ardupilot/libraries/AP_Motors/AP_MotorsHeli_Quad.cpp

283 lines
9.0 KiB
C++

/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_MotorsHeli_Quad.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli_Quad::var_info[] = {
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
// Indices 1-3 were used by RSC_PWM_MIN, RSC_PWM_MAX and RSC_PWM_REV and should not be used
AP_GROUPEND
};
#define QUAD_SERVO_MAX_ANGLE 4500
// set update rate to motors - a value in hertz
void AP_MotorsHeli_Quad::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
uint32_t mask = 0;
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
mask |= 1U << (AP_MOTORS_MOT_1+i);
}
rc_set_freq(mask, _speed_hz);
}
// init_outputs
bool AP_MotorsHeli_Quad::init_outputs()
{
if (_flags.initialised_ok) {
return true;
}
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
add_motor_num(CH_1+i);
SRV_Channels::set_angle(SRV_Channels::get_motor_function(i), QUAD_SERVO_MAX_ANGLE);
}
// set rotor servo range
_rotor.init_servo();
_flags.initialised_ok = true;
return true;
}
// output_test_seq - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsHeli_Quad::output_test_seq(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1 ... AP_MOTORS_HELI_QUAD_NUM_MOTORS:
rc_write(AP_MOTORS_MOT_1 + (motor_seq-1), pwm);
break;
case AP_MOTORS_HELI_QUAD_NUM_MOTORS+1:
// main rotor
rc_write(AP_MOTORS_HELI_QUAD_RSC, pwm);
break;
default:
// do nothing
break;
}
}
// set_desired_rotor_speed
void AP_MotorsHeli_Quad::set_desired_rotor_speed(float desired_speed)
{
_rotor.set_desired_speed(desired_speed);
}
// calculate_armed_scalars
void AP_MotorsHeli_Quad::calculate_armed_scalars()
{
float thrcrv[5];
for (uint8_t i = 0; i < 5; i++) {
thrcrv[i]=_rsc_thrcrv[i]*0.001f;
}
_rotor.set_ramp_time(_rsc_ramp_time);
_rotor.set_runup_time(_rsc_runup_time);
_rotor.set_critical_speed(_rsc_critical*0.001f);
_rotor.set_idle_output(_rsc_idle_output*0.001f);
_rotor.set_throttle_curve(thrcrv, (uint16_t)_rsc_slewrate.get());
}
// calculate_scalars
void AP_MotorsHeli_Quad::calculate_scalars()
{
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN;
_collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX;
}
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
// calculate collective mid point as a number from 0 to 1000
_collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min));
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// set mode of main rotor controller and trigger recalculation of scalars
_rotor.set_control_mode(static_cast<RotorControlMode>(_rsc_mode.get()));
calculate_armed_scalars();
}
// calculate_swash_factors - calculate factors based on swash type and servo position
void AP_MotorsHeli_Quad::calculate_roll_pitch_collective_factors()
{
// assume X quad layout, with motors at 45, 135, 225 and 315 degrees
// order FrontRight, RearLeft, FrontLeft, RearLeft
const float angles[AP_MOTORS_HELI_QUAD_NUM_MOTORS] = { 45, 225, 315, 135 };
const bool x_clockwise[AP_MOTORS_HELI_QUAD_NUM_MOTORS] = { false, false, true, true };
const float cos45 = cosf(radians(45));
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
bool clockwise = x_clockwise[i];
if (_frame_type == MOTOR_FRAME_TYPE_H) {
// reverse yaw for H frame
clockwise = !clockwise;
}
_rollFactor[CH_1+i] = -0.5*sinf(radians(angles[i]))/cos45;
_pitchFactor[CH_1+i] = 0.5*cosf(radians(angles[i]))/cos45;
_yawFactor[CH_1+i] = clockwise?-0.5:0.5;
_collectiveFactor[CH_1+i] = 1;
}
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsHeli_Quad::get_motor_mask()
{
uint16_t mask = 0;
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
mask |= 1U << (AP_MOTORS_MOT_1+i);
}
mask |= 1U << AP_MOTORS_HELI_QUAD_RSC;
return mask;
}
// update_motor_controls - sends commands to motor controllers
void AP_MotorsHeli_Quad::update_motor_control(RotorControlState state)
{
// Send state update to motors
_rotor.output(state);
if (state == ROTOR_CONTROL_STOP) {
// set engine run enable aux output to not run position to kill engine when disarmed
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MIN);
} else {
// else if armed, set engine run enable output to run position
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MAX);
}
// Check if rotors are run-up
_heliflags.rotor_runup_complete = _rotor.is_runup_complete();
}
//
// move_actuators - moves swash plate to attitude of parameters passed in
// - expected ranges:
// roll : -1 ~ +1
// pitch: -1 ~ +1
// collective: 0 ~ 1
// yaw: -1 ~ +1
//
void AP_MotorsHeli_Quad::move_actuators(float roll_out, float pitch_out, float collective_in, float yaw_out)
{
// initialize limits flag
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
// constrain collective input
float collective_out = collective_in;
if (collective_out <= 0.0f) {
collective_out = 0.0f;
limit.throttle_lower = true;
}
if (collective_out >= 1.0f) {
collective_out = 1.0f;
limit.throttle_upper = true;
}
// ensure not below landed/landing collective
if (_heliflags.landing_collective && collective_out < (_land_collective_min*0.001f)) {
collective_out = _land_collective_min*0.001f;
limit.throttle_lower = true;
}
float collective_range = (_collective_max - _collective_min)*0.001f;
if (_heliflags.inverted_flight) {
collective_out = 1 - collective_out;
}
// feed power estimate into main rotor controller
_rotor.set_collective(fabsf(collective_out));
// scale collective to -1 to 1
collective_out = collective_out*2-1;
// reserve some collective for attitude control
collective_out *= collective_range;
float out[AP_MOTORS_HELI_QUAD_NUM_MOTORS] {};
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
out[i] =
_rollFactor[CH_1+i] * roll_out +
_pitchFactor[CH_1+i] * pitch_out +
_collectiveFactor[CH_1+i] * collective_out;
}
// see if we need to scale down yaw_out
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
float y = _yawFactor[CH_1+i] * yaw_out;
if (out[i] < 0) {
// the slope of the yaw effect changes at zero collective
y = -y;
}
if (out[i] * (out[i] + y) < 0) {
// applying this yaw demand would change the sign of the
// collective, which means the yaw would not be applied
// evenly. We scale down the overall yaw demand to prevent
// it crossing over zero
float s = -(out[i] / y);
yaw_out *= s;
}
}
// now apply the yaw correction
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
float y = _yawFactor[CH_1+i] * yaw_out;
if (out[i] < 0) {
// the slope of the yaw effect changes at zero collective
y = -y;
}
out[i] += y;
}
// move the servos
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
rc_write_angle(AP_MOTORS_MOT_1+i, out[i] * QUAD_SERVO_MAX_ANGLE);
}
}
// servo_test - move servos through full range of movement
void AP_MotorsHeli_Quad::servo_test()
{
// not implemented
}