mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-15 21:28:39 -04:00
390 lines
11 KiB
Plaintext
390 lines
11 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*****************************************************************************
|
|
* The init_ardupilot function processes everything we need for an in - air restart
|
|
* We will determine later if we are actually on the ground and process a
|
|
* ground start in that case.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
// Functions called from the top-level menu
|
|
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
|
|
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
|
|
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
|
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv);
|
|
|
|
// This is the help function
|
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->printf_P(PSTR("Commands:\n"
|
|
" logs\n"
|
|
" setup\n"
|
|
" test\n"
|
|
" reboot\n"
|
|
"\n"));
|
|
return(0);
|
|
}
|
|
|
|
// Command/function table for the top-level menu.
|
|
const struct Menu::command main_menu_commands[] PROGMEM = {
|
|
// command function called
|
|
// ======= ===============
|
|
{"logs", process_logs},
|
|
{"setup", setup_mode},
|
|
{"test", test_mode},
|
|
{"reboot", reboot_board},
|
|
{"help", main_menu_help},
|
|
};
|
|
|
|
// Create the top-level menu object.
|
|
MENU(main_menu, THISFIRMWARE, main_menu_commands);
|
|
|
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
hal.scheduler->reboot(false);
|
|
return 0;
|
|
}
|
|
|
|
// the user wants the CLI. It never exits
|
|
static void run_cli(AP_HAL::UARTDriver *port)
|
|
{
|
|
cliSerial = port;
|
|
Menu::set_port(port);
|
|
port->set_blocking_writes(true);
|
|
|
|
// disable the mavlink delay callback
|
|
hal.scheduler->register_delay_callback(NULL, 5);
|
|
|
|
// disable main_loop failsafe
|
|
failsafe_disable();
|
|
|
|
// cut the engines
|
|
if(motors.armed()) {
|
|
motors.armed(false);
|
|
motors.output();
|
|
}
|
|
|
|
while (1) {
|
|
main_menu.run();
|
|
}
|
|
}
|
|
|
|
#endif // CLI_ENABLED
|
|
|
|
static void init_ardupilot()
|
|
{
|
|
if (!hal.gpio->usb_connected()) {
|
|
// USB is not connected, this means UART0 may be a Xbee, with
|
|
// its darned bricking problem. We can't write to it for at
|
|
// least one second after powering up. Simplest solution for
|
|
// now is to delay for 1 second. Something more elegant may be
|
|
// added later
|
|
delay(1000);
|
|
}
|
|
|
|
// Console serial port
|
|
//
|
|
// The console port buffers are defined to be sufficiently large to support
|
|
// the MAVLink protocol efficiently
|
|
//
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
// we need more memory for HIL, as we get a much higher packet rate
|
|
hal.uartA->begin(map_baudrate(g.serial0_baud), 256, 256);
|
|
#else
|
|
// use a bit less for non-HIL operation
|
|
hal.uartA->begin(map_baudrate(g.serial0_baud), 512, 128);
|
|
#endif
|
|
|
|
// GPS serial port.
