ardupilot/ArduPlane/quadplane.h

579 lines
16 KiB
C++

#pragma once
#include <AP_Motors/AP_Motors.h>
#include <AC_PID/AC_PID.h>
#include <AC_AttitudeControl/AC_AttitudeControl_Multi.h> // Attitude control library
#include <AP_InertialNav/AP_InertialNav.h>
#include <AC_AttitudeControl/AC_PosControl.h>
#include <AC_WPNav/AC_WPNav.h>
#include <AC_WPNav/AC_Loiter.h>
#include <AC_Fence/AC_Fence.h>
#include <AC_Avoidance/AC_Avoid.h>
#include <AP_Proximity/AP_Proximity.h>
#include "qautotune.h"
/*
QuadPlane specific functionality
*/
class QuadPlane
{
public:
friend class Plane;
friend class AP_Tuning_Plane;
friend class GCS_MAVLINK_Plane;
friend class AP_AdvancedFailsafe_Plane;
friend class QAutoTune;
friend class AP_Arming_Plane;
friend class Mode;
friend class ModeAuto;
friend class ModeAvoidADSB;
friend class ModeGuided;
friend class ModeQHover;
friend class ModeQLand;
friend class ModeQLoiter;
friend class ModeQRTL;
friend class ModeQStabilize;
friend class ModeQAutotune;
friend class ModeQAcro;
QuadPlane(AP_AHRS_NavEKF &_ahrs);
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
static const struct AP_Param::GroupInfo var_info2[];
void control_run(void);
void control_auto(void);
bool init_mode(void);
bool setup(void);
void vtol_position_controller(void);
void setup_target_position(void);
void takeoff_controller(void);
void waypoint_controller(void);
void update_throttle_thr_mix(void);
// update transition handling
void update(void);
// set motor arming
void set_armed(bool armed);
// is VTOL available?
bool available(void) const {
return initialised;
}
// is quadplane assisting?
bool in_assisted_flight(void) const {
return available() && assisted_flight;
}
/*
return true if we are in a transition to fwd flight from hover
*/
bool in_transition(void) const;
/*
return true if we are a tailsitter transitioning to VTOL flight
*/
bool in_tailsitter_vtol_transition(void) const;
bool handle_do_vtol_transition(enum MAV_VTOL_STATE state);
bool do_vtol_takeoff(const AP_Mission::Mission_Command& cmd);
bool do_vtol_land(const AP_Mission::Mission_Command& cmd);
bool verify_vtol_takeoff(const AP_Mission::Mission_Command &cmd);
bool verify_vtol_land(void);
bool in_vtol_auto(void) const;
bool in_vtol_mode(void) const;
void update_throttle_hover();
// vtol help for is_flying()
bool is_flying(void);
// return current throttle as a percentate
uint8_t throttle_percentage(void) const {
return last_throttle * 100;
}
// return desired forward throttle percentage
int8_t forward_throttle_pct(void);
float get_weathervane_yaw_rate_cds(void);
// see if we are flying from vtol point of view
bool is_flying_vtol(void) const;
// return true when tailsitter frame configured
bool is_tailsitter(void) const;
// return true when flying a tailsitter in VTOL
bool tailsitter_active(void);
// create outputs for tailsitters
void tailsitter_output(void);
// handle different tailsitter input types
void tailsitter_check_input(void);
// check if we have completed transition to fixed wing
bool tailsitter_transition_fw_complete(void);
// check if we have completed transition to vtol
bool tailsitter_transition_vtol_complete(void) const;
// account for control surface speed scaling in VTOL modes
void tailsitter_speed_scaling(void);
// user initiated takeoff for guided mode
bool do_user_takeoff(float takeoff_altitude);
// return true if the wp_nav controller is being updated
