ardupilot/APMrover2/APM_Config_Rover.h
Andrew Tridgell d48489d456 Rover: major update, fixing lots of bugs
This removes a lot of the ArduPlane specific cruft left over from the
initial Rover import from ArduPlane, plus fixes a bunch of serious
bugs. For example, the rover was unable to use either compass or gps
for heading - it used just gyros!

There is still a lot of cruft left, but this at least gives a bit
better basis for future work
2012-11-17 17:45:30 +11:00

445 lines
17 KiB
C

// CONFIG FILE FOR APM_Rover project by Jean-Louis Naudin
//
#define GCS_PORT 3
#define GCS_PROTOCOL GCS_PROTOCOL_MAVLINK // QGroundControl protocol
//#define GCS_PROTOCOL GCS_PROTOCOL_NONE // No GCS protocol to save memory
#define HIL_MODE HIL_MODE_DISABLED
#define MAV_SYSTEM_ID 1
// Add a ground start delay in seconds
//#define GROUND_START_DELAY 1
#define AIRSPEED_SENSOR DISABLED
#define SONAR_ENABLED DISABLED
#define SONAR_TRIGGER 200 // trigger distance in cm
#if LITE == DISABLED
#define LOGGING_ENABLED ENABLED
#endif
// for an accurate navigation a magnetometer must be used with the APM1
#define MAGNETOMETER ENABLED
//#define MAG_ORIENTATION AP_COMPASS_COMPONENTS_UP_PINS_FORWARD
//#define PARAM_DECLINATION 0.18 // Paris
//////////////////////////////////////////////////////////////////////////////
// Serial port speeds.
//
#define SERIAL0_BAUD 115200
#define SERIAL3_BAUD 57600
//////////////////////////////////////////////////////////////////////////////
// GPS_PROTOCOL
#define GPS_PROTOCOL GPS_PROTOCOL_AUTO
#define CH7_OPTION CH7_SAVE_WP
#define FLIGHT_MODE_1 AUTO // pos 0 ---
#define FLIGHT_MODE_2 AUTO // pos 1
#define FLIGHT_MODE_3 LEARNING // pos 2
#define FLIGHT_MODE_4 LEARNING // pos 3 ---
#define FLIGHT_MODE_5 MANUAL // pos 4
#define FLIGHT_MODE_6 MANUAL // pos 5 ---
#define MANUAL_LEVEL DISABLED
#define TURN_GAIN 5
#define CLOSED_LOOP_NAV ENABLED // set to ENABLED if closed loop navigation else set to DISABLED (Return To Lauch)
#define MAX_DIST 50 //300 // max distance (in m) for the HEADALT mode
#define SARSEC_BRANCH 50 // Long branch of the SARSEC pattern
/*
During straight lines if the speed booster is enabled, after passing the Wp,
the speed is multplied by a speed factor ROV_BOOSTER = 2
(i.e. this is my tested value... so the required speed will be 2 x 4 = 8 m/s in straight lines),
the when the rover approach the wp, it slow down to 4 m/s (TRIM_ARSPD_CM)...
This feature works only if the ROV_AWPR_NAV is set to 0
*/
#define BOOSTER 2 // booster factor x1 = 1 or x2 = 2
#define AUTO_WP_RADIUS DISABLED
#define AIRSPEED_CRUISE 4 // 4m/s
#define THROTTLE_SLEW_LIMIT 2 // set to 2 for a smooth acceleration by 0.2 step
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// FLIGHT AND NAVIGATION CONTROL
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// AIRSPEED_CRUISE OPTIONAL
//
// The speed in metres per second to maintain during cruise. The default
// is 10m/s, which is a conservative value suitable for relatively small,
// light aircraft.
//
#define GSBOOST 0
#define NUDGE_OFFSET 0
#define MIN_GNDSPEED 3
//////////////////////////////////////////////////////////////////////////////
// FLY_BY_WIRE_B airspeed control (also used for throttle "nudging" in AUTO)
//
// AIRSPEED_FBW_MIN OPTIONAL
// AIRSPEED_FBW_MAX OPTIONAL
//
// Airspeed corresponding to minimum and maximum throttle in Fly By Wire B mode.
// The defaults are 6 and 30 metres per second.
//
// AIRSPEED_FBW_MAX also sets the maximum airspeed that the cruise airspeed can be "nudged" to in AUTO mode when ENABLE_STICK_MIXING is set.
