ardupilot/libraries/AP_DroneCAN/AP_Canard_iface.cpp

417 lines
14 KiB
C++

#include "AP_Canard_iface.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_CANManager/AP_CANManager.h>
#if HAL_ENABLE_DRONECAN_DRIVERS
#include <canard/handler_list.h>
#include <canard/transfer_object.h>
#include <AP_Math/AP_Math.h>
#include <dronecan_msgs.h>
extern const AP_HAL::HAL& hal;
#define LOG_TAG "DroneCANIface"
#include <canard.h>
#define DEBUG_PKTS 0
#define CANARD_MSG_TYPE_FROM_ID(x) ((uint16_t)(((x) >> 8U) & 0xFFFFU))
DEFINE_HANDLER_LIST_HEADS();
DEFINE_HANDLER_LIST_SEMAPHORES();
DEFINE_TRANSFER_OBJECT_HEADS();
DEFINE_TRANSFER_OBJECT_SEMAPHORES();
#if AP_TEST_DRONECAN_DRIVERS
CanardInterface* CanardInterface::canard_ifaces[] = {nullptr, nullptr, nullptr};
CanardInterface CanardInterface::test_iface{2};
uint8_t test_node_mem_area[1024];
HAL_Semaphore test_iface_sem;
#endif
void canard_allocate_sem_take(CanardPoolAllocator *allocator) {
if (allocator->semaphore == nullptr) {
allocator->semaphore = new HAL_Semaphore;
if (allocator->semaphore == nullptr) {
// out of memory
CANARD_ASSERT(0);
return;
}
}
((HAL_Semaphore*)allocator->semaphore)->take_blocking();
}
void canard_allocate_sem_give(CanardPoolAllocator *allocator) {
if (allocator->semaphore == nullptr) {
// it should have been allocated by canard_allocate_sem_take
CANARD_ASSERT(0);
return;
}
((HAL_Semaphore*)allocator->semaphore)->give();
}
CanardInterface::CanardInterface(uint8_t iface_index) :
Interface(iface_index) {
#if AP_TEST_DRONECAN_DRIVERS
if (iface_index < 3) {
canard_ifaces[iface_index] = this;
}
if (iface_index == 0) {
test_iface.init(test_node_mem_area, sizeof(test_node_mem_area), 125);
}
canardInitTxTransfer(&tx_transfer);
#endif
}
void CanardInterface::init(void* mem_arena, size_t mem_arena_size, uint8_t node_id) {
canardInit(&canard, mem_arena, mem_arena_size, onTransferReception, shouldAcceptTransfer, this);
canardSetLocalNodeID(&canard, node_id);
initialized = true;
}
bool CanardInterface::broadcast(const Canard::Transfer &bcast_transfer) {
if (!initialized) {
return false;
}
WITH_SEMAPHORE(_sem_tx);
#if AP_TEST_DRONECAN_DRIVERS
if (this == &test_iface) {
test_iface_sem.take_blocking();
}
#endif
tx_transfer = {
.transfer_type = bcast_transfer.transfer_type,
.data_type_signature = bcast_transfer.data_type_signature,
.data_type_id = bcast_transfer.data_type_id,
.inout_transfer_id = bcast_transfer.inout_transfer_id,
.priority = bcast_transfer.priority,
.payload = (const uint8_t*)bcast_transfer.payload,
.payload_len = uint16_t(bcast_transfer.payload_len),
#if CANARD_ENABLE_CANFD
.canfd = bcast_transfer.canfd,
#endif
.deadline_usec = AP_HAL::native_micros64() + (bcast_transfer.timeout_ms * 1000),
#if CANARD_MULTI_IFACE
.iface_mask = uint8_t((1<<num_ifaces) - 1),
#endif
};
// do canard broadcast
int16_t ret = canardBroadcastObj(&canard, &tx_transfer);
#if AP_TEST_DRONECAN_DRIVERS
if (this == &test_iface) {
test_iface_sem.give();
}
#endif
if (ret <= 0) {
protocol_stats.tx_errors++;
} else {
protocol_stats.tx_frames += ret;
}
return ret > 0;
}
bool CanardInterface::request(uint8_t destination_node_id, const Canard::Transfer &req_transfer) {
if (!initialized) {
return false;
}
WITH_SEMAPHORE(_sem_tx);
tx_transfer = {
.transfer_type = req_transfer.transfer_type,
.data_type_signature = req_transfer.data_type_signature,
.data_type_id = req_transfer.data_type_id,
.inout_transfer_id = req_transfer.inout_transfer_id,
.priority = req_transfer.priority,
.payload = (const uint8_t*)req_transfer.payload,
.payload_len = uint16_t(req_transfer.payload_len),
#if CANARD_ENABLE_CANFD
.canfd = req_transfer.canfd,
#endif
.deadline_usec = AP_HAL::native_micros64() + (req_transfer.timeout_ms * 1000),
#if CANARD_MULTI_IFACE
.iface_mask = uint8_t((1<<num_ifaces) - 1),
#endif
};
// do canard request