bool using_wp_nav(void) const;
// return true if the user has set ENABLE
bool enabled(void) const { return enable != 0; }
struct PACKED log_QControl_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
float throttle_in;
float angle_boost;
float throttle_out;
float throttle_hover;
float desired_alt;
float inav_alt;
int32_t baro_alt;
int16_t target_climb_rate;
int16_t climb_rate;
float throttle_mix;
float speed_scaler;
};
MAV_TYPE get_mav_type(void) const;
private:
AP_AHRS_NavEKF &ahrs;
AP_Vehicle::MultiCopter aparm;
AP_InertialNav_NavEKF inertial_nav{ahrs};
AP_Int8 frame_class;
AP_Int8 frame_type;
AP_MotorsMulticopter *motors;
const struct AP_Param::GroupInfo *motors_var_info;
AC_AttitudeControl_Multi *attitude_control;
AC_PosControl *pos_control;
AC_WPNav *wp_nav;
AC_Loiter *loiter_nav;
// maximum vertical velocity the pilot may request
AP_Int16 pilot_velocity_z_max;
// vertical acceleration the pilot may request
AP_Int16 pilot_accel_z;
// check for quadplane assistance needed
bool assistance_needed(float aspeed);
// update transition handling
void update_transition(void);
// check for an EKF yaw reset
void check_yaw_reset(void);
// hold hover (for transition)
void hold_hover(float target_climb_rate);
// hold stabilize (for transition)
void hold_stabilize(float throttle_in);
// get pilot desired yaw rate in cd/s
float get_pilot_input_yaw_rate_cds(void) const;
// get overall desired yaw rate in cd/s
float get_desired_yaw_rate_cds(void);
// get desired climb rate in cm/s
float get_pilot_desired_climb_rate_cms(void) const;
// initialise throttle_wait when entering mode
void init_throttle_wait();
// use multicopter rate controller
void multicopter_attitude_rate_update(float yaw_rate_cds);
// main entry points for VTOL flight modes
void init_stabilize(void);
void control_stabilize(void);
void check_attitude_relax(void);
void init_qacro(void);
float get_pilot_throttle(void);
void control_qacro(void);
void init_hover(void);
void control_hover(void);
void init_loiter(void);
void init_qland(void);
void control_loiter(void);
void check_land_complete(void);
bool land_detector(uint32_t timeout_ms);
bool check_land_final(void);
void init_qrtl(void);
void control_qrtl(void);
float assist_climb_rate_cms(void) const;
// calculate desired yaw rate for assistance
float desired_auto_yaw_rate_cds(void) const;
bool should_relax(void);
void motors_output(bool run_rate_controller = true);
void Log_Write_QControl_Tuning();
float landing_descent_rate_cms(float height_above_ground) const;
// setup correct aux channels for frame class
void setup_default_channels(uint8_t num_motors);
void guided_start(void);
void guided_update(void);
void update_throttle_suppression(void);
void run_z_controller(void);
void setup_defaults(void);
// calculate a stopping distance for fixed-wing to vtol transitions
float stopping_distance(void);
AP_Int16 transition_time_ms;
// transition deceleration, m/s/s
AP_Float transition_decel;
// transition failure milliseconds
AP_Int16 transition_failure;
// Quadplane trim, degrees
AP_Float ahrs_trim_pitch;
float _last_ahrs_trim_pitch;
// fw landing approach radius
AP_Float fw_land_approach_radius;
AP_Int16 rc_speed;
// min and max PWM for throttle
AP_Int16 thr_min_pwm;
AP_Int16 thr_max_pwm;
// speed below which quad assistance is given
AP_Float assist_speed;
// angular error at which quad assistance is given