// In AUTO the cruise airspeed can be increased between AIRSPEED_CRUISE and AIRSPEED_FBW_MAX by positioning the throttle
// stick in the top 1/2 of its range. Throttle stick in the bottom 1/2 provide regular AUTO control.
//
#define AIRSPEED_FBW_MIN 6
#define AIRSPEED_FBW_MAX 35
//
//////////////////////////////////////////////////////////////////////////////
// Servo mapping
//
// THROTTLE_MIN OPTIONAL
//
// The minimum throttle setting to which the autopilot will reduce the
// throttle while descending. The default is zero, which is
// suitable for aircraft with a steady power-off glide. Increase this
// value if your aircraft needs throttle to maintain a stable descent in
// level flight.
//
// THROTTLE_CRUISE OPTIONAL
//
// The approximate throttle setting to achieve AIRSPEED_CRUISE in level flight.
// The default is 45%, which is reasonable for a modestly powered aircraft.
//
// THROTTLE_MAX OPTIONAL
//
// The maximum throttle setting the autopilot will apply. The default is 75%.
// Reduce this value if your aicraft is overpowered, or has complex flight
// characteristics at high throttle settings.
//
#define THROTTLE_MIN 0 // percent
#define THROTTLE_CRUISE 3 // 40
#define THROTTLE_MAX 100
//////////////////////////////////////////////////////////////////////////////
// AUTO_TRIM OPTIONAL
//
// ArduPilot Mega can update its trim settings by looking at the
// radio inputs when switching out of MANUAL mode. This allows you to
// manually trim your aircraft before switching to an assisted mode, but it
// also means that you should avoid switching out of MANUAL while you have
// any control stick deflection.
//
// The default is to enable AUTO_TRIM.
//
#define AUTO_TRIM ENABLED
#define THROTTLE_FAILSAFE DISABLED
//////////////////////////////////////////////////////////////////////////////
// Autopilot control limits
//
// HEAD_MAX OPTIONAL
//
// The maximum commanded bank angle in either direction.
// The default is 45 degrees. Decrease this value if your aircraft is not
// stable or has difficulty maintaining altitude in a steep bank.
//
// PITCH_MAX OPTIONAL
//
// The maximum commanded pitch up angle.
// The default is 15 degrees. Care should be taken not to set this value too
// large, as the aircraft may stall.
//
// PITCH_MIN
//
// The maximum commanded pitch down angle. Note that this value must be
// negative. The default is -25 degrees. Care should be taken not to set
// this value too large as it may result in overspeeding the aircraft.
//
// PITCH_TARGET
//
// The target pitch for cruise flight. When the APM measures this pitch
// value, the pitch error will be calculated to be 0 for the pitch PID
// control loop.
//
#define HEAD_MAX 80
#define PITCH_MAX 15
#define PITCH_MIN -20 //-25
#define PITCH_TARGET 0
//////////////////////////////////////////////////////////////////////////////
// Attitude control gains
//
// Tuning values for the attitude control PID loops.
//
// The P term is the primary tuning value. This determines how the control
// deflection varies in proportion to the required correction.
//
// The I term is used to help control surfaces settle. This value should
// normally be kept low.
//
// The D term is used to control overshoot. Avoid using or adjusting this
// term if you are not familiar with tuning PID loops. It should normally
// be zero for most aircraft.
//
// Note: When tuning these values, start with changes of no more than 25% at
// a time.
//
// SERVO_ROLL_P OPTIONAL
// SERVO_ROLL_I OPTIONAL
// SERVO_ROLL_D OPTIONAL
//
// P, I and D terms for roll control. Defaults are 0.4, 0, 0.
//
// SERVO_ROLL_INT_MAX OPTIONAL
//
// Maximum control offset due to the integral. This prevents the control
// output from being overdriven due to a persistent offset (e.g. crosstracking).
// Default is 5 degrees.
//
// ROLL_SLEW_LIMIT EXPERIMENTAL
//
// Limits the slew rate of the roll control in degrees per second. If zero,
// slew rate is not limited. Default is to not limit the roll control slew rate.
// (This feature is currently not implemented.)
//
// SERVO_PITCH_P OPTIONAL
// SERVO_PITCH_I OPTIONAL
// SERVO_PITCH_D OPTIONAL
//
// P, I and D terms for the pitch control. Defaults are 0.6, 0, 0.
