5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-17 14:18:31 -04:00
ardupilot/libraries/AP_NavEKF3/AP_NavEKF3_Control.cpp
2017-04-22 10:37:31 +09:00

525 lines
24 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL/AP_HAL.h>
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
#include "AP_NavEKF3.h"
#include "AP_NavEKF3_core.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
// Control filter mode transitions
void NavEKF3_core::controlFilterModes()
{
// Determine motor arm status
prevMotorsArmed = motorsArmed;
motorsArmed = hal.util->get_soft_armed();
if (motorsArmed && !prevMotorsArmed) {
// set the time at which we arm to assist with checks
timeAtArming_ms = imuSampleTime_ms;
}
// Detect if we are in flight on or ground
detectFlight();
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to
// avoid unnecessary operations
setWindMagStateLearningMode();
// Check the alignmnent status of the tilt and yaw attitude
// Used during initial bootstrap alignment of the filter
checkAttitudeAlignmentStatus();
// Set the type of inertial navigation aiding used
setAidingMode();
}
/*
return effective value for _magCal for this core
*/
uint8_t NavEKF3_core::effective_magCal(void) const
{
// force use of simple magnetic heading fusion for specified cores
if (frontend->_magMask & core_index) {
return 2;
} else {
return frontend->_magCal;
}
}
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to
// avoid unnecessary operations
void NavEKF3_core::setWindMagStateLearningMode()
{
// If we are on ground, or in constant position mode, or don't have the right vehicle and sensing to estimate wind, inhibit wind states
bool setWindInhibit = (!useAirspeed() && !assume_zero_sideslip()) || onGround || (PV_AidingMode == AID_NONE);
if (!inhibitWindStates && setWindInhibit) {
inhibitWindStates = true;
} else if (inhibitWindStates && !setWindInhibit) {
inhibitWindStates = false;
// set states and variances
if (yawAlignComplete && useAirspeed()) {
// if we have airspeed and a valid heading, set the wind states to the reciprocal of the vehicle heading
// which assumes the vehicle has launched into the wind
Vector3f tempEuler;
stateStruct.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z);
float windSpeed = sqrtf(sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y)) - tasDataDelayed.tas;
stateStruct.wind_vel.x = windSpeed * cosf(tempEuler.z);
stateStruct.wind_vel.y = windSpeed * sinf(tempEuler.z);
// set the wind sate variances to the measurement uncertainty
for (uint8_t index=22; index<=23; index++) {
P[index][index] = sq(constrain_float(frontend->_easNoise, 0.5f, 5.0f) * constrain_float(_ahrs->get_EAS2TAS(), 0.9f, 10.0f));
}
} else {
// set the variances using a typical wind speed
for (uint8_t index=22; index<=23; index++) {
P[index][index] = sq(5.0f);
}
}
}
// determine if the vehicle is manoevring
if (accNavMagHoriz > 0.5f) {
manoeuvring = true;
} else {
manoeuvring = false;
}
// Determine if learning of magnetic field states has been requested by the user
uint8_t magCal = effective_magCal();
bool magCalRequested =
((magCal == 0) && inFlight) || // when flying
((magCal == 1) && manoeuvring) || // when manoeuvring
((magCal == 3) && finalInflightYawInit && finalInflightMagInit) || // when initial in-air yaw and mag field reset is complete
(magCal == 4); // all the time
// Deny mag calibration request if we aren't using the compass, it has been inhibited by the user,
// we do not have an absolute position reference or are on the ground (unless explicitly requested by the user)
bool magCalDenied = !use_compass() || (magCal == 2) || (onGround && magCal != 4);
// Inhibit the magnetic field calibration if not requested or denied
bool setMagInhibit = !magCalRequested || magCalDenied;
if (!inhibitMagStates && setMagInhibit) {
inhibitMagStates = true;
} else if (inhibitMagStates && !setMagInhibit) {
inhibitMagStates = false;
if (magFieldLearned) {
// if we have already learned the field states, then retain the learned variances
P[16][16] = earthMagFieldVar.x;
P[17][17] = earthMagFieldVar.y;
P[18][18] = earthMagFieldVar.z;
