ardupilot/ArduCopter/mode_systemid.cpp
2020-02-05 10:13:53 +11:00

327 lines
13 KiB
C++

#include "Copter.h"
#if MODE_SYSTEMID_ENABLED == ENABLED
/*
* Init and run calls for systemId, flight mode
*/
const AP_Param::GroupInfo ModeSystemId::var_info[] = {
// @Param: _AXIS
// @DisplayName: System identification axis
// @Description: Controls which axis are being excited
// @User: Standard
// @Values: 0:None, 1:Input Roll Angle, 2:Input Pitch Angle, 3:Input Yaw Angle, 4:Recovery Roll Angle, 5:Recovery Pitch Angle, 6:Recovery Yaw Angle, 7:Rate Roll, 8:Rate Pitch, 9:Rate Yaw, 10:Mixer Roll, 11:Mixer Pitch, 12:Mixer Yaw, 13:Mixer Thrust
AP_GROUPINFO("_AXIS", 1, ModeSystemId, axis, 0),
// @Param: _MAGNITUDE
// @DisplayName: System identification Chirp Magnitude
// @Description: Magnitude of sweep in deg, deg/s and 0-1 for mixer outputs.
// @User: Standard
AP_GROUPINFO("_MAGNITUDE", 2, ModeSystemId, waveform_magnitude, 15),
// @Param: _F_START_HZ
// @DisplayName: System identification Start Frequency
// @Description: Frequency at the start of the sweep
// @Range: 0.01 100
// @Units: Hz
// @User: Standard
AP_GROUPINFO("_F_START_HZ", 3, ModeSystemId, frequency_start, 0.5f),
// @Param: _F_STOP_HZ
// @DisplayName: System identification Stop Frequency
// @Description: Frequency at the end of the sweep
// @Range: 0.01 100
// @Units: Hz
// @User: Standard
AP_GROUPINFO("_F_STOP_HZ", 4, ModeSystemId, frequency_stop, 40),
// @Param: _T_FADE_IN
// @DisplayName: System identification Fade in time
// @Description: Time to reach maximum amplitude of sweep
// @Range: 0 20
// @Units: s
// @User: Standard
AP_GROUPINFO("_T_FADE_IN", 5, ModeSystemId, time_fade_in, 15),
// @Param: _T_REC
// @DisplayName: System identification Total Sweep length
// @Description: Time taken to complete the sweep
// @Range: 0 255
// @Units: s
// @User: Standard
AP_GROUPINFO("_T_REC", 6, ModeSystemId, time_record, 70),
// @Param: _T_FADE_OUT
// @DisplayName: System identification Fade out time
// @Description: Time to reach zero amplitude at the end of the sweep
// @Range: 0 5
// @Units: s
// @User: Standard
AP_GROUPINFO("_T_FADE_OUT", 7, ModeSystemId, time_fade_out, 2),
AP_GROUPEND
};
ModeSystemId::ModeSystemId(void) : Mode()
{
AP_Param::setup_object_defaults(this, var_info);
}
#define SYSTEM_ID_DELAY 1.0f // speed below which it is always safe to switch to loiter
// systemId_init - initialise systemId controller
bool ModeSystemId::init(bool ignore_checks)
{
// if landed and the mode we're switching from does not have manual throttle and the throttle stick is too high
if (motors->armed() && copter.ap.land_complete && !copter.flightmode->has_manual_throttle()) {
return false;
}
#if FRAME_CONFIG == HELI_FRAME
copter.input_manager.set_use_stab_col(true);
#endif
att_bf_feedforward = attitude_control->get_bf_feedforward();
waveform_time = 0.0f;
time_const_freq = 2.0f / frequency_start; // Two full cycles at the starting frequency
systemid_state = SystemIDModeState::SYSTEMID_STATE_TESTING;
log_subsample = 0;
gcs().send_text(MAV_SEVERITY_INFO, "SystemID Starting: axis=%d", (unsigned)axis);
copter.Log_Write_SysID_Setup(axis, waveform_magnitude, frequency_start, frequency_stop, time_fade_in, time_const_freq, time_record, time_fade_out);
return true;
}
// systemId_run - runs the systemId controller
// should be called at 100hz or more
void ModeSystemId::run()
{
// apply simple mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
float target_roll, target_pitch;
get_pilot_desired_lean_angles(target_roll, target_pitch, copter.aparm.angle_max, copter.aparm.angle_max);
// get pilot's desired yaw rate
float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!motors->armed()) {
// Motors should be Stopped
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
// Tradheli doesn't set spool state to ground idle when throttle stick is zero. Ground idle only set when
// motor interlock is disabled.
