ardupilot/ArduCopter/AP_Arming.cpp

876 lines
30 KiB
C++

#include "Copter.h"
#if HAL_WITH_UAVCAN
#include <AP_ToshibaCAN/AP_ToshibaCAN.h>
#endif
// performs pre-arm checks. expects to be called at 1hz.
void AP_Arming_Copter::update(void)
{
// perform pre-arm checks & display failures every 30 seconds
static uint8_t pre_arm_display_counter = PREARM_DISPLAY_PERIOD/2;
pre_arm_display_counter++;
bool display_fail = false;
if (pre_arm_display_counter >= PREARM_DISPLAY_PERIOD) {
display_fail = true;
pre_arm_display_counter = 0;
}
pre_arm_checks(display_fail);
}
bool AP_Arming_Copter::pre_arm_checks(bool display_failure)
{
const bool passed = run_pre_arm_checks(display_failure);
set_pre_arm_check(passed);
return passed;
}
// perform pre-arm checks
// return true if the checks pass successfully
bool AP_Arming_Copter::run_pre_arm_checks(bool display_failure)
{
// exit immediately if already armed
if (copter.motors->armed()) {
return true;
}
// check if motor interlock and Emergency Stop aux switches are used
// at the same time. This cannot be allowed.
if (rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_INTERLOCK) &&
rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_ESTOP)){
check_failed(display_failure, "Interlock/E-Stop Conflict");
return false;
}
// check if motor interlock aux switch is in use
// if it is, switch needs to be in disabled position to arm
// otherwise exit immediately. This check to be repeated,
// as state can change at any time.
if (copter.ap.using_interlock && copter.ap.motor_interlock_switch) {
check_failed(display_failure, "Motor Interlock Enabled");
}
// if pre arm checks are disabled run only the mandatory checks
if (checks_to_perform == 0) {
return mandatory_checks(display_failure);
}
return fence_checks(display_failure)
& parameter_checks(display_failure)
& motor_checks(display_failure)
& pilot_throttle_checks(display_failure)
& oa_checks(display_failure) &
AP_Arming::pre_arm_checks(display_failure);
}
bool AP_Arming_Copter::barometer_checks(bool display_failure)
{
if (!AP_Arming::barometer_checks(display_failure)) {
return false;
}
bool ret = true;
// check Baro
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_BARO)) {
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
// that may differ from the baro height due to baro drift.
nav_filter_status filt_status = copter.inertial_nav.get_filter_status();
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
if (using_baro_ref) {
if (fabsf(copter.inertial_nav.get_altitude() - copter.baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
check_failed(ARMING_CHECK_BARO, display_failure, "Altitude disparity");
ret = false;
}
}
}
return ret;
}
bool AP_Arming_Copter::compass_checks(bool display_failure)
{
bool ret = AP_Arming::compass_checks(display_failure);
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_COMPASS)) {
// check compass offsets have been set. AP_Arming only checks
// this if learning is off; Copter *always* checks.
if (!AP::compass().configured()) {
check_failed(ARMING_CHECK_COMPASS, display_failure, "Compass not calibrated");
ret = false;
}
}
return ret;
}
bool AP_Arming_Copter::ins_checks(bool display_failure)
{
bool ret = AP_Arming::ins_checks(display_failure);
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_INS)) {
// get ekf attitude (if bad, it's usually the gyro biases)
if (!pre_arm_ekf_attitude_check()) {
check_failed(ARMING_CHECK_INS, display_failure, "EKF attitude is bad");
ret = false;
}
}
return ret;
}
bool AP_Arming_Copter::board_voltage_checks(bool display_failure)
{
if (!AP_Arming::board_voltage_checks(display_failure)) {
return false;
}
// check battery voltage
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_VOLTAGE)) {
if (copter.battery.has_failsafed()) {
check_failed(ARMING_CHECK_VOLTAGE, display_failure, "Battery failsafe");
return false;
}
// call parent battery checks
if (!AP_Arming::battery_checks(display_failure)) {
return false;
}
}
return true;
}
bool AP_Arming_Copter::parameter_checks(bool display_failure)
{
// check various parameter values
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_PARAMETERS)) {
// ensure all rc channels have different functions
if (rc().duplicate_options_exist()) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Duplicate Aux Switch Options");
return false;
}
// failsafe parameter checks
