefinder!");
failsafe_terrain_act();
rangefinder_recovery_ms = 0;
return;
}
// exit on failure (timeout)
if (AP_HAL::millis() > fs_terrain_recover_start_ms + FS_TERRAIN_RECOVER_TIMEOUT_MS) {
// Recovery has failed, revert to failsafe action
gcs().send_text(MAV_SEVERITY_CRITICAL, "Terrain failsafe recovery timeout!");
failsafe_terrain_act();
}
// run loiter controller
loiter_nav.update(ekfGndSpdLimit, ekfNavVelGainScaler);
///////////////////////
// update xy targets //
float lateral_out, forward_out;
translate_wpnav_rp(lateral_out, forward_out);
// Send to forward/lateral outputs
motors.set_lateral(lateral_out);
motors.set_forward(forward_out);
/////////////////////
// update z target //
pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, true);
pos_control.update_z_controller();
////////////////////////////
// update angular targets //
float target_roll = 0;
float target_pitch = 0;
// convert pilot input to lean angles
// To-Do: convert get_pilot_desired_lean_angles to return angles as floats
get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);
float target_yaw_rate = 0;
// call attitude controller
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);
}