//
// SERVO_PITCH_INT_MAX OPTIONAL
//
// Maximum control offset due to the integral. This prevents the control
// output from being overdriven due to a persistent offset (e.g. native flight
// AoA). If you find this value is insufficient, consider adjusting the AOA
// parameter.
// Default is 5 degrees.
//
// PITCH_COMP OPTIONAL
//
// Adds pitch input to compensate for the loss of lift due to roll control.
// Default is 0.20 (20% of roll control also applied to pitch control).
//
// SERVO_YAW_P OPTIONAL
// SERVO_YAW_I OPTIONAL
// SERVO_YAW_D OPTIONAL
//
// P, I and D terms for the YAW control. Defaults are 0., 0., 0.
// Note units of this control loop are unusual. PID input is in m/s**2.
//
// SERVO_YAW_INT_MAX OPTIONAL
//
// Maximum control offset due to the integral. This prevents the control
// output from being overdriven due to a persistent offset (e.g. crosstracking).
// Default is 0.
//
// RUDDER_MIX OPTIONAL
//
// Roll to yaw mixing. This allows for co-ordinated turns.
// Default is 0.50 (50% of roll control also applied to yaw control.)
//
#define SERVO_ROLL_P 0.0
#define SERVO_ROLL_I 0.0
#define SERVO_ROLL_D 0.0
#define SERVO_ROLL_INT_MAX 5
#define ROLL_SLEW_LIMIT 0
#define SERVO_PITCH_P 0.0
#define SERVO_PITCH_I 0.0
#define SERVO_PITCH_D 0.0
#define SERVO_PITCH_INT_MAX 5
#define PITCH_COMP 0.0
#define SERVO_YAW_P 0.0 // Default is zero. A suggested value if you want to use this parameter is 0.5
#define SERVO_YAW_I 0.0
#define SERVO_YAW_D 0.0
#define SERVO_YAW_INT_MAX 5
#define RUDDER_MIX 0.0
//
//////////////////////////////////////////////////////////////////////////////
// Navigation control gains
//
// Tuning values for the navigation control PID loops.
//
// The P term is the primary tuning value. This determines how the control
// deflection varies in proportion to the required correction.
//
// The I term is used to control drift.
//
// The D term is used to control overshoot. Avoid adjusting this term if
// you are not familiar with tuning PID loops.
//
// Note: When tuning these values, start with changes of no more than 25% at
// a time.
//
// NAV_ROLL_P OPTIONAL
// NAV_ROLL_I OPTIONAL
// NAV_ROLL_D OPTIONAL
//
// P, I and D terms for navigation control over roll, normally used for
// controlling the aircraft's course. The P term controls how aggressively
// the aircraft will bank to change or hold course.
// Defaults are 0.7, 0.0, 0.02.
//
// NAV_ROLL_INT_MAX OPTIONAL
//
// Maximum control offset due to the integral. This prevents the control
// output from being overdriven due to a persistent offset (e.g. crosstracking).
// Default is 5 degrees.
//
// NAV_PITCH_ASP_P OPTIONAL
// NAV_PITCH_ASP_I OPTIONAL
// NAV_PITCH_ASP_D OPTIONAL
//
// P, I and D terms for pitch adjustments made to maintain airspeed.
// Defaults are 0.65, 0, 0.
//
// NAV_PITCH_ASP_INT_MAX OPTIONAL
//
// Maximum pitch offset due to the integral. This limits the control
// output from being overdriven due to a persistent offset (eg. inability
// to maintain the programmed airspeed).
// Default is 5 degrees.
//
// NAV_PITCH_ALT_P OPTIONAL
// NAV_PITCH_ALT_I OPTIONAL
// NAV_PITCH_ALT_D OPTIONAL
//
// P, I and D terms for pitch adjustments made to maintain altitude.
// Defaults are 0.65, 0, 0.
//
// NAV_PITCH_ALT_INT_MAX OPTIONAL
//
// Maximum pitch offset due to the integral. This limits the control
// output from being overdriven due to a persistent offset (eg. inability
// to maintain the programmed altitude).
// Default is 5 meters.