} else if (copter.ap.throttle_zero && !copter.is_tradheli()) {
// Attempting to Land
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
} else {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
}
switch (motors->get_spool_state()) {
case AP_Motors::SpoolState::SHUT_DOWN:
// Motors Stopped
attitude_control->set_yaw_target_to_current_heading();
attitude_control->reset_rate_controller_I_terms();
break;
case AP_Motors::SpoolState::GROUND_IDLE:
// Landed
// Tradheli initializes targets when going from disarmed to armed state.
// init_targets_on_arming is always set true for multicopter.
if (motors->init_targets_on_arming()) {
attitude_control->set_yaw_target_to_current_heading();
attitude_control->reset_rate_controller_I_terms();
}
break;
case AP_Motors::SpoolState::THROTTLE_UNLIMITED:
// clear landing flag above zero throttle
if (!motors->limit.throttle_lower) {
set_land_complete(false);
}
break;
case AP_Motors::SpoolState::SPOOLING_UP:
case AP_Motors::SpoolState::SPOOLING_DOWN:
// do nothing
break;
}
// get pilot's desired throttle
#if FRAME_CONFIG == HELI_FRAME
float pilot_throttle_scaled = copter.input_manager.get_pilot_desired_collective(channel_throttle->get_control_in());
#else
float pilot_throttle_scaled = get_pilot_desired_throttle();
#endif
if ((systemid_state == SystemIDModeState::SYSTEMID_STATE_TESTING) &&
(!is_positive(frequency_start) || !is_positive(frequency_stop) || is_negative(time_fade_in) || !is_positive(time_record) || is_negative(time_fade_out) || (time_record <= time_const_freq))) {
systemid_state = SystemIDModeState::SYSTEMID_STATE_STOPPED;
gcs().send_text(MAV_SEVERITY_INFO, "SystemID Parameter Error");
}
waveform_time += G_Dt;
waveform_sample = waveform(waveform_time - SYSTEM_ID_DELAY);
switch (systemid_state) {
case SystemIDModeState::SYSTEMID_STATE_STOPPED:
break;
case SystemIDModeState::SYSTEMID_STATE_TESTING:
attitude_control->bf_feedforward(att_bf_feedforward);
if (copter.ap.land_complete) {
systemid_state = SystemIDModeState::SYSTEMID_STATE_STOPPED;
gcs().send_text(MAV_SEVERITY_INFO, "SystemID Stopped: Landed");
break;
}
if (attitude_control->lean_angle()*100 > attitude_control->lean_angle_max()) {
systemid_state = SystemIDModeState::SYSTEMID_STATE_STOPPED;
gcs().send_text(MAV_SEVERITY_INFO, "SystemID Stopped: lean=%f max=%f", (double)attitude_control->lean_angle(), (double)attitude_control->lean_angle_max());
break;
}
if (waveform_time > SYSTEM_ID_DELAY + time_fade_in + time_const_freq + time_record + time_fade_out) {
systemid_state = SystemIDModeState::SYSTEMID_STATE_STOPPED;
gcs().send_text(MAV_SEVERITY_INFO, "SystemID Finished");
break;
}
switch ((AxisType)axis.get()) {
case AxisType::NONE:
systemid_state = SystemIDModeState::SYSTEMID_STATE_STOPPED;
gcs().send_text(MAV_SEVERITY_INFO, "SystemID Stopped: axis = 0");
break;
case AxisType::INPUT_ROLL:
target_roll += waveform_sample*100.0f;
break;
case AxisType::INPUT_PITCH:
target_pitch += waveform_sample*100.0f;
break;
case AxisType::INPUT_YAW:
target_yaw_rate += waveform_sample*100.0f;
break;
case AxisType::RECOVER_ROLL:
target_roll += waveform_sample*100.0f;
attitude_control->bf_feedforward(false);
break;
case AxisType::RECOVER_PITCH:
target_pitch += waveform_sample*100.0f;
attitude_control->bf_feedforward(false);
break;
case AxisType::RECOVER_YAW:
target_yaw_rate += waveform_sample*100.0f;
attitude_control->bf_feedforward(false);