P[19][19] = bodyMagFieldVar.x;
P[20][20] = bodyMagFieldVar.y;
P[21][21] = bodyMagFieldVar.z;
} else {
// set the variances equal to the observation variances
for (uint8_t index=18; index<=21; index++) {
P[index][index] = sq(frontend->_magNoise);
}
// set the NE earth magnetic field states using the published declination
// and set the corresponding variances and covariances
alignMagStateDeclination();
}
// request a reset of the yaw and magnetic field states if not done before
if (!magStateInitComplete || (!finalInflightMagInit && inFlight)) {
magYawResetRequest = true;
}
}
// inhibit delta velocity bias learning if we have not yet aligned the tilt
if (tiltAlignComplete && inhibitDelVelBiasStates) {
// activate the states
inhibitDelVelBiasStates = false;
// set the initial covariance values
P[13][13] = sq(ACCEL_BIAS_LIM_SCALER * frontend->_accBiasLim * dtEkfAvg);
P[14][14] = P[13][13];
P[15][15] = P[13][13];
}
if (tiltAlignComplete && inhibitDelAngBiasStates) {
// activate the states
inhibitDelAngBiasStates = false;
// set the initial covariance values
P[10][10] = sq(radians(InitialGyroBiasUncertainty() * dtEkfAvg));
P[11][11] = P[10][10];
P[12][12] = P[10][10];
}
// If on ground we clear the flag indicating that the magnetic field in-flight initialisation has been completed
// because we want it re-done for each takeoff
if (onGround) {
finalInflightYawInit = false;
finalInflightMagInit = false;
}
// Adjust the indexing limits used to address the covariance, states and other EKF arrays to avoid unnecessary operations
// if we are not using those states
if (inhibitMagStates && inhibitWindStates && inhibitDelVelBiasStates) {
stateIndexLim = 12;
} else if (inhibitMagStates && !inhibitWindStates) {
stateIndexLim = 15;
} else if (inhibitWindStates) {
stateIndexLim = 21;
} else {
stateIndexLim = 23;
}
}
// Set inertial navigation aiding mode
void NavEKF3_core::setAidingMode()
{
// Save the previous status so we can detect when it has changed
PV_AidingModePrev = PV_AidingMode;
// Check that the gyro bias variance has converged
checkGyroCalStatus();
// Determine if we should change aiding mode
if (PV_AidingMode == AID_NONE) {
// Don't allow filter to start position or velocity aiding until the tilt and yaw alignment is complete
// and IMU gyro bias estimates have stabilised
// If GPS usage has been prohiited then we use flow aiding provided optical flow data is present
// GPS aiding is the preferred option unless excluded by the user
if(readyToUseGPS() || readyToUseRangeBeacon()) {
PV_AidingMode = AID_ABSOLUTE;
} else if (readyToUseOptFlow() || readyToUseBodyOdm()) {
PV_AidingMode = AID_RELATIVE;
}
} else if (PV_AidingMode == AID_RELATIVE) {
// Check if the optical flow sensor has timed out
bool flowSensorTimeout = ((imuSampleTime_ms - flowValidMeaTime_ms) > 5000);
// Check if the fusion has timed out (flow measurements have been rejected for too long)
bool flowFusionTimeout = ((imuSampleTime_ms - prevFlowFuseTime_ms) > 5000);
// Check if the body odometry flow sensor has timed out
bool bodyOdmSensorTimeout = ((imuSampleTime_ms - bodyOdmMeasTime_ms) > 5000);
// Check if the fusion has timed out (body odometry measurements have been rejected for too long)
bool bodyOdmFusionTimeout = ((imuSampleTime_ms - prevBodyVelFuseTime_ms) > 5000);
// Enable switch to absolute position mode if GPS or range beacon data is available
// If GPS or range beacons data is not available and flow fusion has timed out, then fall-back to no-aiding
if(readyToUseGPS() || readyToUseRangeBeacon()) {
PV_AidingMode = AID_ABSOLUTE;
} else if ((flowSensorTimeout || flowFusionTimeout) && (bodyOdmSensorTimeout || bodyOdmFusionTimeout)) {
PV_AidingMode = AID_NONE;
}
} else if (PV_AidingMode == AID_ABSOLUTE) {
// Find the minimum time without data required to trigger any check
uint16_t minTestTime_ms = MIN(frontend->tiltDriftTimeMax_ms, MIN(frontend->posRetryTimeNoVel_ms,frontend->posRetryTimeUseVel_ms));
// Check if optical flow data is being used
bool optFlowUsed = (imuSampleTime_ms - prevFlowFuseTime_ms <= minTestTime_ms);