if (copter.g.failsafe_throttle) {
// check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900
if (copter.channel_throttle->get_radio_min() <= copter.g.failsafe_throttle_value+10 || copter.g.failsafe_throttle_value < 910) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check FS_THR_VALUE");
return false;
}
}
// lean angle parameter check
if (copter.aparm.angle_max < 1000 || copter.aparm.angle_max > 8000) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check ANGLE_MAX");
return false;
}
// acro balance parameter check
#if MODE_ACRO_ENABLED == ENABLED || MODE_SPORT_ENABLED == ENABLED
if ((copter.g.acro_balance_roll > copter.attitude_control->get_angle_roll_p().kP()) || (copter.g.acro_balance_pitch > copter.attitude_control->get_angle_pitch_p().kP())) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "ACRO_BAL_ROLL/PITCH");
return false;
}
#endif
// pilot-speed-up parameter check
if (copter.g.pilot_speed_up <= 0) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check PILOT_SPEED_UP");
return false;
}
#if FRAME_CONFIG == HELI_FRAME
if (copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_QUAD &&
copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_DUAL &&
copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Invalid Heli FRAME_CLASS");
return false;
}
// check helicopter parameters
if (!copter.motors->parameter_check(display_failure)) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Heli motors checks failed");
return false;
}
char fail_msg[50];
// check input mangager parameters
if (!copter.input_manager.parameter_check(fail_msg, ARRAY_SIZE(fail_msg))) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "%s", fail_msg);
return false;
}
// Inverted flight feature disabled for Heli Single and Dual frames
if (copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_QUAD &&
rc().find_channel_for_option(RC_Channel::aux_func_t::INVERTED) != nullptr) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Inverted flight option not supported");
return false;
}
// Ensure an Aux Channel is configured for motor interlock
if (rc().find_channel_for_option(RC_Channel::aux_func_t::MOTOR_INTERLOCK) == nullptr) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Motor Interlock not configured");
return false;
}
#else
if (copter.g2.frame_class.get() == AP_Motors::MOTOR_FRAME_HELI_QUAD ||
copter.g2.frame_class.get() == AP_Motors::MOTOR_FRAME_HELI_DUAL ||
copter.g2.frame_class.get() == AP_Motors::MOTOR_FRAME_HELI) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Invalid MultiCopter FRAME_CLASS");
return false;
}
#endif // HELI_FRAME
// checks when using range finder for RTL
if (copter.mode_rtl.get_alt_type() == ModeRTL::RTLAltType::RTL_ALTTYPE_TERRAIN) {
// get terrain source from wpnav
switch (copter.wp_nav->get_terrain_source()) {
case AC_WPNav::TerrainSource::TERRAIN_UNAVAILABLE:
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "RTL_ALT_TYPE=1 but no terrain data");
return false;
break;
case AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER:
if (!copter.rangefinder_state.enabled || !copter.rangefinder.has_orientation(ROTATION_PITCH_270)) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "RTL_ALT_TYPE=1 but no rangefinder");
return false;
}
// check if RTL_ALT is higher than rangefinder's max range
if (copter.g.rtl_altitude > copter.rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "RTL_ALT_TYPE=1 but RTL_ALT>RNGFND_MAX_CM");
return false;
}
break;
case AC_WPNav::TerrainSource::TERRAIN_FROM_TERRAINDATABASE:
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
if (!copter.terrain.enabled()) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "RTL_ALT_TYPE=1 but terrain disabled");
return false;
}
// check terrain data is loaded
uint16_t terr_pending, terr_loaded;
copter.terrain.get_statistics(terr_pending, terr_loaded);
if (terr_pending != 0) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "RTL_ALT_TYPE=1, waiting for terrain data");
return false;
}
#else
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "RTL_ALT_TYPE=1 but terrain disabled");
return false;
#endif
break;
}
}
// check adsb avoidance failsafe
#if ADSB_ENABLED == ENABLE
if (copter.failsafe.adsb) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "ADSB threat detected");
return false;
}
#endif
// ensure controllers are OK with us arming:
char failure_msg[50];