break;
case AxisType::RATE_ROLL:
attitude_control->rate_bf_roll_sysid(radians(waveform_sample));
break;
case AxisType::RATE_PITCH:
attitude_control->rate_bf_pitch_sysid(radians(waveform_sample));
break;
case AxisType::RATE_YAW:
attitude_control->rate_bf_yaw_sysid(radians(waveform_sample));
break;
case AxisType::MIX_ROLL:
attitude_control->actuator_roll_sysid(waveform_sample);
break;
case AxisType::MIX_PITCH:
attitude_control->actuator_pitch_sysid(waveform_sample);
break;
case AxisType::MIX_YAW:
attitude_control->actuator_yaw_sysid(waveform_sample);
break;
case AxisType::MIX_THROTTLE:
pilot_throttle_scaled += waveform_sample;
break;
}
break;
}
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);
// output pilot's throttle
if (copter.is_tradheli()) {
attitude_control->set_throttle_out(pilot_throttle_scaled, false, g.throttle_filt);
} else {
attitude_control->set_throttle_out(pilot_throttle_scaled, true, g.throttle_filt);
}
if (log_subsample <= 0) {
log_data();
if (copter.should_log(MASK_LOG_ATTITUDE_FAST) && copter.should_log(MASK_LOG_ATTITUDE_MED)) {
log_subsample = 1;
} else if (copter.should_log(MASK_LOG_ATTITUDE_FAST)) {
log_subsample = 2;
} else if (copter.should_log(MASK_LOG_ATTITUDE_MED)) {
log_subsample = 4;
} else {
log_subsample = 8;
}
}
log_subsample -= 1;
}
// log system id and attitude
void ModeSystemId::log_data()
{
uint8_t index = copter.ahrs.get_primary_gyro_index();
Vector3f delta_angle;
copter.ins.get_delta_angle(index, delta_angle);
float delta_angle_dt = copter.ins.get_delta_angle_dt(index);
index = copter.ahrs.get_primary_accel_index();
Vector3f delta_velocity;
copter.ins.get_delta_velocity(index, delta_velocity);
float delta_velocity_dt = copter.ins.get_delta_velocity_dt(index);
if (is_positive(delta_angle_dt) && is_positive(delta_velocity_dt)) {
copter.Log_Write_SysID_Data(waveform_time, waveform_sample, waveform_freq_rads / (2 * M_PI), degrees(delta_angle.x / delta_angle_dt), degrees(delta_angle.y / delta_angle_dt), degrees(delta_angle.z / delta_angle_dt), delta_velocity.x / delta_velocity_dt, delta_velocity.y / delta_velocity_dt, delta_velocity.z / delta_velocity_dt);
}
// Full rate logging of attitude, rate and pid loops
copter.Log_Write_Attitude();
}
// init_test - initialises the test
float ModeSystemId::waveform(float time)
{
float wMin = 2 * M_PI * frequency_start;
float wMax = 2 * M_PI * frequency_stop;
float window;
float output;
float B = logf(wMax / wMin);
if (time <= 0.0f) {
window = 0.0f;
} else if (time <= time_fade_in) {
window = 0.5 - 0.5 * cosf(M_PI * time / time_fade_in);
} else if (time <= time_record - time_fade_out) {
window = 1.0;
} else if (time <= time_record) {
window = 0.5 - 0.5 * cosf(M_PI * (time - (time_record - time_fade_out)) / time_fade_out + M_PI);
} else {
window = 0.0;
}
if (time <= 0.0f) {
waveform_freq_rads = wMin;
output = 0.0f;
} else if (time <= time_const_freq) {
waveform_freq_rads = wMin;
output = window * waveform_magnitude * sinf(wMin * time - wMin * time_const_freq);
} else if (time <= time_record) {
waveform_freq_rads = wMin * expf(B * (time - time_const_freq) / (time_record - time_const_freq));
output = window * waveform_magnitude * sinf((wMin * (time_record - time_const_freq) / B) * (expf(B * (time - time_const_freq) / (time_record - time_const_freq)) - 1));
} else {
waveform_freq_rads = wMax;
output = 0.0f;
}
return output;
}
#endif