mirror of https://github.com/ArduPilot/ardupilot
690 lines
22 KiB
C++
690 lines
22 KiB
C++
#include "Copter.h"
|
|
#include <AP_BLHeli/AP_BLHeli.h>
|
|
|
|
/*****************************************************************************
|
|
* The init_ardupilot function processes everything we need for an in - air restart
|
|
* We will determine later if we are actually on the ground and process a
|
|
* ground start in that case.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
static void mavlink_delay_cb_static()
|
|
{
|
|
copter.mavlink_delay_cb();
|
|
}
|
|
|
|
|
|
static void failsafe_check_static()
|
|
{
|
|
copter.failsafe_check();
|
|
}
|
|
|
|
void Copter::init_ardupilot()
|
|
{
|
|
// initialise serial port
|
|
serial_manager.init_console();
|
|
|
|
hal.console->printf("\n\nInit %s"
|
|
"\n\nFree RAM: %u\n",
|
|
AP::fwversion().fw_string,
|
|
(unsigned)hal.util->available_memory());
|
|
|
|
//
|
|
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
|
|
//
|
|
report_version();
|
|
|
|
// load parameters from EEPROM
|
|
load_parameters();
|
|
|
|
// time per loop - this gets updated in the main loop() based on
|
|
// actual loop rate
|
|
G_Dt = 1.0 / scheduler.get_loop_rate_hz();
|
|
|
|
#if STATS_ENABLED == ENABLED
|
|
// initialise stats module
|
|
g2.stats.init();
|
|
#endif
|
|
|
|
// identify ourselves correctly with the ground station
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
// initialise serial ports
|
|
serial_manager.init();
|
|
|
|
// setup first port early to allow BoardConfig to report errors
|
|
gcs().setup_console();
|
|
|
|
// Register mavlink_delay_cb, which will run anytime you have
|
|
// more than 5ms remaining in your call to hal.scheduler->delay
|
|
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
|
|
|
|
BoardConfig.init();
|
|
#if HAL_WITH_UAVCAN
|
|
BoardConfig_CAN.init();
|
|
#endif
|
|
|
|
// init cargo gripper
|
|
#if GRIPPER_ENABLED == ENABLED
|
|
g2.gripper.init();
|
|
#endif
|
|
|
|
#if AC_FENCE == ENABLED
|
|
fence.init();
|
|
#endif
|
|
|
|
// init winch and wheel encoder
|
|
winch_init();
|
|
|
|
// initialise notify system
|
|
notify.init();
|
|
notify_flight_mode();
|
|
|
|
// initialise battery monitor
|
|
battery.init();
|
|
|
|
// Init RSSI
|
|
rssi.init();
|
|
|
|
barometer.init();
|
|
|
|
// setup telem slots with serial ports
|
|
gcs().setup_uarts();
|
|
|
|
#if OSD_ENABLED == ENABLED
|
|
osd.init();
|
|
#endif
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
log_init();
|
|
#endif
|
|
|
|
// update motor interlock state
|
|
update_using_interlock();
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
// trad heli specific initialisation
|
|
heli_init();
|
|
#endif
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
input_manager.set_loop_rate(scheduler.get_loop_rate_hz());
|
|
#endif
|
|
|
|
init_rc_in(); // sets up rc channels from radio
|
|
|
|
// allocate the motors class
|
|
allocate_motors();
|
|
|
|
// initialise rc channels including setting mode
|
|
rc().init();
|
|
|
|
// sets up motors and output to escs
|
|
init_rc_out();
|
|
|
|
// check if we should enter esc calibration mode
|
|
esc_calibration_startup_check();
|
|
|
|
// motors initialised so parameters can be sent
|
|
ap.initialised_params = true;
|
|
|
|
relay.init();
|
|
|
|
/*
|
|
* setup the 'main loop is dead' check. Note that this relies on
|
|
* the RC library being initialised.