if (!copter.pos_control->pre_arm_checks("PSC", failure_msg, ARRAY_SIZE(failure_msg))) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Bad parameter: %s", failure_msg);
return false;
}
if (!copter.attitude_control->pre_arm_checks("ATC", failure_msg, ARRAY_SIZE(failure_msg))) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Bad parameter: %s", failure_msg);
return false;
}
}
return true;
}
// check motor setup was successful
bool AP_Arming_Copter::motor_checks(bool display_failure)
{
// check motors initialised correctly
if (!copter.motors->initialised_ok()) {
check_failed(display_failure, "check firmware or FRAME_CLASS");
return false;
}
// further checks enabled with parameters
if (!check_enabled(ARMING_CHECK_PARAMETERS)) {
return true;
}
// if this is a multicopter using ToshibaCAN ESCs ensure MOT_PMW_MIN = 1000, MOT_PWM_MAX = 2000
#if HAL_WITH_UAVCAN && (FRAME_CONFIG != HELI_FRAME)
bool tcan_active = false;
uint8_t tcan_index = 0;
const uint8_t num_drivers = AP::can().get_num_drivers();
for (uint8_t i = 0; i < num_drivers; i++) {
if (AP::can().get_protocol_type(i) == AP_BoardConfig_CAN::Protocol_Type_ToshibaCAN) {
tcan_active = true;
tcan_index = i;
}
}
if (tcan_active) {
// check motor range parameters
if (copter.motors->get_pwm_output_min() != 1000) {
check_failed(display_failure, "TCAN ESCs require MOT_PWM_MIN=1000");
return false;
}
if (copter.motors->get_pwm_output_max() != 2000) {
check_failed(display_failure, "TCAN ESCs require MOT_PWM_MAX=2000");
return false;
}
// check we have an ESC present for every SERVOx_FUNCTION = motorx
// find and report first missing ESC, extra ESCs are OK
AP_ToshibaCAN *tcan = AP_ToshibaCAN::get_tcan(tcan_index);
const uint16_t motors_mask = copter.motors->get_motor_mask();
const uint16_t esc_mask = tcan->get_present_mask();
uint8_t escs_missing = 0;
uint8_t first_missing = 0;
for (uint8_t i = 0; i < 16; i++) {
uint32_t bit = 1UL << i;
if (((motors_mask & bit) > 0) && ((esc_mask & bit) == 0)) {
escs_missing++;
if (first_missing == 0) {
first_missing = i+1;
}
}
}
if (escs_missing > 0) {
check_failed(display_failure, "TCAN missing %d escs, check #%d", (int)escs_missing, (int)first_missing);
return false;
}
}
#endif
return true;
}
bool AP_Arming_Copter::pilot_throttle_checks(bool display_failure)
{
// check throttle is above failsafe throttle
// this is near the bottom to allow other failures to be displayed before checking pilot throttle
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_RC)) {
if (copter.g.failsafe_throttle != FS_THR_DISABLED && copter.channel_throttle->get_radio_in() < copter.g.failsafe_throttle_value) {
#if FRAME_CONFIG == HELI_FRAME
const char *failmsg = "Collective below Failsafe";
#else
const char *failmsg = "Throttle below Failsafe";
#endif
check_failed(ARMING_CHECK_RC, display_failure, "%s", failmsg);
return false;
}
}
return true;
}
bool AP_Arming_Copter::oa_checks(bool display_failure)
{
#if AC_OAPATHPLANNER_ENABLED == ENABLED
char failure_msg[50];
if (copter.g2.oa.pre_arm_check(failure_msg, ARRAY_SIZE(failure_msg))) {
return true;
}
// display failure
if (strlen(failure_msg) == 0) {
check_failed(display_failure, "%s", "Check Object Avoidance");
} else {
check_failed(display_failure, "%s", failure_msg);
}
return false;
#else
return true;
#endif
}
bool AP_Arming_Copter::rc_calibration_checks(bool display_failure)
{
const RC_Channel *channels[] = {
copter.channel_roll,
copter.channel_pitch,
copter.channel_throttle,
copter.channel_yaw
};
copter.ap.pre_arm_rc_check = rc_checks_copter_sub(display_failure, channels)
& AP_Arming::rc_calibration_checks(display_failure);
return copter.ap.pre_arm_rc_check;
}
// performs pre_arm gps related checks and returns true if passed
bool AP_Arming_Copter::gps_checks(bool display_failure)
{
// run mandatory gps checks first
if (!mandatory_gps_checks(display_failure)) {
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// check if flight mode requires GPS
bool mode_requires_gps = copter.flightmode->requires_GPS();
// check if fence requires GPS
bool fence_requires_gps = false;
#if AC_FENCE == ENABLED
// if circular or polygon fence is enabled we need GPS
fence_requires_gps = (copter.fence.get_enabled_fences() & (AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON)) > 0;
#endif
// return true if GPS is not required
if (!mode_requires_gps && !fence_requires_gps) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// return true immediately if gps check is disabled
