ardupilot/ArduCopter/control_modes.pde
rmackay9 fc4f4d76c9 ArduCopter: allow DMP to run in parallel with DCM
Parallel DMP can be enabled by #define SECONDARY_DMP_ENABLED in APM_Config.h
New DMP dataflash log type added to allow easy comparison with DCM
2012-09-30 00:25:40 +09:00

250 lines
7.4 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static void read_control_switch()
{
static bool switch_debouncer = false;
byte switchPosition = readSwitch();
if (oldSwitchPosition != switchPosition) {
if(switch_debouncer) {
oldSwitchPosition = switchPosition;
switch_debouncer = false;
set_mode(flight_modes[switchPosition]);
if(g.ch7_option != CH7_SIMPLE_MODE) {
// set Simple mode using stored paramters from Mission planner
// rather than by the control switch
do_simple = (g.simple_modes & (1 << switchPosition));
}
}else{
switch_debouncer = true;
}
}
}
static byte readSwitch(void){
int16_t pulsewidth = g.rc_5.radio_in; // default for Arducopter
if (pulsewidth > 1230 && pulsewidth <= 1360) return 1;
if (pulsewidth > 1360 && pulsewidth <= 1490) return 2;
if (pulsewidth > 1490 && pulsewidth <= 1620) return 3;
if (pulsewidth > 1620 && pulsewidth <= 1749) return 4; // Software Manual
if (pulsewidth >= 1750) return 5; // Hardware Manual
return 0;
}
static void reset_control_switch()
{
oldSwitchPosition = -1;
read_control_switch();
}
// read at 10 hz
// set this to your trainer switch
static void read_trim_switch()
{
int8_t option;
if(g.ch7_option == CH7_MULTI_MODE) {
if (g.rc_6.radio_in < CH_6_PWM_TRIGGER_LOW) {
option = CH7_FLIP;
}else if (g.rc_6.radio_in > CH_6_PWM_TRIGGER_HIGH) {
option = CH7_SAVE_WP;
}else{
option = CH7_RTL;
}
}else{
option = g.ch7_option;
}
if(option == CH7_SIMPLE_MODE) {
do_simple = (g.rc_7.radio_in > CH_7_PWM_TRIGGER);
}else if (option == CH7_FLIP) {
if (CH7_flag == false && g.rc_7.radio_in > CH_7_PWM_TRIGGER) {
CH7_flag = true;
// don't flip if we accidentally engaged flip, but didn't notice and tried to takeoff
if(g.rc_3.control_in != 0 && takeoff_complete) {
init_flip();
}
}
if (CH7_flag == true && g.rc_7.control_in < 800) {
CH7_flag = false;
}
}else if (option == CH7_RTL) {
if (CH7_flag == false && g.rc_7.radio_in > CH_7_PWM_TRIGGER) {
CH7_flag = true;
set_mode(RTL);
}
if (CH7_flag == true && g.rc_7.control_in < 800) {
CH7_flag = false;
if (control_mode == RTL || control_mode == LOITER) {
reset_control_switch();
}
}
}else if (option == CH7_SAVE_WP) {
if (g.rc_7.radio_in > CH_7_PWM_TRIGGER) { // switch is engaged
CH7_flag = true;
}else{ // switch is disengaged
if(CH7_flag) {
CH7_flag = false;
if(control_mode == AUTO) {
// reset the mission
CH7_wp_index = 0;
g.command_total.set_and_save(1);
set_mode(RTL);
return;
}
if(CH7_wp_index == 0) {
// this is our first WP, let's save WP 1 as a takeoff
// increment index to WP index of 1 (home is stored at 0)
CH7_wp_index = 1;
Location temp = home;
// set our location ID to 16, MAV_CMD_NAV_WAYPOINT
temp.id = MAV_CMD_NAV_TAKEOFF;
temp.alt = current_loc.alt;
// save command:
// we use the current altitude to be the target for takeoff.
// only altitude will matter to the AP mission script for takeoff.
// If we are above the altitude, we will skip the command.
set_cmd_with_index(temp, CH7_wp_index);
}
// increment index
CH7_wp_index++;
// set the next_WP (home is stored at 0)
// max out at 100 since I think we need to stay under the EEPROM limit
CH7_wp_index = constrain(CH7_wp_index, 1, 100);
if(g.rc_3.control_in > 0) {
// set our location ID to 16, MAV_CMD_NAV_WAYPOINT
current_loc.id = MAV_CMD_NAV_WAYPOINT;
}else{
// set our location ID to 21, MAV_CMD_NAV_LAND
current_loc.id = MAV_CMD_NAV_LAND;
}
// save command
set_cmd_with_index(current_loc, CH7_wp_index);
copter_leds_nav_blink = 10; // Cause the CopterLEDs to blink twice to indicate saved waypoint
// 0 = home
// 1 = takeoff
// 2 = WP 2
// 3 = command total
}
}
}else if (option == CH7_AUTO_TRIM) {
if (g.rc_7.radio_in > CH_7_PWM_TRIGGER) {
auto_level_counter = 10;
}
}
}
static void auto_trim()
{
if(auto_level_counter > 0) {
//g.rc_1.dead_zone = 60; // 60 = .6 degrees
//g.rc_2.dead_zone = 60;
auto_level_counter--;
if( motors.armed() ) {
// set high AHRS gains to force accelerometers to impact attitude estimate
ahrs.set_fast_gains(true);
#if SECONDARY_DMP_ENABLED == ENABLED
ahrs2.set_fast_gains(true);
#endif
}
trim_accel();
led_mode = AUTO_TRIM_LEDS;
do_simple = false;
if(auto_level_counter == 1) {
//g.rc_1.dead_zone = 0; // 60 = .6 degrees
//g.rc_2.dead_zone = 0;
led_mode = NORMAL_LEDS;
clear_leds();
imu.save();
reset_control_switch();
// go back to normal AHRS gains
if( motors.armed() ) {
ahrs.set_fast_gains(false);
#if SECONDARY_DMP_ENABLED == ENABLED
ahrs2.set_fast_gains(false);
#endif
}
//Serial.println("Done");
auto_level_counter = 0;
}
}
}
/*
* How this works:
* Level Example:
* A_off: -14.00, -20.59, -30.80
*
* Right roll Example:
* A_off: -6.73, 89.05, -46.02
*
* Left Roll Example:
* A_off: -18.11, -160.31, -56.42
*
* Pitch Forward:
* A_off: -127.00, -22.16, -50.09
*
* Pitch Back:
* A_off: 201.95, -24.00, -88.56
*/
static void trim_accel()
{
reset_stability_I();
float trim_roll = (float)g.rc_1.control_in / 30000.0;
float trim_pitch = (float)g.rc_2.control_in / 30000.0;
trim_roll = constrain(trim_roll, -1.5, 1.5);
trim_pitch = constrain(trim_pitch, -1.5, 1.5);
if(g.rc_1.control_in > 200) { // Roll Right
imu.ay(imu.ay() - trim_roll);
}else if (g.rc_1.control_in < -200) {
imu.ay(imu.ay() - trim_roll);
}
if(g.rc_2.control_in > 200) { // Pitch Back
imu.ax(imu.ax() + trim_pitch);
}else if (g.rc_2.control_in < -200) {
imu.ax(imu.ax() + trim_pitch);
}
/*
* Serial.printf_P(PSTR("r:%1.2f %1.2f \t| p:%1.2f %1.2f\n"),
* trim_roll,
* (float)imu.ay(),
* trim_pitch,
* (float)imu.ax());
* //*/
}