|
|
//
|
|
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU
|
|
// standard gps running. Note that we need a 256 byte buffer for some
|
|
// GPS types (eg. UBLOX)
|
|
hal.uartB->begin(38400, 256, 16);
|
|
#endif
|
|
|
|
#if GPS2_ENABLE
|
|
if (hal.uartE != NULL) {
|
|
hal.uartE->begin(38400, 256, 16);
|
|
}
|
|
#endif
|
|
|
|
cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING
|
|
"\n\nFree RAM: %u\n"),
|
|
hal.util->available_memory());
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
/*
|
|
run the timer a bit slower on APM2 to reduce the interrupt load
|
|
on the CPU
|
|
*/
|
|
hal.scheduler->set_timer_speed(500);
|
|
#endif
|
|
|
|
//
|
|
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
|
|
//
|
|
report_version();
|
|
|
|
// load parameters from EEPROM
|
|
load_parameters();
|
|
|
|
BoardConfig.init();
|
|
|
|
// FIX: this needs to be the inverse motors mask
|
|
ServoRelayEvents.set_channel_mask(0xFFF0);
|
|
|
|
relay.init();
|
|
|
|
bool enable_external_leds = true;
|
|
|
|
// init EPM cargo gripper
|
|
#if EPM_ENABLED == ENABLED
|
|
epm.init();
|
|
enable_external_leds = !epm.enabled();
|
|
#endif
|
|
|
|
// initialise notify system
|
|
// disable external leds if epm is enabled because of pin conflict on the APM
|
|
notify.init(enable_external_leds);
|
|
|
|
// initialise battery monitor
|
|
battery.init();
|
|
|
|
#if CONFIG_SONAR == ENABLED
|
|
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
|
|
sonar_analog_source = new AP_ADC_AnalogSource(
|
|
&adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25);
|
|
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN
|
|
sonar_analog_source = hal.analogin->channel(
|
|
CONFIG_SONAR_SOURCE_ANALOG_PIN);
|
|
#else
|
|
#warning "Invalid CONFIG_SONAR_SOURCE"
|
|
#endif
|
|
sonar = new AP_RangeFinder_MaxsonarXL(sonar_analog_source,
|
|
&sonar_mode_filter);
|
|
#endif
|
|
|
|
rssi_analog_source = hal.analogin->channel(g.rssi_pin);
|
|
|
|
barometer.init();
|
|
|
|
// init the GCS
|
|
gcs[0].init(hal.uartA);
|
|
|
|
// Register the mavlink service callback. This will run
|
|
// anytime there are more than 5ms remaining in a call to
|
|
// hal.scheduler->delay.
|
|
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
|
|
|
|
// we start by assuming USB connected, as we initialed the serial
|
|
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
|
|
ap.usb_connected = true;
|
|
check_usb_mux();
|
|
|
|
#if CONFIG_HAL_BOARD != HAL_BOARD_APM2
|
|
// we have a 2nd serial port for telemetry on all boards except
|
|
// APM2. We actually do have one on APM2 but it isn't necessary as
|
|
// a MUX is used
|
|
gcs[1].setup_uart(hal.uartC, map_baudrate(g.serial1_baud), 128, 128);
|
|
#endif
|
|
#if MAVLINK_COMM_NUM_BUFFERS > 2
|
|
gcs[2].setup_uart(hal.uartD, map_baudrate(g.serial2_baud), 128, 128);
|
|
#endif
|
|
|
|
// identify ourselves correctly with the ground station
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
mavlink_system.type = 2; //MAV_QUADROTOR;
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
DataFlash.Init(log_structure, sizeof(log_structure)/sizeof(log_structure[0]));
|
|
if (!DataFlash.CardInserted()) {
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash inserted"));
|
|
g.log_bitmask.set(0);
|
|
} else if (DataFlash.NeedErase()) {
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS"));
|
|
do_erase_logs();
|
|
gcs[0].reset_cli_timeout();
|
|
}
|
|
#endif
|
|
|
|
init_rc_in(); // sets up rc channels from radio
|
|
init_rc_out(); // sets up motors and output to escs
|
|
|
|
/*
|
|
* setup the 'main loop is dead' check. Note that this relies on
|
|
* the RC library being initialised.