AP_Int8 assist_angle;
uint32_t angle_error_start_ms;
// altitude to trigger assistance
AP_Int16 assist_alt;
uint32_t alt_error_start_ms;
bool in_alt_assist;
// maximum yaw rate in degrees/second
AP_Float yaw_rate_max;
// landing speed in cm/s
AP_Int16 land_speed_cms;
// QRTL start altitude, meters
AP_Int16 qrtl_alt;
// alt to switch to QLAND_FINAL
AP_Float land_final_alt;
AP_Float vel_forward_alt_cutoff;
AP_Int8 enable;
AP_Int8 transition_pitch_max;
// control if a VTOL RTL will be used
AP_Int8 rtl_mode;
// control if a VTOL GUIDED will be used
AP_Int8 guided_mode;
// control ESC throttle calibration
AP_Int8 esc_calibration;
void run_esc_calibration(void);
// ICEngine control on landing
AP_Int8 land_icengine_cut;
// HEARTBEAT mav_type override
AP_Int8 mav_type;
// manual throttle curve expo strength
AP_Float throttle_expo;
// QACRO mode max roll/pitch/yaw rates
AP_Float acro_roll_rate;
AP_Float acro_pitch_rate;
AP_Float acro_yaw_rate;
// time we last got an EKF yaw reset
uint32_t ekfYawReset_ms;
struct {
AP_Float gain;
float integrator;
uint32_t last_ms;
int8_t last_pct;
} vel_forward;
struct {
AP_Float gain;
AP_Float min_roll;
uint32_t last_pilot_input_ms;
float last_output;
} weathervane;
bool initialised;
// timer start for transition
uint32_t transition_start_ms;
uint32_t transition_low_airspeed_ms;
Location last_auto_target;
// last throttle value when active
float last_throttle;
// pitch when we enter loiter mode
int32_t loiter_initial_pitch_cd;
// when did we last run the attitude controller?
uint32_t last_att_control_ms;
// true if we have reached the airspeed threshold for transition
enum {
TRANSITION_AIRSPEED_WAIT,
TRANSITION_TIMER,
TRANSITION_ANGLE_WAIT_FW,
TRANSITION_ANGLE_WAIT_VTOL,
TRANSITION_DONE
} transition_state;
// true when waiting for pilot throttle
bool throttle_wait:1;
// true when quad is assisting a fixed wing mode
bool assisted_flight:1;
// true when in angle assist
bool in_angle_assist:1;
// are we in a guided takeoff?
bool guided_takeoff:1;
struct {
// time when motors reached lower limit
uint32_t lower_limit_start_ms;
uint32_t land_start_ms;
float vpos_start_m;
} landing_detect;
// time we last set the loiter target
uint32_t last_loiter_ms;
enum position_control_state {
QPOS_POSITION1,
QPOS_POSITION2,
QPOS_LAND_DESCEND,
QPOS_LAND_FINAL,
QPOS_LAND_COMPLETE
};
struct {
enum position_control_state state;
float speed_scale;
Vector2f target_velocity;
float max_speed;
Vector3f target;
bool slow_descent:1;
} poscontrol;
struct {
bool running;
uint32_t start_ms; // system time the motor test began
uint32_t timeout_ms = 0; // test will timeout this many milliseconds after the motor_test_start_ms
uint8_t seq = 0; // motor sequence number of motor being tested
uint8_t throttle_type = 0; // motor throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through)
uint16_t throttle_value = 0; // throttle to be sent to motor, value depends upon it's type
uint8_t motor_count; // number of motors to cycle
} motor_test;
// time of last control log message
uint32_t last_ctrl_log_ms;
// time of last QTUN log message
uint32_t last_qtun_log_ms;
// types of tilt mechanisms
enum {TILT_TYPE_CONTINUOUS =0,
TILT_TYPE_BINARY =1,
TILT_TYPE_VECTORED_YAW =2,
TILT_TYPE_BICOPTER =3
};
// tiltrotor control variables
struct {
AP_Int16 tilt_mask;
AP_Int16 max_rate_up_dps;
AP_Int16 max_rate_down_dps;
AP_Int8 max_angle_deg;
AP_Int8 tilt_type;