// Check if body odometry data is being used
bool bodyOdmUsed = (imuSampleTime_ms - prevBodyVelFuseTime_ms <= minTestTime_ms);
// Check if airspeed data is being used
bool airSpdUsed = (imuSampleTime_ms - lastTasPassTime_ms <= minTestTime_ms);
// Check if range beacon data is being used
bool rngBcnUsed = (imuSampleTime_ms - lastRngBcnPassTime_ms <= minTestTime_ms);
// Check if GPS is being used
bool gpsPosUsed = (imuSampleTime_ms - lastPosPassTime_ms <= minTestTime_ms);
bool gpsVelUsed = (imuSampleTime_ms - lastVelPassTime_ms <= minTestTime_ms);
// Check if attitude drift has been constrained by a measurement source
bool attAiding = gpsPosUsed || gpsVelUsed || optFlowUsed || airSpdUsed || rngBcnUsed || bodyOdmUsed;
// check if velocity drift has been constrained by a measurement source
bool velAiding = gpsVelUsed || airSpdUsed || optFlowUsed || bodyOdmUsed;
// check if position drift has been constrained by a measurement source
bool posAiding = gpsPosUsed || rngBcnUsed;
// Check if the loss of attitude aiding has become critical
bool attAidLossCritical = false;
if (!attAiding) {
attAidLossCritical = (imuSampleTime_ms - prevFlowFuseTime_ms > frontend->tiltDriftTimeMax_ms) &&
(imuSampleTime_ms - lastTasPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
(imuSampleTime_ms - lastRngBcnPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
(imuSampleTime_ms - lastPosPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
(imuSampleTime_ms - lastVelPassTime_ms > frontend->tiltDriftTimeMax_ms);
}
// Check if the loss of position accuracy has become critical
bool posAidLossCritical = false;
if (!posAiding ) {
uint16_t maxLossTime_ms;
if (!velAiding) {
maxLossTime_ms = frontend->posRetryTimeNoVel_ms;
} else {
maxLossTime_ms = frontend->posRetryTimeUseVel_ms;
}
posAidLossCritical = (imuSampleTime_ms - lastRngBcnPassTime_ms > maxLossTime_ms) &&
(imuSampleTime_ms - lastPosPassTime_ms > maxLossTime_ms);
}
if (attAidLossCritical) {
// if the loss of attitude data is critical, then put the filter into a constant position mode
PV_AidingMode = AID_NONE;
posTimeout = true;
velTimeout = true;
rngBcnTimeout = true;
tasTimeout = true;
gpsNotAvailable = true;
} else if (posAidLossCritical) {
// if the loss of position is critical, declare all sources of position aiding as being timed out
posTimeout = true;
velTimeout = true;
rngBcnTimeout = true;
gpsNotAvailable = true;
}
}
// check to see if we are starting or stopping aiding and set states and modes as required
if (PV_AidingMode != PV_AidingModePrev) {
// set various usage modes based on the condition when we start aiding. These are then held until aiding is stopped.
if (PV_AidingMode == AID_NONE) {
// We have ceased aiding
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_WARNING, "EKF3 IMU%u stopped aiding",(unsigned)imu_index);
// When not aiding, estimate orientation & height fusing synthetic constant position and zero velocity measurement to constrain tilt errors
posTimeout = true;
velTimeout = true;
// Reset the normalised innovation to avoid false failing bad fusion tests
velTestRatio = 0.0f;
posTestRatio = 0.0f;
// store the current position to be used to keep reporting the last known position
lastKnownPositionNE.x = stateStruct.position.x;
lastKnownPositionNE.y = stateStruct.position.y;
// initialise filtered altitude used to provide a takeoff reference to current baro on disarm
// this reduces the time required for the baro noise filter to settle before the filtered baro data can be used
meaHgtAtTakeOff = baroDataDelayed.hgt;
// reset the vertical position state to faster recover from baro errors experienced during touchdown
stateStruct.position.z = -meaHgtAtTakeOff;
// reset relative aiding sensor fusion activity status
flowFusionActive = false;
bodyVelFusionActive = false;
} else if (PV_AidingMode == AID_RELATIVE) {
// We are doing relative position navigation where velocity errors are constrained, but position drift will occur
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u started relative aiding",(unsigned)imu_index);
if (readyToUseOptFlow()) {
// Reset time stamps