int16_t ret = canardRequestOrRespondObj(&canard, destination_node_id, &tx_transfer);
if (ret <= 0) {
protocol_stats.tx_errors++;
} else {
protocol_stats.tx_frames += ret;
}
return ret > 0;
}
bool CanardInterface::respond(uint8_t destination_node_id, const Canard::Transfer &res_transfer) {
if (!initialized) {
return false;
}
WITH_SEMAPHORE(_sem_tx);
tx_transfer = {
.transfer_type = res_transfer.transfer_type,
.data_type_signature = res_transfer.data_type_signature,
.data_type_id = res_transfer.data_type_id,
.inout_transfer_id = res_transfer.inout_transfer_id,
.priority = res_transfer.priority,
.payload = (const uint8_t*)res_transfer.payload,
.payload_len = uint16_t(res_transfer.payload_len),
#if CANARD_ENABLE_CANFD
.canfd = res_transfer.canfd,
#endif
.deadline_usec = AP_HAL::native_micros64() + (res_transfer.timeout_ms * 1000),
#if CANARD_MULTI_IFACE
.iface_mask = uint8_t((1<<num_ifaces) - 1),
#endif
};
// do canard respond
int16_t ret = canardRequestOrRespondObj(&canard, destination_node_id, &tx_transfer);
if (ret <= 0) {
protocol_stats.tx_errors++;
} else {
protocol_stats.tx_frames += ret;
}
return ret > 0;
}
void CanardInterface::onTransferReception(CanardInstance* ins, CanardRxTransfer* transfer) {
CanardInterface* iface = (CanardInterface*) ins->user_reference;
iface->handle_message(*transfer);
}
bool CanardInterface::shouldAcceptTransfer(const CanardInstance* ins,
uint64_t* out_data_type_signature,
uint16_t data_type_id,
CanardTransferType transfer_type,
uint8_t source_node_id) {
CanardInterface* iface = (CanardInterface*) ins->user_reference;
return iface->accept_message(data_type_id, *out_data_type_signature);
}
#if AP_TEST_DRONECAN_DRIVERS
void CanardInterface::processTestRx() {
if (!test_iface.initialized) {
return;
}
WITH_SEMAPHORE(test_iface_sem);
for (const CanardCANFrame* txf = canardPeekTxQueue(&test_iface.canard); txf != NULL; txf = canardPeekTxQueue(&test_iface.canard)) {
if (canard_ifaces[0]) {
canardHandleRxFrame(&canard_ifaces[0]->canard, txf, AP_HAL::native_micros64());
}
canardPopTxQueue(&test_iface.canard);
}
}
#endif
void CanardInterface::processTx(bool raw_commands_only = false) {
WITH_SEMAPHORE(_sem_tx);
for (uint8_t iface = 0; iface < num_ifaces; iface++) {
if (ifaces[iface] == NULL) {
continue;
}
auto txq = canard.tx_queue;
if (txq == nullptr) {
return;
}
// scan through list of pending transfers
while (true) {
auto txf = &txq->frame;
if (raw_commands_only &&
CANARD_MSG_TYPE_FROM_ID(txf->id) != UAVCAN_EQUIPMENT_ESC_RAWCOMMAND_ID &&
CANARD_MSG_TYPE_FROM_ID(txf->id) != COM_HOBBYWING_ESC_RAWCOMMAND_ID) {
// look at next transfer
txq = txq->next;
if (txq == nullptr) {
break;
}
continue;
}
AP_HAL::CANFrame txmsg {};
txmsg.dlc = AP_HAL::CANFrame::dataLengthToDlc(txf->data_len);
memcpy(txmsg.data, txf->data, txf->data_len);
txmsg.id = (txf->id | AP_HAL::CANFrame::FlagEFF);
#if HAL_CANFD_SUPPORTED
txmsg.canfd = txf->canfd;
#endif
bool write = true;
bool read = false;
ifaces[iface]->select(read, write, &txmsg, 0);
if (!write) {
// if there is no space then we need to start from the
// top of the queue, so wait for the next loop
break;
}
if ((txf->iface_mask & (1U<<iface)) && (AP_HAL::native_micros64() < txf->deadline_usec)) {
// try sending to interfaces, clearing the mask if we succeed
if (ifaces[iface]->send(txmsg, txf->deadline_usec, 0) > 0) {
txf->iface_mask &= ~(1U<<iface);
} else {
// if we fail to send then we try sending on next interface
break;
}
}
// look at next transfer
txq = txq->next;
if (txq == nullptr) {
break;
}
}
}
}
void CanardInterface::update_rx_protocol_stats(int16_t res)
{
switch (res) {
case CANARD_OK:
protocol_stats.rx_frames++;
break;
case -CANARD_ERROR_OUT_OF_MEMORY:
protocol_stats.rx_error_oom++;
break;
case -CANARD_ERROR_INTERNAL:
protocol_stats.rx_error_internal++;