|
|
*/
|
|
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
|
|
|
|
// Do GPS init
|
|
gps.set_log_gps_bit(MASK_LOG_GPS);
|
|
gps.init(serial_manager);
|
|
|
|
AP::compass().set_log_bit(MASK_LOG_COMPASS);
|
|
AP::compass().init();
|
|
|
|
#if OPTFLOW == ENABLED
|
|
// make optflow available to AHRS
|
|
ahrs.set_optflow(&optflow);
|
|
#endif
|
|
|
|
// init Location class
|
|
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
|
|
Location::set_terrain(&terrain);
|
|
wp_nav->set_terrain(&terrain);
|
|
#endif
|
|
|
|
#if AC_OAPATHPLANNER_ENABLED == ENABLED
|
|
g2.oa.init();
|
|
#endif
|
|
|
|
attitude_control->parameter_sanity_check();
|
|
pos_control->set_dt(scheduler.get_loop_period_s());
|
|
|
|
// init the optical flow sensor
|
|
init_optflow();
|
|
|
|
#if MOUNT == ENABLED
|
|
// initialise camera mount
|
|
camera_mount.init();
|
|
#endif
|
|
|
|
#if PRECISION_LANDING == ENABLED
|
|
// initialise precision landing
|
|
init_precland();
|
|
#endif
|
|
|
|
// initialise landing gear position
|
|
landinggear.init();
|
|
|
|
#ifdef USERHOOK_INIT
|
|
USERHOOK_INIT
|
|
#endif
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
while (barometer.get_last_update() == 0) {
|
|
// the barometer begins updating when we get the first
|
|
// HIL_STATE message
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
|
|
delay(1000);
|
|
}
|
|
|
|
// set INS to HIL mode
|
|
ins.set_hil_mode();
|
|
#endif
|
|
|
|
// read Baro pressure at ground
|
|
//-----------------------------
|
|
barometer.set_log_baro_bit(MASK_LOG_IMU);
|
|
barometer.calibrate();
|
|
|
|
// initialise rangefinder
|
|
init_rangefinder();
|
|
|
|
// init proximity sensor
|
|
init_proximity();
|
|
|
|
#if BEACON_ENABLED == ENABLED
|
|
// init beacons used for non-gps position estimation
|
|
g2.beacon.init();
|
|
#endif
|
|
|
|
// init visual odometry
|
|
init_visual_odom();
|
|
|
|
#if RPM_ENABLED == ENABLED
|
|
// initialise AP_RPM library
|
|
rpm_sensor.init();
|
|
#endif
|
|
|
|
#if MODE_AUTO_ENABLED == ENABLED
|
|
// initialise mission library
|
|
mode_auto.mission.init();
|
|
#endif
|
|
|
|
#if MODE_SMARTRTL_ENABLED == ENABLED
|
|
// initialize SmartRTL
|
|
g2.smart_rtl.init();
|
|
#endif
|
|
|
|
// initialise AP_Logger library
|
|
logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&copter, &Copter::Log_Write_Vehicle_Startup_Messages, void));
|
|
|
|
startup_INS_ground();
|
|
|
|
#ifdef ENABLE_SCRIPTING
|
|
g2.scripting.init();
|
|
#endif // ENABLE_SCRIPTING
|
|
|
|
// set landed flags
|
|
set_land_complete(true);
|
|
set_land_complete_maybe(true);
|
|
|
|
// we don't want writes to the serial port to cause us to pause
|
|
// mid-flight, so set the serial ports non-blocking once we are
|
|
// ready to fly
|
|
serial_manager.set_blocking_writes_all(false);
|
|
|
|
// enable CPU failsafe
|
|
failsafe_enable();
|
|
|
|
ins.set_log_raw_bit(MASK_LOG_IMU_RAW);
|
|
|
|
// enable output to motors
|
|
if (arming.rc_calibration_checks(true)) {
|
|
enable_motor_output();
|
|
}
|
|
|
|
// disable safety if requested
|
|
BoardConfig.init_safety();
|
|
|
|
hal.console->printf("\nReady to FLY ");
|
|
|
|
// flag that initialisation has completed
|
|
ap.initialised = true;
|
|
|
|
#if AP_PARAM_KEY_DUMP
|
|
AP_Param::show_all(hal.console, true);
|
|
#endif
|
|
}
|
|
|
|
|
|
//******************************************************************************
|
|
//This function does all the calibrations, etc. that we need during a ground start
|
|
//******************************************************************************
|
|
void Copter::startup_INS_ground()
|
|
{
|
|
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
|
|
ahrs.init();
|
|
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER);
|
|
|
|
// Warm up and calibrate gyro offsets
|
|
ins.init(scheduler.get_loop_rate_hz());
|
|
|
|
// reset ahrs including gyro bias
|
|
ahrs.reset();
|
|
}
|
|
|
|
// update the harmonic notch filter center frequency dynamically
|
|
void Copter::update_dynamic_notch()
|
|
{
|
|
if (!ins.gyro_harmonic_notch_enabled()) {
|
|
return;
|
|
}
|
|
const float ref_freq = ins.get_gyro_harmonic_notch_center_freq_hz();
|
|
const float ref = ins.get_gyro_harmonic_notch_reference();
|
|
|
|
if (is_zero(ref)) {
|
|
ins.update_harmonic_notch_freq_hz(ref_freq);
|
|
return;
|
|
}
|
|
|
|
switch (ins.get_gyro_harmonic_notch_tracking_mode()) {
|
|
case HarmonicNotchDynamicMode::UpdateThrottle: // throttle based tracking
|
|