if (!(checks_to_perform == ARMING_CHECK_ALL || checks_to_perform & ARMING_CHECK_GPS)) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// warn about hdop separately - to prevent user confusion with no gps lock
if (copter.gps.get_hdop() > copter.g.gps_hdop_good) {
check_failed(ARMING_CHECK_GPS, display_failure, "High GPS HDOP");
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// call parent gps checks
if (!AP_Arming::gps_checks(display_failure)) {
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// if we got here all must be ok
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// check ekf attitude is acceptable
bool AP_Arming_Copter::pre_arm_ekf_attitude_check()
{
// get ekf filter status
nav_filter_status filt_status = copter.inertial_nav.get_filter_status();
return filt_status.flags.attitude;
}
// check nothing is too close to vehicle
bool AP_Arming_Copter::proximity_checks(bool display_failure) const
{
#if PROXIMITY_ENABLED == ENABLED
if (!AP_Arming::proximity_checks(display_failure)) {
return false;
}
if (!((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_PARAMETERS))) {
// check is disabled
return true;
}
// get closest object if we might use it for avoidance
#if AC_AVOID_ENABLED == ENABLED
float angle_deg, distance;
if (copter.avoid.proximity_avoidance_enabled() && copter.g2.proximity.get_closest_object(angle_deg, distance)) {
// display error if something is within 60cm
if (distance <= 0.6f) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Proximity %d deg, %4.2fm", (int)angle_deg, (double)distance);
return false;
}
}
#endif
#endif
return true;
}
// performs mandatory gps checks. returns true if passed
bool AP_Arming_Copter::mandatory_gps_checks(bool display_failure)
{
// always check if inertial nav has started and is ready
const AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf();
if (!ahrs.prearm_healthy()) {
const char *reason = ahrs.prearm_failure_reason();
if (reason == nullptr) {
reason = "AHRS not healthy";
}
check_failed(display_failure, "%s", reason);
return false;
}
// check if flight mode requires GPS
bool mode_requires_gps = copter.flightmode->requires_GPS();
// check if fence requires GPS
bool fence_requires_gps = false;
#if AC_FENCE == ENABLED
// if circular or polygon fence is enabled we need GPS
fence_requires_gps = (copter.fence.get_enabled_fences() & (AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON)) > 0;
#endif
// return true if GPS is not required
if (!mode_requires_gps && !fence_requires_gps) {
return true;
}
// ensure GPS is ok
if (!copter.position_ok()) {
const char *reason = ahrs.prearm_failure_reason();
if (reason == nullptr) {
if (!mode_requires_gps && fence_requires_gps) {
// clarify to user why they need GPS in non-GPS flight mode
reason = "Fence enabled, need 3D Fix";
} else {
reason = "Need 3D Fix";
}
}
check_failed(display_failure, "%s", reason);
return false;
}
// check for GPS glitch (as reported by EKF)
nav_filter_status filt_status;
if (ahrs.get_filter_status(filt_status)) {
if (filt_status.flags.gps_glitching) {
check_failed(display_failure, "GPS glitching");
return false;
}
}
// check EKF compass variance is below failsafe threshold
float vel_variance, pos_variance, hgt_variance, tas_variance;
Vector3f mag_variance;
Vector2f offset;
ahrs.get_variances(vel_variance, pos_variance, hgt_variance, mag_variance, tas_variance, offset);
if (copter.g.fs_ekf_thresh > 0 && mag_variance.length() >= copter.g.fs_ekf_thresh) {
check_failed(display_failure, "EKF compass variance");
return false;
}
// check home and EKF origin are not too far
if (copter.far_from_EKF_origin(ahrs.get_home())) {
check_failed(display_failure, "EKF-home variance");
return false;
}
// if we got here all must be ok
return true;
}
// arm_checks - perform final checks before arming
// always called just before arming. Return true if ok to arm
// has side-effect that logging is started
bool AP_Arming_Copter::arm_checks(AP_Arming::Method method)
{
const AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf();
// always check if inertial nav has started and is ready
if (!ahrs.healthy()) {
check_failed(true, "AHRS not healthy");
return false;
}
#ifndef ALLOW_ARM_NO_COMPASS
// if external source of heading is available, we can skip compass health check
