ardupilot/libraries/AP_RangeFinder/AP_RangeFinder_PulsedLightLRF.cpp
Andrew Tridgell 429431157b AP_RangeFinder: disable old rangefinder drivers
these will be re-enabled when they are converted to the new class API
2014-07-08 15:07:50 +10:00

131 lines
4.0 KiB
C++

#if 0
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_RangeFinder_PulsedLightLRF.cpp - Arduino Library for Pulsed Light's Laser Range Finder
* Code by Randy Mackay. DIYDrones.com
*
* Sensor should be connected to the I2C port
*
* Variables:
* bool healthy : indicates whether last communication with sensor was successful
*
* Methods:
* take_reading(): ask the sonar to take a new distance measurement
* read() : read last distance measured (in cm)
*
*/
#include "AP_RangeFinder_PulsedLightLRF.h"
#include <AP_HAL.h>
extern const AP_HAL::HAL& hal;
// Constructor //////////////////////////////////////////////////////////////
AP_RangeFinder_PulsedLightLRF::AP_RangeFinder_PulsedLightLRF(FilterInt16 *filter) :
RangeFinder(NULL, filter),
healthy(true),
_addr(AP_RANGEFINDER_PULSEDLIGHTLRF_ADDR)
{
min_distance = AP_RANGEFINDER_PULSEDLIGHTLRF_MIN_DISTANCE;
max_distance = AP_RANGEFINDER_PULSEDLIGHTLRF_MAX_DISTANCE;
}
// Public Methods //////////////////////////////////////////////////////////////
// init - simply sets the i2c address
void AP_RangeFinder_PulsedLightLRF::init(uint8_t address)
{
// set sensor i2c address
_addr = address;
}
// take_reading - ask sensor to make a range reading
bool AP_RangeFinder_PulsedLightLRF::take_reading()
{
// get pointer to i2c bus semaphore
AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore();
// exit immediately if we can't take the semaphore
if (i2c_sem == NULL || !i2c_sem->take(5)) {
healthy = false;
return healthy;
}
// send command to take reading
if (hal.i2c->writeRegister(_addr, AP_RANGEFINDER_PULSEDLIGHTLRF_MEASURE_REG, AP_RANGEFINDER_PULSEDLIGHTLRF_MSRREG_ACQUIRE) != 0) {
healthy = false;
}else{
healthy = true;
}
hal.scheduler->delay_microseconds(200);
// return semaphore
i2c_sem->give();
return healthy;
}
// read - return last value measured by sensor
int16_t AP_RangeFinder_PulsedLightLRF::read()
{
uint8_t buff[2];
int16_t ret_value = 0;
// get pointer to i2c bus semaphore
AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore();
// exit immediately if we can't take the semaphore
if (i2c_sem == NULL || !i2c_sem->take(5)) {
healthy = false;
return healthy;
}
// assume the worst
healthy = false;
// read the high byte
if (hal.i2c->readRegisters(_addr, AP_RANGEFINDER_PULSEDLIGHTLRF_DISTHIGH_REG, 1, &buff[0]) == 0) {
hal.scheduler->delay_microseconds(200);
// read the low byte
if (hal.i2c->readRegisters(_addr, AP_RANGEFINDER_PULSEDLIGHTLRF_DISTLOW_REG, 1, &buff[1]) == 0) {
healthy = true;
// combine results into distance
ret_value = buff[0] << 8 | buff[1];
}
}
// ensure distance is within min and max
ret_value = constrain_int16(ret_value, min_distance, max_distance);
ret_value = _mode_filter->apply(ret_value);
hal.scheduler->delay_microseconds(200);
// return semaphore
i2c_sem->give();
// kick off another reading for next time
// To-Do: replace this with continuous mode
take_reading();
// to-do: do we really want to return 0 if reading the distance fails?
return ret_value;
}
#endif