flowValidMeaTime_ms = imuSampleTime_ms;
prevFlowFuseTime_ms = imuSampleTime_ms;
} else if (readyToUseBodyOdm()) {
// Reset time stamps
lastbodyVelPassTime_ms = imuSampleTime_ms;
prevBodyVelFuseTime_ms = imuSampleTime_ms;
}
posTimeout = true;
velTimeout = true;
} else if (PV_AidingMode == AID_ABSOLUTE) {
if (readyToUseGPS()) {
// We are commencing aiding using GPS - this is the preferred method
posResetSource = GPS;
velResetSource = GPS;
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u is using GPS",(unsigned)imu_index);
} else if (readyToUseRangeBeacon()) {
// We are commencing aiding using range beacons
posResetSource = RNGBCN;
velResetSource = DEFAULT;
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u is using range beacons",(unsigned)imu_index);
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u initial pos NE = %3.1f,%3.1f (m)",(unsigned)imu_index,(double)receiverPos.x,(double)receiverPos.y);
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u initial beacon pos D offset = %3.1f (m)",(unsigned)imu_index,(double)bcnPosOffsetNED.z);
}
// clear timeout flags as a precaution to avoid triggering any additional transitions
posTimeout = false;
velTimeout = false;
// reset the last fusion accepted times to prevent unwanted activation of timeout logic
lastPosPassTime_ms = imuSampleTime_ms;
lastVelPassTime_ms = imuSampleTime_ms;
lastRngBcnPassTime_ms = imuSampleTime_ms;
}
// Always reset the position and velocity when changing mode
ResetVelocity();
ResetPosition();
}
}
// Check the tilt and yaw alignmnent status
// Used during initial bootstrap alignment of the filter
void NavEKF3_core::checkAttitudeAlignmentStatus()
{
// Check for tilt convergence - used during initial alignment
// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states
// and declare the tilt alignment complete
if (!tiltAlignComplete) {
Vector3f angleErrVarVec = calcRotVecVariances();
if ((angleErrVarVec.x + angleErrVarVec.y) < sq(0.05235f)) {
tiltAlignComplete = true;
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u tilt alignment complete\n",(unsigned)imu_index);
}
}
// submit yaw and magnetic field reset request
if (!yawAlignComplete && tiltAlignComplete && use_compass()) {
magYawResetRequest = true;
}
}
// return true if we should use the airspeed sensor
bool NavEKF3_core::useAirspeed(void) const
{
return _ahrs->airspeed_sensor_enabled();
}
// return true if we should use the range finder sensor
bool NavEKF3_core::useRngFinder(void) const
{
// TO-DO add code to set this based in setting of optical flow use parameter and presence of sensor
return true;
}
// return true if the filter is ready to start using optical flow measurements
bool NavEKF3_core::readyToUseOptFlow(void) const
{
// We need stable roll/pitch angles and gyro bias estimates but do not need the yaw angle aligned to use optical flow
return (imuSampleTime_ms - flowMeaTime_ms < 200) && tiltAlignComplete && delAngBiasLearned;
}
// return true if the filter is ready to start using body frame odometry measurements
bool NavEKF3_core::readyToUseBodyOdm(void) const
{
// We need stable roll/pitch angles and gyro bias estimates but do not need the yaw angle aligned to use these measurements
return (imuSampleTime_ms - bodyOdmMeasTime_ms < 200)
&& bodyOdmDataNew.velErr < 1.0f
&& tiltAlignComplete
&& delAngBiasLearned;
}
// return true if the filter to be ready to use gps
bool NavEKF3_core::readyToUseGPS(void) const
{
return validOrigin && tiltAlignComplete && yawAlignComplete && delAngBiasLearned && gpsGoodToAlign && (frontend->_fusionModeGPS != 3) && gpsDataToFuse && !gpsInhibit;
}
// return true if the filter to be ready to use the beacon range measurements
bool NavEKF3_core::readyToUseRangeBeacon(void) const
{
return tiltAlignComplete && yawAlignComplete && delAngBiasLearned && rngBcnGoodToAlign && rngBcnDataToFuse;
}
// return true if we should use the compass
bool NavEKF3_core::use_compass(void) const
{
return _ahrs->get_compass() && _ahrs->get_compass()->use_for_yaw(magSelectIndex) && !allMagSensorsFailed;
}
/*
should we assume zero sideslip?