break;
case -CANARD_ERROR_RX_INCOMPATIBLE_PACKET:
protocol_stats.rx_ignored_not_wanted++;
break;
case -CANARD_ERROR_RX_WRONG_ADDRESS:
protocol_stats.rx_ignored_wrong_address++;
break;
case -CANARD_ERROR_RX_NOT_WANTED:
protocol_stats.rx_ignored_not_wanted++;
break;
case -CANARD_ERROR_RX_MISSED_START:
protocol_stats.rx_error_missed_start++;
break;
case -CANARD_ERROR_RX_WRONG_TOGGLE:
protocol_stats.rx_error_wrong_toggle++;
break;
case -CANARD_ERROR_RX_UNEXPECTED_TID:
protocol_stats.rx_ignored_unexpected_tid++;
break;
case -CANARD_ERROR_RX_SHORT_FRAME:
protocol_stats.rx_error_short_frame++;
break;
case -CANARD_ERROR_RX_BAD_CRC:
protocol_stats.rx_error_bad_crc++;
break;
default:
// mark all other errors as internal
protocol_stats.rx_error_internal++;
break;
}
}
void CanardInterface::processRx() {
AP_HAL::CANFrame rxmsg;
for (uint8_t i=0; i<num_ifaces; i++) {
while(true) {
if (ifaces[i] == NULL) {
break;
}
bool read_select = true;
bool write_select = false;
ifaces[i]->select(read_select, write_select, nullptr, 0);
if (!read_select) { // No data pending
break;
}
CanardCANFrame rx_frame {};
//palToggleLine(HAL_GPIO_PIN_LED);
uint64_t timestamp;
AP_HAL::CANIface::CanIOFlags flags;
if (ifaces[i]->receive(rxmsg, timestamp, flags) <= 0) {
break;
}
rx_frame.data_len = AP_HAL::CANFrame::dlcToDataLength(rxmsg.dlc);
memcpy(rx_frame.data, rxmsg.data, rx_frame.data_len);
#if HAL_CANFD_SUPPORTED
rx_frame.canfd = rxmsg.canfd;
#endif
rx_frame.id = rxmsg.id;
#if CANARD_MULTI_IFACE
rx_frame.iface_id = i;
#endif
{
WITH_SEMAPHORE(_sem_rx);
const int16_t res = canardHandleRxFrame(&canard, &rx_frame, timestamp);
if (res == -CANARD_ERROR_RX_MISSED_START) {
// this might remaining frames from a message that we don't accept, so check
uint64_t dummy_signature;
if (shouldAcceptTransfer(&canard,
&dummy_signature,
extractDataType(rx_frame.id),
extractTransferType(rx_frame.id),
1)) { // doesn't matter what we pass here
update_rx_protocol_stats(res);
} else {
protocol_stats.rx_ignored_not_wanted++;
}
} else {
update_rx_protocol_stats(res);
}
}
}
}
}
void CanardInterface::process(uint32_t duration_ms) {
#if AP_TEST_DRONECAN_DRIVERS
const uint64_t deadline = AP_HAL::micros64() + duration_ms*1000;
while (AP_HAL::micros64() < deadline) {
processTestRx();
hal.scheduler->delay_microseconds(1000);
}
#else
const uint64_t deadline = AP_HAL::native_micros64() + duration_ms*1000;
while (true) {
processRx();
processTx();
{
WITH_SEMAPHORE(_sem_rx);
WITH_SEMAPHORE(_sem_tx);
canardCleanupStaleTransfers(&canard, AP_HAL::native_micros64());
}
uint64_t now = AP_HAL::native_micros64();
if (now < deadline) {
_event_handle.wait(MIN(UINT16_MAX - 2U, deadline - now));
hal.scheduler->delay_microseconds(50);
} else {
break;
}
}
#endif
}
bool CanardInterface::add_interface(AP_HAL::CANIface *can_iface)
{
if (num_ifaces > HAL_NUM_CAN_IFACES) {
AP::can().log_text(AP_CANManager::LOG_ERROR, LOG_TAG, "DroneCANIfaceMgr: Num Ifaces Exceeded\n");
return false;
}
if (can_iface == nullptr) {
AP::can().log_text(AP_CANManager::LOG_ERROR, LOG_TAG, "DroneCANIfaceMgr: Iface Null\n");
return false;
}
if (ifaces[num_ifaces] != nullptr) {
AP::can().log_text(AP_CANManager::LOG_ERROR, LOG_TAG, "DroneCANIfaceMgr: Iface already added\n");
return false;
}
ifaces[num_ifaces] = can_iface;
if (ifaces[num_ifaces] == nullptr) {
AP::can().log_text(AP_CANManager::LOG_ERROR, LOG_TAG, "DroneCANIfaceMgr: Can't alloc uavcan::iface\n");
return false;
}
if (!can_iface->set_event_handle(&_event_handle)) {
AP::can().log_text(AP_CANManager::LOG_ERROR, LOG_TAG, "DroneCANIfaceMgr: Setting event handle failed\n");
return false;
}
AP::can().log_text(AP_CANManager::LOG_INFO, LOG_TAG, "DroneCANIfaceMgr: Successfully added interface %d\n", int(num_ifaces));
num_ifaces++;
return true;
}
#endif // #if HAL_ENABLE_DRONECAN_DRIVERS