// set the harmonic notch filter frequency approximately scaled on motor rpm implied by throttle
|
|
ins.update_harmonic_notch_freq_hz(ref_freq * MAX(1.0f, sqrtf(motors->get_throttle_out() / ref)));
|
|
break;
|
|
|
|
#if RPM_ENABLED == ENABLED
|
|
case HarmonicNotchDynamicMode::UpdateRPM: // rpm sensor based tracking
|
|
if (rpm_sensor.healthy(0)) {
|
|
// set the harmonic notch filter frequency from the main rotor rpm
|
|
ins.update_harmonic_notch_freq_hz(MAX(ref_freq, rpm_sensor.get_rpm(0) * ref / 60.0f));
|
|
} else {
|
|
ins.update_harmonic_notch_freq_hz(ref_freq);
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_AP_BLHELI_SUPPORT
|
|
case HarmonicNotchDynamicMode::UpdateBLHeli: // BLHeli based tracking
|
|
ins.update_harmonic_notch_freq_hz(MAX(ref_freq, AP_BLHeli::get_singleton()->get_average_motor_frequency_hz() * ref));
|
|
break;
|
|
#endif
|
|
case HarmonicNotchDynamicMode::Fixed: // static
|
|
default:
|
|
ins.update_harmonic_notch_freq_hz(ref_freq);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// position_ok - returns true if the horizontal absolute position is ok and home position is set
|
|
bool Copter::position_ok() const
|
|
{
|
|
// return false if ekf failsafe has triggered
|
|
if (failsafe.ekf) {
|
|
return false;
|
|
}
|
|
|
|
// check ekf position estimate
|
|
return (ekf_position_ok() || optflow_position_ok());
|
|
}
|
|
|
|
// ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set
|
|
bool Copter::ekf_position_ok() const
|
|
{
|
|
if (!ahrs.have_inertial_nav()) {
|
|
// do not allow navigation with dcm position
|
|
return false;
|
|
}
|
|
|
|
// with EKF use filter status and ekf check
|
|
nav_filter_status filt_status = inertial_nav.get_filter_status();
|
|
|
|
// if disarmed we accept a predicted horizontal position
|
|
if (!motors->armed()) {
|
|
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs));
|
|
} else {
|
|
// once armed we require a good absolute position and EKF must not be in const_pos_mode
|
|
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
|
|
}
|
|
}
|
|
|
|
// optflow_position_ok - returns true if optical flow based position estimate is ok
|
|
bool Copter::optflow_position_ok() const
|
|
{
|
|
#if OPTFLOW != ENABLED && VISUAL_ODOMETRY_ENABLED != ENABLED
|
|
return false;
|
|
#else
|
|
// return immediately if EKF not used
|
|
if (!ahrs.have_inertial_nav()) {
|
|
return false;
|
|
}
|
|
|
|
// return immediately if neither optflow nor visual odometry is enabled
|
|
bool enabled = false;
|
|
#if OPTFLOW == ENABLED
|
|
if (optflow.enabled()) {
|
|
enabled = true;
|
|
}
|
|
#endif
|
|
#if VISUAL_ODOMETRY_ENABLED == ENABLED
|
|
if (g2.visual_odom.enabled()) {
|
|
enabled = true;
|
|
}
|
|
#endif
|
|
if (!enabled) {
|
|
return false;
|
|
}
|
|
|
|
// get filter status from EKF
|
|
nav_filter_status filt_status = inertial_nav.get_filter_status();
|
|
|
|
// if disarmed we accept a predicted horizontal relative position
|
|
if (!motors->armed()) {
|
|
return (filt_status.flags.pred_horiz_pos_rel);
|
|
} else {
|
|
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// update_auto_armed - update status of auto_armed flag
|
|
void Copter::update_auto_armed()
|
|
{
|
|
// disarm checks
|
|
if(ap.auto_armed){
|
|
// if motors are disarmed, auto_armed should also be false
|
|
if(!motors->armed()) {
|
|
set_auto_armed(false);
|
|
return;
|
|
}
|
|
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
|
|
if(flightmode->has_manual_throttle() && ap.throttle_zero && !failsafe.radio) {
|
|
set_auto_armed(false);
|
|
}
|
|
// if helicopters are on the ground, and the motor is switched off, auto-armed should be false
|
|
// so that rotor runup is checked again before attempting to take-off
|
|
if(ap.land_complete && motors->get_spool_state() != AP_Motors::SpoolState::THROTTLE_UNLIMITED && ap.using_interlock) {
|
|
set_auto_armed(false);
|
|
}
|
|
}else{
|
|
// arm checks
|
|
|
|
// for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true
|
|
if(motors->armed() && ap.using_interlock) {
|
|
if(!ap.throttle_zero && motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) {
|
|
set_auto_armed(true);
|
|
}
|
|
// if motors are armed and throttle is above zero auto_armed should be true
|
|
// if motors are armed and we are in throw mode, then auto_armed should be true
|
|
} else if (motors->armed() && !ap.using_interlock) {
|
|
if(!ap.throttle_zero || control_mode == Mode::Number::THROW) {
|
|
set_auto_armed(true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
should we log a message type now?