AP_Float tilt_yaw_angle;
float current_tilt;
float current_throttle;
bool motors_active:1;
} tilt;
// bit 0 enables plane mode and bit 1 enables body-frame roll mode
enum tailsitter_input {
TAILSITTER_INPUT_PLANE = (1U<<0),
TAILSITTER_INPUT_BF_ROLL = (1U<<1)
};
enum tailsitter_mask {
TAILSITTER_MASK_AILERON = (1U<<0),
TAILSITTER_MASK_ELEVATOR = (1U<<1),
TAILSITTER_MASK_THROTTLE = (1U<<2),
TAILSITTER_MASK_RUDDER = (1U<<3),
};
enum tailsitter_gscl_mask {
TAILSITTER_GSCL_BOOST = (1U<<0),
TAILSITTER_GSCL_ATT_THR = (1U<<1),
TAILSITTER_GSCL_INTERP = (1U<<2),
};
// tailsitter control variables
struct {
AP_Int8 transition_angle;
AP_Int8 input_type;
AP_Int8 input_mask;
AP_Int8 input_mask_chan;
AP_Float vectored_forward_gain;
AP_Float vectored_hover_gain;
AP_Float vectored_hover_power;
AP_Float throttle_scale_max;
AP_Float gain_scaling_min;
AP_Float max_roll_angle;
AP_Int16 motor_mask;
AP_Float scaling_speed_min;
AP_Float scaling_speed_max;
AP_Int16 gain_scaling_mask;
} tailsitter;
// tailsitter speed scaler
float last_spd_scaler = 1.0f;
// the attitude view of the VTOL attitude controller
AP_AHRS_View *ahrs_view;
// time when motors were last active
uint32_t last_motors_active_ms;
// time when we last ran the vertical accel controller
uint32_t last_pidz_active_ms;
uint32_t last_pidz_init_ms;
// time when we were last in a vtol control mode
uint32_t last_vtol_mode_ms;
void tiltrotor_slew(float tilt);
void tiltrotor_binary_slew(bool forward);
void tiltrotor_update(void);
void tiltrotor_continuous_update(void);
void tiltrotor_binary_update(void);
void tiltrotor_vectored_yaw(void);
void tiltrotor_bicopter(void);
void tilt_compensate_up(float *thrust, uint8_t num_motors);
void tilt_compensate_down(float *thrust, uint8_t num_motors);
void tilt_compensate(float *thrust, uint8_t num_motors);
bool is_motor_tilting(uint8_t motor) const {
return (((uint8_t)tilt.tilt_mask.get()) & (1U<<motor));
}
bool tiltrotor_fully_fwd(void);
float tilt_max_change(bool up);
void afs_terminate(void);
bool guided_mode_enabled(void);
// set altitude target to current altitude
void set_alt_target_current(void);
// adjust altitude target smoothly
void adjust_alt_target(float target_cm);
// additional options
AP_Int32 options;
enum {
OPTION_LEVEL_TRANSITION=(1<<0),
OPTION_ALLOW_FW_TAKEOFF=(1<<1),
OPTION_ALLOW_FW_LAND=(1<<2),
OPTION_RESPECT_TAKEOFF_FRAME=(1<<3),
OPTION_MISSION_LAND_FW_APPROACH=(1<<4),
OPTION_FS_QRTL=(1<<5),
OPTION_IDLE_GOV_MANUAL=(1<<6),
};
AP_Float takeoff_failure_scalar;
AP_Float maximum_takeoff_airspeed;
uint32_t takeoff_start_time_ms;
uint32_t takeoff_time_limit_ms;
/*
return true if current mission item is a vtol takeoff
*/
bool is_vtol_takeoff(uint16_t id) const;
/*
return true if current mission item is a vtol landing
*/
bool is_vtol_land(uint16_t id) const;
#if QAUTOTUNE_ENABLED
// qautotune mode
QAutoTune qautotune;
#endif
/*
are we in the approach phase of a VTOL landing?
*/
bool in_vtol_land_approach(void) const;
/*
are we in the descent phase of a VTOL landing?
*/
bool in_vtol_land_descent(void) const;
/*
are we in the final landing phase of a VTOL landing?
*/
bool in_vtol_land_final(void) const;
public:
void motor_test_output();
MAV_RESULT mavlink_motor_test_start(mavlink_channel_t chan, uint8_t motor_seq, uint8_t throttle_type,
uint16_t throttle_value, float timeout_sec,
uint8_t motor_count);
private:
void motor_test_stop();
};