mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 10:08:28 -04:00
a47e215a8e
This allow support for upward facing proximity sensor received through a DISTANCE_SENSOR message. Also added SITL test
141 lines
4.5 KiB
C++
141 lines
4.5 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
#include <AP_Param/AP_Param.h>
|
|
#include "AP_Proximity_SITL.h"
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define PROXIMITY_MAX_RANGE 200.0f
|
|
#define PROXIMITY_ACCURACY 0.1f
|
|
|
|
/*
|
|
The constructor also initialises the proximity sensor.
|
|
*/
|
|
AP_Proximity_SITL::AP_Proximity_SITL(AP_Proximity &_frontend,
|
|
AP_Proximity::Proximity_State &_state):
|
|
AP_Proximity_Backend(_frontend, _state)
|
|
{
|
|
sitl = (SITL::SITL *)AP_Param::find_object("SIM_");
|
|
ap_var_type ptype;
|
|
fence_count = (AP_Int8 *)AP_Param::find("FENCE_TOTAL", &ptype);
|
|
if (fence_count == nullptr || ptype != AP_PARAM_INT8) {
|
|
AP_HAL::panic("Proximity_SITL: Failed to find FENCE_TOTAL");
|
|
}
|
|
fence_alt_max = (AP_Float *)AP_Param::find("FENCE_ALT_MAX", &ptype);
|
|
if (fence_alt_max == nullptr || ptype != AP_PARAM_FLOAT) {
|
|
AP_HAL::panic("Proximity_SITL: Failed to find FENCE_ALT_MAX");
|
|
}
|
|
}
|
|
|
|
// update the state of the sensor
|
|
void AP_Proximity_SITL::update(void)
|
|
{
|
|
load_fence();
|
|
current_loc.lat = sitl->state.latitude * 1.0e7;
|
|
current_loc.lng = sitl->state.longitude * 1.0e7;
|
|
current_loc.alt = sitl->state.altitude * 1.0e2;
|
|
if (fence && fence_loader.boundary_valid(fence_count->get(), fence, true)) {
|
|
// update distance in one sector
|
|
if (get_distance_to_fence(_sector_middle_deg[last_sector], _distance[last_sector])) {
|
|
set_status(AP_Proximity::Proximity_Good);
|
|
_distance_valid[last_sector] = true;
|
|
_angle[last_sector] = _sector_middle_deg[last_sector];
|
|
update_boundary_for_sector(last_sector);
|
|
} else {
|
|
_distance_valid[last_sector] = false;
|
|
}
|
|
last_sector++;
|
|
if (last_sector >= _num_sectors) {
|
|
last_sector = 0;
|
|
}
|
|
} else {
|
|
set_status(AP_Proximity::Proximity_NoData);
|
|
}
|
|
}
|
|
|
|
void AP_Proximity_SITL::load_fence(void)
|
|
{
|
|
uint32_t now = AP_HAL::millis();
|
|
if (now - last_load_ms < 1000) {
|
|
return;
|
|
}
|
|
last_load_ms = now;
|
|
|
|
if (fence == nullptr) {
|
|
fence = (Vector2l *)fence_loader.create_point_array(sizeof(Vector2l));
|
|
}
|
|
if (fence == nullptr) {
|
|
return;
|
|
}
|
|
for (uint8_t i=0; i<fence_count->get(); i++) {
|
|
fence_loader.load_point_from_eeprom(i, fence[i]);
|
|
}
|
|
}
|
|
|
|
// get distance in meters to fence in a particular direction in degrees (0 is forward, angles increase in the clockwise direction)
|
|
bool AP_Proximity_SITL::get_distance_to_fence(float angle_deg, float &distance) const
|
|
{
|
|
if (!fence_loader.boundary_valid(fence_count->get(), fence, true)) {
|
|
return false;
|
|
}
|
|
|
|
// convert to earth frame
|
|
angle_deg = wrap_360(sitl->state.yawDeg + angle_deg);
|
|
|
|
/*
|
|
simple bisection search to find distance. Not really efficient,
|
|
but we can afford the CPU in SITL
|
|
*/
|
|
float min_dist = 0, max_dist = PROXIMITY_MAX_RANGE;
|
|
while (max_dist - min_dist > PROXIMITY_ACCURACY) {
|
|
float test_dist = (max_dist+min_dist)*0.5f;
|
|
Location loc = current_loc;
|
|
location_update(loc, angle_deg, test_dist);
|
|
Vector2l vecloc(loc.lat, loc.lng);
|
|
if (fence_loader.boundary_breached(vecloc, fence_count->get(), fence, true)) {
|
|
max_dist = test_dist;
|
|
} else {
|
|
min_dist = test_dist;
|
|
}
|
|
}
|
|
distance = min_dist;
|
|
return true;
|
|
}
|
|
|
|
// get maximum and minimum distances (in meters) of primary sensor
|
|
float AP_Proximity_SITL::distance_max() const
|
|
{
|
|
return PROXIMITY_MAX_RANGE;
|
|
}
|
|
float AP_Proximity_SITL::distance_min() const
|
|
{
|
|
return 0.0f;
|
|
}
|
|
|
|
// get distance upwards in meters. returns true on success
|
|
bool AP_Proximity_SITL::get_upward_distance(float &distance) const
|
|
{
|
|
// return distance to fence altitude
|
|
distance = MAX(0.0f, fence_alt_max->get() - sitl->height_agl);
|
|
return true;
|
|
}
|
|
|
|
#endif // CONFIG_HAL_BOARD
|