|
|
*/
|
|
bool Copter::should_log(uint32_t mask)
|
|
{
|
|
#if LOGGING_ENABLED == ENABLED
|
|
ap.logging_started = logger.logging_started();
|
|
return logger.should_log(mask);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// return MAV_TYPE corresponding to frame class
|
|
MAV_TYPE Copter::get_frame_mav_type()
|
|
{
|
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
|
|
case AP_Motors::MOTOR_FRAME_QUAD:
|
|
case AP_Motors::MOTOR_FRAME_UNDEFINED:
|
|
return MAV_TYPE_QUADROTOR;
|
|
case AP_Motors::MOTOR_FRAME_HEXA:
|
|
case AP_Motors::MOTOR_FRAME_Y6:
|
|
return MAV_TYPE_HEXAROTOR;
|
|
case AP_Motors::MOTOR_FRAME_OCTA:
|
|
case AP_Motors::MOTOR_FRAME_OCTAQUAD:
|
|
return MAV_TYPE_OCTOROTOR;
|
|
case AP_Motors::MOTOR_FRAME_HELI:
|
|
case AP_Motors::MOTOR_FRAME_HELI_DUAL:
|
|
case AP_Motors::MOTOR_FRAME_HELI_QUAD:
|
|
return MAV_TYPE_HELICOPTER;
|
|
case AP_Motors::MOTOR_FRAME_TRI:
|
|
return MAV_TYPE_TRICOPTER;
|
|
case AP_Motors::MOTOR_FRAME_SINGLE:
|
|
case AP_Motors::MOTOR_FRAME_COAX:
|
|
case AP_Motors::MOTOR_FRAME_TAILSITTER:
|
|
return MAV_TYPE_COAXIAL;
|
|
case AP_Motors::MOTOR_FRAME_DODECAHEXA:
|
|
return MAV_TYPE_DODECAROTOR;
|
|
}
|
|
// unknown frame so return generic
|
|
return MAV_TYPE_GENERIC;
|
|
}
|
|
|
|
// return string corresponding to frame_class
|
|
const char* Copter::get_frame_string()
|
|
{
|
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
|
|
case AP_Motors::MOTOR_FRAME_QUAD:
|
|
return "QUAD";
|
|
case AP_Motors::MOTOR_FRAME_HEXA:
|
|
return "HEXA";
|
|
case AP_Motors::MOTOR_FRAME_Y6:
|
|
return "Y6";
|
|
case AP_Motors::MOTOR_FRAME_OCTA:
|
|
return "OCTA";
|
|
case AP_Motors::MOTOR_FRAME_OCTAQUAD:
|
|
return "OCTA_QUAD";
|
|
case AP_Motors::MOTOR_FRAME_HELI:
|
|
return "HELI";
|
|
case AP_Motors::MOTOR_FRAME_HELI_DUAL:
|
|
return "HELI_DUAL";
|
|
case AP_Motors::MOTOR_FRAME_HELI_QUAD:
|
|
return "HELI_QUAD";
|
|
case AP_Motors::MOTOR_FRAME_TRI:
|
|
return "TRI";
|
|
case AP_Motors::MOTOR_FRAME_SINGLE:
|
|
return "SINGLE";
|
|
case AP_Motors::MOTOR_FRAME_COAX:
|
|
return "COAX";
|
|
case AP_Motors::MOTOR_FRAME_TAILSITTER:
|
|
return "TAILSITTER";
|
|
case AP_Motors::MOTOR_FRAME_DODECAHEXA:
|
|
return "DODECA_HEXA";
|
|
case AP_Motors::MOTOR_FRAME_UNDEFINED:
|
|
default:
|
|
return "UNKNOWN";
|
|
}
|
|
}
|
|
|
|
/*
|
|
allocate the motors class
|
|
*/
|
|
void Copter::allocate_motors(void)
|
|
{
|
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
|
|
#if FRAME_CONFIG != HELI_FRAME
|
|
case AP_Motors::MOTOR_FRAME_QUAD:
|
|
case AP_Motors::MOTOR_FRAME_HEXA:
|
|
case AP_Motors::MOTOR_FRAME_Y6:
|
|
case AP_Motors::MOTOR_FRAME_OCTA:
|
|
case AP_Motors::MOTOR_FRAME_OCTAQUAD:
|
|
case AP_Motors::MOTOR_FRAME_DODECAHEXA:
|
|
default:
|
|
motors = new AP_MotorsMatrix(copter.scheduler.get_loop_rate_hz());
|
|
motors_var_info = AP_MotorsMatrix::var_info;
|
|
break;
|
|
case AP_Motors::MOTOR_FRAME_TRI:
|
|
motors = new AP_MotorsTri(copter.scheduler.get_loop_rate_hz());
|
|
motors_var_info = AP_MotorsTri::var_info;
|
|
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER);
|
|
break;
|
|