*/
bool NavEKF3_core::assume_zero_sideslip(void) const
{
// we don't assume zero sideslip for ground vehicles as EKF could
// be quite sensitive to a rapid spin of the ground vehicle if
// traction is lost
return _ahrs->get_fly_forward() && _ahrs->get_vehicle_class() != AHRS_VEHICLE_GROUND;
}
// set the LLH location of the filters NED origin
bool NavEKF3_core::setOriginLLH(const Location &loc)
{
if (PV_AidingMode == AID_ABSOLUTE) {
return false;
}
EKF_origin = loc;
// define Earth rotation vector in the NED navigation frame at the origin
calcEarthRateNED(earthRateNED, _ahrs->get_home().lat);
validOrigin = true;
return true;
}
// Set the NED origin to be used until the next filter reset
void NavEKF3_core::setOrigin()
{
// assume origin at current GPS location (no averaging)
EKF_origin = _ahrs->get_gps().location();
// define Earth rotation vector in the NED navigation frame at the origin
calcEarthRateNED(earthRateNED, _ahrs->get_home().lat);
validOrigin = true;
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u Origin set to GPS",(unsigned)imu_index);
}
// record a yaw reset event
void NavEKF3_core::recordYawReset()
{
yawAlignComplete = true;
if (inFlight) {
finalInflightYawInit = true;
}
}
// set the class variable true if the delta angle bias variances are sufficiently small
void NavEKF3_core::checkGyroCalStatus(void)
{
// check delta angle bias variances
const float delAngBiasVarMax = sq(radians(0.15f * dtEkfAvg));
delAngBiasLearned = (P[10][10] <= delAngBiasVarMax) &&
(P[11][11] <= delAngBiasVarMax) &&
(P[12][12] <= delAngBiasVarMax);
}
// Commands the EKF to not use GPS.
// This command must be sent prior to vehicle arming and EKF commencement of GPS usage
// Returns 0 if command rejected
// Returns 1 if command accepted
uint8_t NavEKF3_core::setInhibitGPS(void)
{
if((PV_AidingMode == AID_ABSOLUTE) || motorsArmed) {
return 0;
} else {
gpsInhibit = true;
return 1;
}
}
// Update the filter status
void NavEKF3_core::updateFilterStatus(void)
{
// init return value
filterStatus.value = 0;
bool doingBodyVelNav = (PV_AidingMode != AID_NONE) && (imuSampleTime_ms - prevBodyVelFuseTime_ms < 5000);
bool doingFlowNav = (PV_AidingMode != AID_NONE) && flowDataValid;
bool doingWindRelNav = !tasTimeout && assume_zero_sideslip();
bool doingNormalGpsNav = !posTimeout && (PV_AidingMode == AID_ABSOLUTE);
bool someVertRefData = (!velTimeout && useGpsVertVel) || !hgtTimeout;
bool someHorizRefData = !(velTimeout && posTimeout && tasTimeout) || doingFlowNav || doingBodyVelNav;
bool filterHealthy = healthy() && tiltAlignComplete && (yawAlignComplete || (!use_compass() && (PV_AidingMode != AID_ABSOLUTE)));
// If GPS height usage is specified, height is considered to be inaccurate until the GPS passes all checks
bool hgtNotAccurate = (frontend->_altSource == 2) && !validOrigin;
// set individual flags
filterStatus.flags.attitude = !stateStruct.quat.is_nan() && filterHealthy; // attitude valid (we need a better check)
filterStatus.flags.horiz_vel = someHorizRefData && filterHealthy; // horizontal velocity estimate valid
filterStatus.flags.vert_vel = someVertRefData && filterHealthy; // vertical velocity estimate valid
filterStatus.flags.horiz_pos_rel = ((doingFlowNav && gndOffsetValid) || doingWindRelNav || doingNormalGpsNav || doingBodyVelNav) && filterHealthy; // relative horizontal position estimate valid
filterStatus.flags.horiz_pos_abs = doingNormalGpsNav && filterHealthy; // absolute horizontal position estimate valid
filterStatus.flags.vert_pos = !hgtTimeout && filterHealthy && !hgtNotAccurate; // vertical position estimate valid
filterStatus.flags.terrain_alt = gndOffsetValid && filterHealthy; // terrain height estimate valid
filterStatus.flags.const_pos_mode = (PV_AidingMode == AID_NONE) && filterHealthy; // constant position mode
filterStatus.flags.pred_horiz_pos_rel = filterStatus.flags.horiz_pos_rel; // EKF3 enters the required mode before flight
filterStatus.flags.pred_horiz_pos_abs = filterStatus.flags.horiz_pos_abs; // EKF3 enters the required mode before flight
filterStatus.flags.takeoff_detected = takeOffDetected; // takeoff for optical flow navigation has been detected
filterStatus.flags.takeoff = expectGndEffectTakeoff; // The EKF has been told to expect takeoff and is in a ground effect mitigation mode
filterStatus.flags.touchdown = expectGndEffectTouchdown; // The EKF has been told to detect touchdown and is in a ground effect mitigation mode
filterStatus.flags.using_gps = ((imuSampleTime_ms - lastPosPassTime_ms) < 4000) && (PV_AidingMode == AID_ABSOLUTE);
filterStatus.flags.gps_glitching = !gpsAccuracyGood && (PV_AidingMode == AID_ABSOLUTE); // The GPS is glitching
}
#endif // HAL_CPU_CLASS