ardupilot/ArduCopter/takeoff.cpp
2022-03-10 10:31:57 +11:00

230 lines
8.8 KiB
C++

#include "Copter.h"
Mode::_TakeOff Mode::takeoff;
bool Mode::auto_takeoff_no_nav_active = false;
float Mode::auto_takeoff_no_nav_alt_cm = 0;
float Mode::auto_take_off_start_alt_cm = 0;
float Mode::auto_take_off_complete_alt_cm = 0;
bool Mode::auto_takeoff_terrain_alt = false;
bool Mode::auto_takeoff_complete = false;
Vector3p Mode::auto_takeoff_complete_pos;
// This file contains the high-level takeoff logic for Loiter, PosHold, AltHold, Sport modes.
// The take-off can be initiated from a GCS NAV_TAKEOFF command which includes a takeoff altitude
// A safe takeoff speed is calculated and used to calculate a time_ms
// the pos_control target is then slowly increased until time_ms expires
bool Mode::do_user_takeoff_start(float takeoff_alt_cm)
{
copter.flightmode->takeoff.start(takeoff_alt_cm);
return true;
}
// initiate user takeoff - called when MAVLink TAKEOFF command is received
bool Mode::do_user_takeoff(float takeoff_alt_cm, bool must_navigate)
{
if (!copter.motors->armed()) {
return false;
}
if (!copter.ap.land_complete) {
// can't takeoff again!
return false;
}
if (!has_user_takeoff(must_navigate)) {
// this mode doesn't support user takeoff
return false;
}
if (takeoff_alt_cm <= copter.current_loc.alt) {
// can't takeoff downwards...
return false;
}
// Vehicles using motor interlock should return false if motor interlock is disabled.
// Interlock must be enabled to allow the controller to spool up the motor(s) for takeoff.
if (!motors->get_interlock() && copter.ap.using_interlock) {
return false;
}
if (!do_user_takeoff_start(takeoff_alt_cm)) {
return false;
}
copter.set_auto_armed(true);
return true;
}
// start takeoff to specified altitude above home in centimeters
void Mode::_TakeOff::start(float alt_cm)
{
// indicate we are taking off
copter.set_land_complete(false);
// tell position controller to reset alt target and reset I terms
copter.flightmode->set_throttle_takeoff();
// initialise takeoff state
_running = true;
take_off_start_alt = copter.pos_control->get_pos_target_z_cm();
take_off_complete_alt = take_off_start_alt + alt_cm;
}
// stop takeoff
void Mode::_TakeOff::stop()
{
_running = false;
}
// do_pilot_takeoff - controls the vertical position controller during the process of taking off
// take off is complete when the vertical target reaches the take off altitude.
// climb is cancelled if pilot_climb_rate_cm becomes negative
// sets take off to complete when target altitude is within 1% of the take off altitude
void Mode::_TakeOff::do_pilot_takeoff(float& pilot_climb_rate_cm)
{
// return pilot_climb_rate if take-off inactive
if (!_running) {
return;
}
float pos_z = take_off_complete_alt;
float vel_z = pilot_climb_rate_cm;
// command the aircraft to the take off altitude and current pilot climb rate
copter.pos_control->input_pos_vel_accel_z(pos_z, vel_z, 0);
// stop take off early and return if negative climb rate is commanded or we are within 0.1% of our take off altitude
if (is_negative(pilot_climb_rate_cm) ||
(take_off_complete_alt - take_off_start_alt) * 0.999f < copter.pos_control->get_pos_target_z_cm() - take_off_start_alt) {
stop();
}
}
// auto_takeoff_run - controls the vertical position controller during the process of taking off in auto modes
// auto_takeoff_complete set to true when target altitude is within 10% of the take off altitude and less than 50% max climb rate
void Mode::auto_takeoff_run()
{
// if not armed set throttle to zero and exit immediately
if (!motors->armed() || !copter.ap.auto_armed) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// get terrain offset
float terr_offset = 0.0f;
if (auto_takeoff_terrain_alt && !wp_nav->get_terrain_offset(terr_offset)) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "auto takeoff: failed to get terrain offset");