case AP_Motors::MOTOR_FRAME_SINGLE:
|
|
motors = new AP_MotorsSingle(copter.scheduler.get_loop_rate_hz());
|
|
motors_var_info = AP_MotorsSingle::var_info;
|
|
break;
|
|
case AP_Motors::MOTOR_FRAME_COAX:
|
|
motors = new AP_MotorsCoax(copter.scheduler.get_loop_rate_hz());
|
|
motors_var_info = AP_MotorsCoax::var_info;
|
|
break;
|
|
case AP_Motors::MOTOR_FRAME_TAILSITTER:
|
|
motors = new AP_MotorsTailsitter(copter.scheduler.get_loop_rate_hz());
|
|
motors_var_info = AP_MotorsTailsitter::var_info;
|
|
break;
|
|
#else // FRAME_CONFIG == HELI_FRAME
|
|
case AP_Motors::MOTOR_FRAME_HELI_DUAL:
|
|
motors = new AP_MotorsHeli_Dual(copter.scheduler.get_loop_rate_hz());
|
|
motors_var_info = AP_MotorsHeli_Dual::var_info;
|
|
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI);
|
|
break;
|
|
|
|
case AP_Motors::MOTOR_FRAME_HELI_QUAD:
|
|
motors = new AP_MotorsHeli_Quad(copter.scheduler.get_loop_rate_hz());
|
|
motors_var_info = AP_MotorsHeli_Quad::var_info;
|
|
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI);
|
|
break;
|
|
|
|
case AP_Motors::MOTOR_FRAME_HELI:
|
|
default:
|
|
motors = new AP_MotorsHeli_Single(copter.scheduler.get_loop_rate_hz());
|
|
motors_var_info = AP_MotorsHeli_Single::var_info;
|
|
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI);
|
|
break;
|
|
#endif
|
|
}
|
|
if (motors == nullptr) {
|
|
AP_HAL::panic("Unable to allocate FRAME_CLASS=%u", (unsigned)g2.frame_class.get());
|
|
}
|
|
AP_Param::load_object_from_eeprom(motors, motors_var_info);
|
|
|
|
ahrs_view = ahrs.create_view(ROTATION_NONE);
|
|
if (ahrs_view == nullptr) {
|
|
AP_HAL::panic("Unable to allocate AP_AHRS_View");
|
|
}
|
|
|
|
const struct AP_Param::GroupInfo *ac_var_info;
|
|
|
|
#if FRAME_CONFIG != HELI_FRAME
|
|
attitude_control = new AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s());
|
|
ac_var_info = AC_AttitudeControl_Multi::var_info;
|
|
#else
|
|
attitude_control = new AC_AttitudeControl_Heli(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s());
|
|
ac_var_info = AC_AttitudeControl_Heli::var_info;
|
|
#endif
|
|
if (attitude_control == nullptr) {
|
|
AP_HAL::panic("Unable to allocate AttitudeControl");
|
|
}
|
|
AP_Param::load_object_from_eeprom(attitude_control, ac_var_info);
|
|
|
|
pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control);
|
|
if (pos_control == nullptr) {
|
|
AP_HAL::panic("Unable to allocate PosControl");
|
|
}
|
|
AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info);
|
|
|
|
#if AC_OAPATHPLANNER_ENABLED == ENABLED
|
|
wp_nav = new AC_WPNav_OA(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
|
|
#else
|
|
wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
|
|
#endif
|
|
if (wp_nav == nullptr) {
|
|
AP_HAL::panic("Unable to allocate WPNav");
|
|
}
|
|
AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info);
|
|
|
|
loiter_nav = new AC_Loiter(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
|
|
if (loiter_nav == nullptr) {
|
|
AP_HAL::panic("Unable to allocate LoiterNav");
|
|
}
|
|
AP_Param::load_object_from_eeprom(loiter_nav, loiter_nav->var_info);
|
|
|
|
