ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_Oilpan.cpp
rmackay9 3901387c8d AP_InertialSensor: changed read of sensor from MPU6000 to happen immediately
This reduces the delay between when data arrives and when it is used
by up to 1ms.

Added num_samples_available method to all InertialSensors to allow
main loop timing to be synced with sensors.
2012-09-10 11:37:33 +09:00

197 lines
5.9 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "AP_InertialSensor_Oilpan.h"
// ADC channel mappings on for the APM Oilpan
// Sensors: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ
const uint8_t AP_InertialSensor_Oilpan::_sensors[6] = { 1, 2, 0, 4, 5, 6 };
// ADC result sign adjustment for sensors.
const int8_t AP_InertialSensor_Oilpan::_sensor_signs[6] =
{ 1, -1, -1, 1, -1, -1 };
// ADC channel reading the gyro temperature
const uint8_t AP_InertialSensor_Oilpan::_gyro_temp_ch = 3;
// Maximum possible value returned by an offset-corrected sensor channel
const float AP_InertialSensor_Oilpan::_adc_constraint = 900;
// ADC : Voltage reference 3.3v / 12bits(4096 steps) => 0.8mV/ADC step
// ADXL335 Sensitivity(from datasheet) => 330mV/g,
// 0.8mV/ADC step => 330/0.8 = 412
// Tested value : 418
// 1G in the raw data coming from the accelerometer
// Value based on actual sample data from 20 boards
const float AP_InertialSensor_Oilpan::_gravity = 423.8;
///< would like to use _gravity here, but cannot
//const float AP_InertialSensor_Oilpan::_accel_x_scale = 9.80665 / 413.195;
//const float AP_InertialSensor_Oilpan::_accel_y_scale = 9.80665 / 412.985;
//const float AP_InertialSensor_Oilpan::_accel_z_scale = 9.80665 / 403.69;
#define ToRad(x) (x*0.01745329252) // *pi/180
// IDG500 Sensitivity (from datasheet) => 2.0mV/degree/s,
// 0.8mV/ADC step => 0.8/3.33 = 0.4
// Tested values : 0.4026, ?, 0.4192
const float AP_InertialSensor_Oilpan::_gyro_gain_x = ToRad(0.4);
const float AP_InertialSensor_Oilpan::_gyro_gain_y = ToRad(0.41);
const float AP_InertialSensor_Oilpan::_gyro_gain_z = ToRad(0.41);
const AP_Param::GroupInfo AP_InertialSensor_Oilpan::var_info[] PROGMEM = {
// index 0 was used for the old orientation matrix
AP_GROUPINFO("XH", 0, AP_InertialSensor_Oilpan, _x_high, 2465),
AP_GROUPINFO("XL", 1, AP_InertialSensor_Oilpan, _x_low, 1617),
AP_GROUPINFO("YH", 2, AP_InertialSensor_Oilpan, _y_high, 2465),
AP_GROUPINFO("YL", 3, AP_InertialSensor_Oilpan, _y_low, 1617),
AP_GROUPINFO("ZH", 4, AP_InertialSensor_Oilpan, _z_high, 2465),
AP_GROUPINFO("ZL", 5, AP_InertialSensor_Oilpan, _z_low, 1617),
AP_GROUPEND
};
/* ------ Public functions -------------------------------------------*/
AP_InertialSensor_Oilpan::AP_InertialSensor_Oilpan( AP_ADC * adc ) :
_adc(adc)
{
_gyro.x = 0;
_gyro.y = 0;
_gyro.z = 0;
_accel.x = 0;
_accel.y = 0;
_accel.z = 0;
}
uint16_t AP_InertialSensor_Oilpan::init( AP_PeriodicProcess * scheduler)
{
_adc->Init(scheduler);
_accel_mid.x = (_x_high + _x_low) / 2;
_accel_mid.y = (_y_high + _y_low) / 2;
_accel_mid.z = (_z_high + _z_low) / 2;
_accel_scale.x = 9.80665 / ((float)_x_high - _accel_mid.x);
