ardupilot/APMrover2/system.cpp

548 lines
13 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************************************************
The init_ardupilot function processes everything we need for an in - air restart
We will determine later if we are actually on the ground and process a
ground start in that case.
*****************************************************************************/
#include "Rover.h"
#if CLI_ENABLED == ENABLED
// This is the help function
int8_t Rover::main_menu_help(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf("Commands:\n"
" logs log readback/setup mode\n"
" setup setup mode\n"
" test test mode\n"
"\n"
"Move the slide switch and reset to FLY.\n"
"\n");
return(0);
}
// Command/function table for the top-level menu.
static const struct Menu::command main_menu_commands[] = {
// command function called
// ======= ===============
{"logs", MENU_FUNC(process_logs)},
{"setup", MENU_FUNC(setup_mode)},
{"test", MENU_FUNC(test_mode)},
{"reboot", MENU_FUNC(reboot_board)},
{"help", MENU_FUNC(main_menu_help)}
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
int8_t Rover::reboot_board(uint8_t argc, const Menu::arg *argv)
{
hal.scheduler->reboot(false);
return 0;
}
// the user wants the CLI. It never exits
void Rover::run_cli(AP_HAL::UARTDriver *port)
{
// disable the failsafe code in the CLI
hal.scheduler->register_timer_failsafe(NULL,1);
// disable the mavlink delay callback
hal.scheduler->register_delay_callback(NULL, 5);
cliSerial = port;
Menu::set_port(port);
port->set_blocking_writes(true);
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void mavlink_delay_cb_static()
{
rover.mavlink_delay_cb();
}
static void failsafe_check_static()
{
rover.failsafe_check();
}
void Rover::init_ardupilot()
{
// initialise console serial port
serial_manager.init_console();
cliSerial->printf("\n\nInit " FIRMWARE_STRING
"\n\nFree RAM: %u\n",
hal.util->available_memory());
//
// Check the EEPROM format version before loading any parameters from EEPROM.
//
load_parameters();
BoardConfig.init();
// initialise serial ports
serial_manager.init();
ServoRelayEvents.set_channel_mask(0xFFF0);
set_control_channels();
battery.init();
// keep a record of how many resets have happened. This can be
// used to detect in-flight resets
g.num_resets.set_and_save(g.num_resets+1);
// init baro before we start the GCS, so that the CLI baro test works
barometer.init();
// init the GCS
gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0);
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
usb_connected = true;
check_usb_mux();
// setup serial port for telem1
gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);
// setup serial port for telem2
gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1);
// setup serial port for fourth telemetry port (not used by default)
gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2);
// setup frsky telemetry
#if FRSKY_TELEM_ENABLED == ENABLED
frsky_telemetry.init(serial_manager);
#endif
mavlink_system.sysid = g.sysid_this_mav;
#if LOGGING_ENABLED == ENABLED
log_init();
#endif
GCS_MAVLINK::set_dataflash(&DataFlash);
// Register mavlink_delay_cb, which will run anytime you have
// more than 5ms remaining in your call to hal.scheduler->delay
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
if (g.compass_enabled==true) {
if (!compass.init()|| !compass.read()) {
cliSerial->println("Compass initialisation failed!");
g.compass_enabled = false;
} else {
ahrs.set_compass(&compass);
//compass.get_offsets(); // load offsets to account for airframe magnetic interference
}
}
// initialise sonar
init_sonar();
// and baro for EKF
init_barometer();
// Do GPS init
gps.init(&DataFlash, serial_manager);
rc_override_active = hal.rcin->set_overrides(rc_override, 8);
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
relay.init();
#if MOUNT == ENABLED
// initialise camera mount
camera_mount.init(&DataFlash, serial_manager);
#endif
/*
setup the 'main loop is dead' check. Note that this relies on
the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
#if CLI_ENABLED == ENABLED
// If the switch is in 'menu' mode, run the main menu.
//
// Since we can't be sure that the setup or test mode won't leave
// the system in an odd state, we don't let the user exit the top
// menu; they must reset in order to fly.
//
if (g.cli_enabled == 1) {
const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
cliSerial->println(msg);
if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
gcs[1].get_uart()->println(msg);
}
if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
gcs[2].get_uart()->println(msg);
}
}
#endif
init_capabilities();
startup_ground();
set_mode((enum mode)g.initial_mode.get());
// set the correct flight mode
// ---------------------------
reset_control_switch();
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
void Rover::startup_ground(void)
{
set_mode(INITIALISING);
gcs_send_text(MAV_SEVERITY_INFO,"<startup_ground> Ground start");
#if(GROUND_START_DELAY > 0)
gcs_send_text(MAV_SEVERITY_NOTICE,"<startup_ground> With delay");
delay(GROUND_START_DELAY * 1000);
#endif
//IMU ground start
//------------------------
//
startup_INS_ground();
// read the radio to set trims
// ---------------------------
trim_radio();
// initialise mission library
mission.init();
// we don't want writes to the serial port to cause us to pause
// so set serial ports non-blocking once we are ready to drive
serial_manager.set_blocking_writes_all(false);
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
ins.set_dataflash(&DataFlash);
gcs_send_text(MAV_SEVERITY_INFO,"Ready to drive");
}
/*
set the in_reverse flag
reset the throttle integrator if this changes in_reverse
*/
void Rover::set_reverse(bool reverse)
{
if (in_reverse == reverse) {
return;
}
g.pidSpeedThrottle.reset_I();
in_reverse = reverse;
}
void Rover::set_mode(enum mode mode)
{
if(control_mode == mode){
// don't switch modes if we are already in the correct mode.
return;
}
// If we are changing out of AUTO mode reset the loiter timer
if (control_mode == AUTO)
loiter_time = 0;
control_mode = mode;
throttle_last = 0;
throttle = 500;
set_reverse(false);
g.pidSpeedThrottle.reset_I();
if (control_mode != AUTO) {
auto_triggered = false;
}
switch(control_mode)
{
case MANUAL:
case HOLD:
case LEARNING:
case STEERING:
auto_throttle_mode = false;
break;
case AUTO:
auto_throttle_mode = true;
rtl_complete = false;
restart_nav();
break;
case RTL:
auto_throttle_mode = true;
do_RTL();
break;
case GUIDED:
auto_throttle_mode = true;
rtl_complete = false;
/*
when entering guided mode we set the target as the current
location. This matches the behaviour of the copter code.