#if MODE_CIRCLE_ENABLED == ENABLED
|
|
circle_nav = new AC_Circle(inertial_nav, *ahrs_view, *pos_control);
|
|
if (circle_nav == nullptr) {
|
|
AP_HAL::panic("Unable to allocate CircleNav");
|
|
}
|
|
AP_Param::load_object_from_eeprom(circle_nav, circle_nav->var_info);
|
|
#endif
|
|
|
|
// reload lines from the defaults file that may now be accessible
|
|
AP_Param::reload_defaults_file(true);
|
|
|
|
// now setup some frame-class specific defaults
|
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
|
|
case AP_Motors::MOTOR_FRAME_Y6:
|
|
attitude_control->get_rate_roll_pid().kP().set_default(0.1);
|
|
attitude_control->get_rate_roll_pid().kD().set_default(0.006);
|
|
attitude_control->get_rate_pitch_pid().kP().set_default(0.1);
|
|
attitude_control->get_rate_pitch_pid().kD().set_default(0.006);
|
|
attitude_control->get_rate_yaw_pid().kP().set_default(0.15);
|
|
attitude_control->get_rate_yaw_pid().kI().set_default(0.015);
|
|
break;
|
|
case AP_Motors::MOTOR_FRAME_TRI:
|
|
attitude_control->get_rate_yaw_pid().filt_D_hz().set_default(100);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// brushed 16kHz defaults to 16kHz pulses
|
|
if (motors->get_pwm_type() == AP_Motors::PWM_TYPE_BRUSHED) {
|
|
g.rc_speed.set_default(16000);
|
|
}
|
|
|
|
if (upgrading_frame_params) {
|
|
// do frame specific upgrade. This is only done the first time we run the new firmware
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 12, CH_1);
|
|
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 13, CH_2);
|
|
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 14, CH_3);
|
|
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 15, CH_4);
|
|
#else
|
|
if (g2.frame_class == AP_Motors::MOTOR_FRAME_TRI) {
|
|
const AP_Param::ConversionInfo tri_conversion_info[] = {
|
|
{ Parameters::k_param_motors, 32, AP_PARAM_INT16, "SERVO7_TRIM" },
|
|
{ Parameters::k_param_motors, 33, AP_PARAM_INT16, "SERVO7_MIN" },
|
|
{ Parameters::k_param_motors, 34, AP_PARAM_INT16, "SERVO7_MAX" },
|
|
{ Parameters::k_param_motors, 35, AP_PARAM_FLOAT, "MOT_YAW_SV_ANGLE" },
|
|
};
|
|
// we need to use CONVERT_FLAG_FORCE as the SERVO7_* parameters will already be set from RC7_*
|
|
AP_Param::convert_old_parameters(tri_conversion_info, ARRAY_SIZE(tri_conversion_info), AP_Param::CONVERT_FLAG_FORCE);
|
|
const AP_Param::ConversionInfo tri_conversion_info_rev { Parameters::k_param_motors, 31, AP_PARAM_INT8, "SERVO7_REVERSED" };
|
|
AP_Param::convert_old_parameter(&tri_conversion_info_rev, 1, AP_Param::CONVERT_FLAG_REVERSE | AP_Param::CONVERT_FLAG_FORCE);
|
|
// AP_MotorsTri was converted from having nested var_info to one level
|
|
AP_Param::convert_parent_class(Parameters::k_param_motors, motors, motors->var_info);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// upgrade parameters. This must be done after allocating the objects
|
|
convert_pid_parameters();
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
convert_tradheli_parameters();
|
|
#endif
|
|
}
|
|
|
|
bool Copter::is_tradheli() const
|
|
{
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|