_accel_scale.y = 9.80665 / ((float)_y_high - _accel_mid.y);
_accel_scale.z = 9.80665 / ((float)_z_high - _accel_mid.z);
#if defined(DESKTOP_BUILD)
return AP_PRODUCT_ID_SITL;
#elif defined(__AVR_ATmega1280__)
return AP_PRODUCT_ID_APM1_1280;
#else
return AP_PRODUCT_ID_APM1_2560;
#endif
}
bool AP_InertialSensor_Oilpan::update()
{
float adc_values[6];
_sample_time = _adc->Ch6(_sensors, adc_values);
_temp = _adc->Ch(_gyro_temp_ch);
_gyro.x = _gyro_gain_x * _sensor_signs[0] * _gyro_apply_std_offset( adc_values[0] );
_gyro.y = _gyro_gain_y * _sensor_signs[1] * _gyro_apply_std_offset( adc_values[1] );
_gyro.z = _gyro_gain_z * _sensor_signs[2] * _gyro_apply_std_offset( adc_values[2] );
// _accel.x = _accel_x_scale * _sensor_signs[3] * _accel_apply_std_offset( adc_values[3] );
// _accel.y = _accel_y_scale * _sensor_signs[4] * _accel_apply_std_offset( adc_values[4] );
// _accel.z = _accel_z_scale * _sensor_signs[5] * _accel_apply_std_offset( adc_values[5] );
_accel.x = _accel_scale.x * _sensor_signs[3] * (adc_values[3] - _accel_mid.x);
_accel.y = _accel_scale.y * _sensor_signs[4] * (adc_values[4] - _accel_mid.y);
_accel.z = _accel_scale.z * _sensor_signs[5] * (adc_values[5] - _accel_mid.z);
/*
* X = 1619.30 to 2445.69
* Y = 1609.45 to 2435.42
* Z = 1627.44 to 2434.82
*/
return true;
}
bool AP_InertialSensor_Oilpan::new_data_available( void )
{
return _adc->new_data_available(_sensors);
}
float AP_InertialSensor_Oilpan::gx() {
return _gyro.x;
}
float AP_InertialSensor_Oilpan::gy() {
return _gyro.y;
}
float AP_InertialSensor_Oilpan::gz() {
return _gyro.z;
}
void AP_InertialSensor_Oilpan::get_gyros( float * g )
{
g[0] = _gyro.x;
g[1] = _gyro.y;
g[2] = _gyro.z;
}
float AP_InertialSensor_Oilpan::ax() {
return _accel.x;
}
float AP_InertialSensor_Oilpan::ay() {
return _accel.y;
}
float AP_InertialSensor_Oilpan::az() {
return _accel.z;
}
void AP_InertialSensor_Oilpan::get_accels( float * a )
{
a[0] = _accel.x;
a[1] = _accel.y;
a[2] = _accel.z;
}
void AP_InertialSensor_Oilpan::get_sensors( float * sensors )
{
sensors[0] = _gyro.x;
sensors[1] = _gyro.y;
sensors[2] = _gyro.z;
sensors[3] = _accel.x;
sensors[4] = _accel.y;
sensors[5] = _accel.z;
}
float AP_InertialSensor_Oilpan::temperature() {
return _temp;
}
uint32_t AP_InertialSensor_Oilpan::sample_time() {
return _sample_time;
}
/* ------ Private functions -------------------------------------------*/
float AP_InertialSensor_Oilpan::_gyro_apply_std_offset( float adc_value )
{
/* Magic number from AP_ADC_Oilpan.h */
return ((float) adc_value ) - 1658.0f;
}
float AP_InertialSensor_Oilpan::_accel_apply_std_offset( float adc_value )
{
/* Magic number from AP_ADC_Oilpan.h */
return ((float) adc_value ) - 2041.0f;
}
// return the oilpan gyro drift rate in radian/s/s
float AP_InertialSensor_Oilpan::get_gyro_drift_rate(void)
{
// 3.0 degrees/second/minute
return ToRad(3.0/60);
}
// get number of samples read from the sensors
uint16_t AP_InertialSensor_Oilpan::num_samples_available()
{
return _adc->num_samples_available(_sensors);
}