*/
guided_WP = current_loc;
set_guided_WP();
break;
default:
auto_throttle_mode = true;
do_RTL();
break;
}
if (should_log(MASK_LOG_MODE)) {
DataFlash.Log_Write_Mode(control_mode);
}
}
/*
set_mode() wrapper for MAVLink SET_MODE
*/
bool Rover::mavlink_set_mode(uint8_t mode)
{
switch (mode) {
case MANUAL:
case HOLD:
case LEARNING:
case STEERING:
case GUIDED:
case AUTO:
case RTL:
set_mode((enum mode)mode);
return true;
}
return false;
}
/*
called to set/unset a failsafe event.
*/
void Rover::failsafe_trigger(uint8_t failsafe_type, bool on)
{
uint8_t old_bits = failsafe.bits;
if (on) {
failsafe.bits |= failsafe_type;
} else {
failsafe.bits &= ~failsafe_type;
}
if (old_bits == 0 && failsafe.bits != 0) {
// a failsafe event has started
failsafe.start_time = millis();
}
if (failsafe.triggered != 0 && failsafe.bits == 0) {
// a failsafe event has ended
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Failsafe ended");
}
failsafe.triggered &= failsafe.bits;
if (failsafe.triggered == 0 &&
failsafe.bits != 0 &&
millis() - failsafe.start_time > g.fs_timeout*1000 &&
control_mode != RTL &&
control_mode != HOLD) {
failsafe.triggered = failsafe.bits;
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Failsafe trigger 0x%x", (unsigned)failsafe.triggered);
switch (g.fs_action) {
case 0:
break;
case 1:
set_mode(RTL);
break;
case 2:
set_mode(HOLD);
break;
}
}
}
void Rover::startup_INS_ground(void)
{
gcs_send_text(MAV_SEVERITY_INFO, "Warming up ADC");
mavlink_delay(500);
// Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!!
// -----------------------
gcs_send_text(MAV_SEVERITY_INFO, "Beginning INS calibration. Do not move vehicle");
mavlink_delay(1000);
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_vehicle_class(AHRS_VEHICLE_GROUND);
ins.init(scheduler.get_loop_rate_hz());
ahrs.reset();
}
// updates the notify state
// should be called at 50hz
void Rover::update_notify()
{
notify.update();
}
void Rover::resetPerfData(void) {
mainLoop_count = 0;
G_Dt_max = 0;
perf_mon_timer = millis();
}
void Rover::check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == usb_connected) {
return;
}
// the user has switched to/from the telemetry port
usb_connected = usb_check;
}
void Rover::print_mode(AP_HAL::BetterStream *port, uint8_t mode)
{
switch (mode) {
case MANUAL:
port->print("Manual");
break;
case HOLD:
port->print("HOLD");
break;
case LEARNING:
port->print("Learning");
break;
case STEERING:
port->print("Steering");
break;
case AUTO:
port->print("AUTO");
break;
case RTL:
port->print("RTL");
break;
default:
port->printf("Mode(%u)", (unsigned)mode);
break;
}
}
/*
check a digitial pin for high,low (1/0)
*/
uint8_t Rover::check_digital_pin(uint8_t pin)
{
int8_t dpin = hal.gpio->analogPinToDigitalPin(pin);
if (dpin == -1) {
return 0;
}
// ensure we are in input mode
hal.gpio->pinMode(dpin, HAL_GPIO_INPUT);
// enable pullup
hal.gpio->write(dpin, 1);
return hal.gpio->read(dpin);
}
/*
should we log a message type now?
*/
bool Rover::should_log(uint32_t mask)
{
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
return false;
}
bool ret = hal.util->get_soft_armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0;
if (ret && !DataFlash.logging_started() && !in_log_download) {
start_logging();
}
return ret;
}
/*
send FrSky telemetry. Should be called at 5Hz by scheduler
*/
#if FRSKY_TELEM_ENABLED == ENABLED
void Rover::frsky_telemetry_send(void)
{
frsky_telemetry.send_frames((uint8_t)control_mode);
}
#endif
/*
update AHRS soft arm state and log as needed
*/
void Rover::change_arm_state(void)
{
Log_Arm_Disarm();
hal.util->set_soft_armed(arming.is_armed() &&
hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED);
}
/*
arm motors
*/
bool Rover::arm_motors(AP_Arming::ArmingMethod method)
{
if (!arming.arm(method)) {
return false;
}
// only log if arming was successful
channel_throttle->enable_out();
change_arm_state();
return true;
}
/*
disarm motors
*/
bool Rover::disarm_motors(void)
{
if (!arming.disarm()) {
return false;
}
if (arming.arming_required() == AP_Arming::YES_ZERO_PWM) {
channel_throttle->disable_out();
}
if (control_mode != AUTO) {
// reset the mission on disarm if we are not in auto
mission.reset();
}
//only log if disarming was successful
change_arm_state();
return true;
}