if (!ahrs.is_ext_nav_used_for_yaw()) {
const Compass &_compass = AP::compass();
// check compass health
if (!_compass.healthy()) {
check_failed(true, "Compass not healthy");
return false;
}
}
#endif
Mode::Number control_mode = copter.control_mode;
// always check if the current mode allows arming
if (!copter.flightmode->allows_arming(method == AP_Arming::Method::MAVLINK)) {
check_failed(true, "Mode not armable");
return false;
}
// always check motors
if (!motor_checks(true)) {
return false;
}
// if we are using motor interlock switch and it's enabled, fail to arm
// skip check in Throw mode which takes control of the motor interlock
if (copter.ap.using_interlock && copter.ap.motor_interlock_switch) {
check_failed(true, "Motor Interlock Enabled");
return false;
}
// if we are not using Emergency Stop switch option, force Estop false to ensure motors
// can run normally
if (!rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_ESTOP)){
SRV_Channels::set_emergency_stop(false);
// if we are using motor Estop switch, it must not be in Estop position
} else if (rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_ESTOP) && SRV_Channels::get_emergency_stop()){
gcs().send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Emergency Stopped");
return false;
}
// succeed if arming checks are disabled
if (checks_to_perform == 0) {
return true;
}
// check lean angle
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_INS)) {
if (degrees(acosf(ahrs.cos_roll()*ahrs.cos_pitch()))*100.0f > copter.aparm.angle_max) {
check_failed(ARMING_CHECK_INS, true, "Leaning");
return false;
}
}
// check adsb
#if ADSB_ENABLED == ENABLE
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_PARAMETERS)) {
if (copter.failsafe.adsb) {
check_failed(ARMING_CHECK_PARAMETERS, true, "ADSB threat detected");
return false;
}
}
#endif
// check throttle
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_RC)) {
#if FRAME_CONFIG == HELI_FRAME
const char *rc_item = "Collective";
#else
const char *rc_item = "Throttle";
#endif
// check throttle is not too low - must be above failsafe throttle
if (copter.g.failsafe_throttle != FS_THR_DISABLED && copter.channel_throttle->get_radio_in() < copter.g.failsafe_throttle_value) {
check_failed(ARMING_CHECK_RC, true, "%s below failsafe", rc_item);
return false;
}
// check throttle is not too high - skips checks if arming from GCS in Guided
if (!(method == AP_Arming::Method::MAVLINK && (control_mode == Mode::Number::GUIDED || control_mode == Mode::Number::GUIDED_NOGPS))) {
// above top of deadband is too always high
if (copter.get_pilot_desired_climb_rate(copter.channel_throttle->get_control_in()) > 0.0f) {
check_failed(ARMING_CHECK_RC, true, "%s too high", rc_item);
return false;
}
// in manual modes throttle must be at zero
#if FRAME_CONFIG != HELI_FRAME
if ((copter.flightmode->has_manual_throttle() || control_mode == Mode::Number::DRIFT) && copter.channel_throttle->get_control_in() > 0) {
check_failed(ARMING_CHECK_RC, true, "%s too high", rc_item);
return false;
}
#endif
}
}
// check if safety switch has been pushed
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
check_failed(true, "Safety Switch");
return false;
}
// superclass method should always be the last thing called; it
// has side-effects which would need to be cleaned up if one of
// our arm checks failed
return AP_Arming::arm_checks(method);
}
// mandatory checks that will be run if ARMING_CHECK is zero or arming forced
bool AP_Arming_Copter::mandatory_checks(bool display_failure)
{
// call mandatory gps checks and update notify status because regular gps checks will not run
const bool result = mandatory_gps_checks(display_failure);
AP_Notify::flags.pre_arm_gps_check = result;
return result;
}
void AP_Arming_Copter::set_pre_arm_check(bool b)
{
copter.ap.pre_arm_check = b;
AP_Notify::flags.pre_arm_check = b;
}
bool AP_Arming_Copter::arm(const AP_Arming::Method method, const bool do_arming_checks)
{
static bool in_arm_motors = false;
// exit immediately if already in this function
if (in_arm_motors) {
return false;
}
in_arm_motors = true;
// return true if already armed
if (copter.motors->armed()) {
in_arm_motors = false;
return true;
}
if (!AP_Arming::arm(method, do_arming_checks)) {
AP_Notify::events.arming_failed = true;
in_arm_motors = false;
return false;
}
// let logger know that we're armed (it may open logs e.g.)