//
#define NAV_ROLL_P 0.7
#define NAV_ROLL_I 0.001
#define NAV_ROLL_D 0.06
#define NAV_ROLL_INT_MAX 5
#define NAV_PITCH_ASP_P 0.0
#define NAV_PITCH_ASP_I 0.0
#define NAV_PITCH_ASP_D 0.0
#define NAV_PITCH_ASP_INT_MAX 5
#define NAV_PITCH_ALT_P 0.0
#define NAV_PITCH_ALT_I 0.0
#define NAV_PITCH_ALT_D 0.0
#define NAV_PITCH_ALT_INT_MAX 5
//////////////////////////////////////////////////////////////////////////////
// Energy/Altitude control gains
//
// The Energy/altitude control system uses throttle input to control aircraft
// altitude.
//
// The P term is the primary tuning value. This determines how the throttle
// setting varies in proportion to the required correction.
//
// The I term is used to compensate for small offsets.
//
// The D term is used to control overshoot. Avoid adjusting this term if
// you are not familiar with tuning PID loops.
//
// Note units of this control loop are unusual. PID input is in m**2/s**2.
//
// THROTTLE_TE_P OPTIONAL
// THROTTLE_TE_I OPTIONAL
// THROTTLE_TE_D OPTIONAL
//
// P, I and D terms for throttle adjustments made to control altitude.
// Defaults are 0.5, 0, 0.
//
// THROTTLE_TE_INT_MAX OPTIONAL
//
// Maximum throttle input due to the integral term. This limits the
// throttle from being overdriven due to a persistent offset (e.g.
// inability to maintain the programmed altitude).
// Default is 20%.
//
// THROTTLE_SLEW_LIMIT OPTIONAL
//
// Limits the slew rate of the throttle, in percent per second. Helps
// avoid sudden throttle changes, which can destabilise the aircraft.
// A setting of zero disables the feature.
// Default is zero (disabled).
//
// P_TO_T OPTIONAL
//
// Pitch to throttle feed-forward gain. Default is 0.
//
// T_TO_P OPTIONAL
//
// Throttle to pitch feed-forward gain. Default is 0.
//
#define THROTTLE_TE_P 0.1
#define THROTTLE_TE_I 0.0
#define THROTTLE_TE_D 0.0
#define THROTTLE_TE_INT_MAX 20
#define P_TO_T 0.0
#define T_TO_P 0
//////////////////////////////////////////////////////////////////////////////
// Crosstrack compensation
//
// XTRACK_GAIN OPTIONAL
//
// Crosstrack compensation in degrees per metre off track.
// Default value is 1.0 degrees per metre. Values lower than 0.001 will
// disable crosstrack compensation.
//
// XTRACK_ENTRY_ANGLE OPTIONAL
//
// Maximum angle used to correct for track following.
// Default value is 30 degrees.
//
#define XTRACK_GAIN 1 // deg/m
#define XTRACK_ENTRY_ANGLE 20 // deg
/////////////////////////////////////////////////////////////////////////////
// Navigation defaults
//
// WP_RADIUS_DEFAULT OPTIONAL
//
// When the user performs a factory reset on the APM, set the waypoint radius
// (the radius from a target waypoint within which the APM will consider
// itself to have arrived at the waypoint) to this value in meters. This is
// mainly intended to allow users to start using the APM without running the
// WaypointWriter first.
//
// LOITER_RADIUS_DEFAULT OPTIONAL
//
// When the user performs a factory reset on the APM, set the loiter radius
// (the distance the APM will attempt to maintain from a waypoint while
// loitering) to this value in meters. This is mainly intended to allow
// users to start using the APM without running the WaypointWriter first.
//
// USE_CURRENT_ALT OPTIONAL
// ALT_HOLD_HOME OPTIONAL
//
// When the user performs a factory reset on the APM, set the flag for weather
// the current altitude or ALT_HOLD_HOME altitude should be used for Return To Launch.
// Also, set the value of USE_CURRENT_ALT in meters. This is mainly intended to allow
// users to start using the APM without running the WaypointWriter first.
//
#define WP_RADIUS_DEFAULT 1 // meters
#define LOITER_RADIUS_DEFAULT 5 // 60
#define USE_CURRENT_ALT TRUE
#define ALT_HOLD_HOME 0
//////////////////////////////////////////////////////////////////////////////
// INPUT_VOLTAGE OPTIONAL
//
// In order to have accurate pressure and battery voltage readings, this
// value should be set to the voltage measured on the 5V rail on the oilpan.
//
// See the manual for more details. The default value should be close.
//
#define INPUT_VOLTAGE 5.2
//