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio && copter.flightmode->use_pilot_yaw()) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz());
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
}
// aircraft stays in landed state until rotor speed run up has finished
if (motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) {
set_land_complete(false);
} else {
// motors have not completed spool up yet so relax navigation and position controllers
pos_control->relax_velocity_controller_xy();
pos_control->update_xy_controller();
pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero
pos_control->update_z_controller();
attitude_control->reset_yaw_target_and_rate();
attitude_control->reset_rate_controller_I_terms();
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds());
return;
}
// check if we are not navigating because of low altitude
if (auto_takeoff_no_nav_active) {
// check if vehicle has reached no_nav_alt threshold
if (inertial_nav.get_position_z_up_cm() >= auto_takeoff_no_nav_alt_cm) {
auto_takeoff_no_nav_active = false;
}
pos_control->relax_velocity_controller_xy();
} else {
Vector2f vel;
Vector2f accel;
pos_control->input_vel_accel_xy(vel, accel);
}
pos_control->update_xy_controller();
// command the aircraft to the take off altitude
float pos_z = auto_take_off_complete_alt_cm + terr_offset;
float vel_z = 0.0;
copter.pos_control->input_pos_vel_accel_z(pos_z, vel_z, 0.0);
// run the vertical position controller and set output throttle
pos_control->update_z_controller();
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from position controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), target_yaw_rate);
} else if (auto_yaw.mode() == AUTO_YAW_RATE) {
// roll & pitch from position controller, yaw rate from mavlink command or mission item
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds());
} else {
// roll & pitch from position controller, yaw heading from GCS or auto_heading()
attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.yaw(), auto_yaw.rate_cds());
}
// handle takeoff completion
bool reached_altitude = (copter.pos_control->get_pos_target_z_cm() - auto_take_off_start_alt_cm) >= ((auto_take_off_complete_alt_cm - auto_take_off_start_alt_cm) * 0.90);
bool reached_climb_rate = copter.pos_control->get_vel_desired_cms().z < copter.pos_control->get_max_speed_up_cms() * 0.1;
auto_takeoff_complete = reached_altitude && reached_climb_rate;
// calculate completion for location in case it is needed for a smooth transition to wp_nav
if (auto_takeoff_complete) {
const Vector3p& complete_pos = copter.pos_control->get_pos_target_cm();
auto_takeoff_complete_pos = Vector3p{complete_pos.x, complete_pos.y, pos_z};
}
}
void Mode::auto_takeoff_start(float complete_alt_cm, bool terrain_alt)
{
auto_take_off_start_alt_cm = inertial_nav.get_position_z_up_cm();
auto_take_off_complete_alt_cm = complete_alt_cm;
auto_takeoff_terrain_alt = terrain_alt;
auto_takeoff_complete = false;
if ((g2.wp_navalt_min > 0) && (is_disarmed_or_landed() || !motors->get_interlock())) {
// we are not flying, climb with no navigation to current alt-above-ekf-origin + wp_navalt_min
auto_takeoff_no_nav_alt_cm = auto_take_off_start_alt_cm + g2.wp_navalt_min * 100;
auto_takeoff_no_nav_active = true;
} else {
auto_takeoff_no_nav_active = false;
}
}
// return takeoff final position if takeoff has completed successfully
bool Mode::auto_takeoff_get_position(Vector3p& complete_pos)
{
// only provide location if takeoff has completed
if (!auto_takeoff_complete) {
return false;
}
complete_pos = auto_takeoff_complete_pos;
return true;
}
bool Mode::is_taking_off() const
{
if (!has_user_takeoff(false)) {
return false;
}
if (copter.ap.land_complete) {
return false;
}
return takeoff.running();
}