AP::logger().set_vehicle_armed(true);
// disable cpu failsafe because initialising everything takes a while
copter.failsafe_disable();
// notify that arming will occur (we do this early to give plenty of warning)
AP_Notify::flags.armed = true;
// call notify update a few times to ensure the message gets out
for (uint8_t i=0; i<=10; i++) {
AP::notify().update();
}
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs().send_text(MAV_SEVERITY_INFO, "Arming motors");
#endif
// Remember Orientation
// --------------------
copter.init_simple_bearing();
AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf();
copter.initial_armed_bearing = ahrs.yaw_sensor;
if (!ahrs.home_is_set()) {
// Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home)
ahrs.resetHeightDatum();
AP::logger().Write_Event(LogEvent::EKF_ALT_RESET);
// we have reset height, so arming height is zero
copter.arming_altitude_m = 0;
} else if (!ahrs.home_is_locked()) {
// Reset home position if it has already been set before (but not locked)
if (!copter.set_home_to_current_location(false)) {
// ignore failure
}
// remember the height when we armed
copter.arming_altitude_m = copter.inertial_nav.get_altitude() * 0.01;
}
copter.update_super_simple_bearing(false);
// Reset SmartRTL return location. If activated, SmartRTL will ultimately try to land at this point
#if MODE_SMARTRTL_ENABLED == ENABLED
copter.g2.smart_rtl.set_home(copter.position_ok());
#endif
// enable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(true);
hal.util->set_soft_armed(true);
#if SPRAYER_ENABLED == ENABLED
// turn off sprayer's test if on
copter.sprayer.test_pump(false);
#endif
// enable output to motors
copter.enable_motor_output();
// finally actually arm the motors
copter.motors->armed(true);
AP::logger().Write_Event(LogEvent::ARMED);
// log flight mode in case it was changed while vehicle was disarmed
AP::logger().Write_Mode((uint8_t)copter.control_mode, copter.control_mode_reason);
// re-enable failsafe
copter.failsafe_enable();
// perf monitor ignores delay due to arming
AP::scheduler().perf_info.ignore_this_loop();
// flag exiting this function
in_arm_motors = false;
// Log time stamp of arming event
copter.arm_time_ms = millis();
// Start the arming delay
copter.ap.in_arming_delay = true;
// assumed armed without a arming, switch. Overridden in switches.cpp
copter.ap.armed_with_switch = false;
// return success
return true;
}
// arming.disarm - disarm motors
bool AP_Arming_Copter::disarm()
{
// return immediately if we are already disarmed
if (!copter.motors->armed()) {
return true;
}
if (!AP_Arming::disarm()) {
return false;
}
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs().send_text(MAV_SEVERITY_INFO, "Disarming motors");
#endif
AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf();
// save compass offsets learned by the EKF if enabled
Compass &compass = AP::compass();
if (ahrs.use_compass() && compass.get_learn_type() == Compass::LEARN_EKF) {
for(uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
Vector3f magOffsets;
if (ahrs.getMagOffsets(i, magOffsets)) {
compass.set_and_save_offsets(i, magOffsets);
}
}
}
#if AUTOTUNE_ENABLED == ENABLED
// save auto tuned parameters
if (copter.flightmode == &copter.mode_autotune) {
copter.mode_autotune.save_tuning_gains();
} else {
copter.mode_autotune.reset();
}
#endif
// we are not in the air
copter.set_land_complete(true);
copter.set_land_complete_maybe(true);
AP::logger().Write_Event(LogEvent::DISARMED);
// send disarm command to motors
copter.motors->armed(false);
#if MODE_AUTO_ENABLED == ENABLED
// reset the mission
copter.mode_auto.mission.reset();
#endif
AP::logger().set_vehicle_armed(false);
// disable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(false);
hal.util->set_soft_armed(false);
copter.ap.in_arming_delay = false;
return true;
}