|
|
*/
|
|
hal.scheduler->register_timer_failsafe(failsafe_check, 1000);
|
|
|
|
#if CONFIG_ADC == ENABLED
|
|
// begin filtering the ADC Gyros
|
|
adc.Init(); // APM ADC library initialization
|
|
#endif // CONFIG_ADC
|
|
|
|
// Do GPS init
|
|
gps.init(&DataFlash);
|
|
|
|
if(g.compass_enabled)
|
|
init_compass();
|
|
|
|
// initialise attitude and position controllers
|
|
attitude_control.set_dt(MAIN_LOOP_SECONDS);
|
|
pos_control.set_dt(MAIN_LOOP_SECONDS);
|
|
|
|
// init the optical flow sensor
|
|
if(g.optflow_enabled) {
|
|
init_optflow();
|
|
}
|
|
|
|
// initialise inertial nav
|
|
inertial_nav.init();
|
|
|
|
#ifdef USERHOOK_INIT
|
|
USERHOOK_INIT
|
|
#endif
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
|
|
cliSerial->println_P(msg);
|
|
if (gcs[1].initialised) {
|
|
hal.uartC->println_P(msg);
|
|
}
|
|
if (num_gcs > 2 && gcs[2].initialised) {
|
|
hal.uartD->println_P(msg);
|
|
}
|
|
#endif // CLI_ENABLED
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
while (!barometer.healthy) {
|
|
// the barometer becomes healthy when we get the first
|
|
// HIL_STATE message
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message"));
|
|
delay(1000);
|
|
}
|
|
#endif
|
|
|
|
// read Baro pressure at ground
|
|
//-----------------------------
|
|
init_barometer(true);
|
|
|
|
// initialise sonar
|
|
#if CONFIG_SONAR == ENABLED
|
|
init_sonar();
|
|
#endif
|
|
|
|
// initialise mission library
|
|
mission.init();
|
|
|
|
// initialise the flight mode and aux switch
|
|
// ---------------------------
|
|
reset_control_switch();
|
|
init_aux_switches();
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
// trad heli specific initialisation
|
|
heli_init();
|
|
#endif
|
|
|
|
startup_ground(true);
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
Log_Write_Startup();
|
|
#endif
|
|
|
|
cliSerial->print_P(PSTR("\nReady to FLY "));
|
|
}
|
|
|
|
|
|
//******************************************************************************
|
|
//This function does all the calibrations, etc. that we need during a ground start
|
|
//******************************************************************************
|
|
static void startup_ground(bool force_gyro_cal)
|
|
{
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("GROUND START"));
|
|
|
|
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
|
|
ahrs.init();
|
|
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER);
|
|
|
|
// Warm up and read Gyro offsets
|
|
// -----------------------------
|
|
ins.init(force_gyro_cal?AP_InertialSensor::COLD_START:AP_InertialSensor::WARM_START,
|
|
ins_sample_rate);
|
|
#if CLI_ENABLED == ENABLED
|
|
report_ins();
|
|
#endif
|
|
|
|
// setup fast AHRS gains to get right attitude
|
|
ahrs.set_fast_gains(true);
|
|
|
|
// set landed flag
|
|
set_land_complete(true);
|
|
}
|
|
|
|
// returns true if the GPS is ok and home position is set
|
|
static bool GPS_ok()
|
|
{
|
|
if (ap.home_is_set && gps.status() >= AP_GPS::GPS_OK_FIX_3D &&
|
|
!gps_glitch.glitching() && !failsafe.gps) {
|
|
return true;
|
|
}else{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// update_auto_armed - update status of auto_armed flag
|
|
static void update_auto_armed()
|
|
{
|
|
// disarm checks
|
|
if(ap.auto_armed){
|
|
// if motors are disarmed, auto_armed should also be false
|
|
if(!motors.armed()) {
|
|
set_auto_armed(false);
|
|
return;
|
|
}
|
|
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
|
|
if(manual_flight_mode(control_mode) && g.rc_3.control_in == 0 && !failsafe.radio) {
|
|
set_auto_armed(false);
|
|
}
|
|
}else{
|
|
// arm checks
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
// for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true
|
|
if(motors.armed() && g.rc_3.control_in != 0 && motors.motor_runup_complete()) {
|
|
set_auto_armed(true);
|
|
}
|
|
#else
|
|
// if motors are armed and throttle is above zero auto_armed should be true
|
|
if(motors.armed() && g.rc_3.control_in != 0) {
|
|
set_auto_armed(true);
|
|
}
|
|
#endif // HELI_FRAME
|
|
}
|
|
}
|
|
|
|
static void check_usb_mux(void)
|
|
{
|
|
bool usb_check = hal.gpio->usb_connected();
|
|
if (usb_check == ap.usb_connected) {
|
|
return;
|
|
}
|
|
|
|
// the user has switched to/from the telemetry port
|
|
ap.usb_connected = usb_check;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
// the APM2 has a MUX setup where the first serial port switches
|
|
// between USB and a TTL serial connection. When on USB we use
|
|
// SERIAL0_BAUD, but when connected as a TTL serial port we run it
|
|
// at SERIAL1_BAUD.
|
|
if (ap.usb_connected) {
|
|
hal.uartA->begin(map_baudrate(g.serial0_baud));
|
|
} else {
|
|
hal.uartA->begin(map_baudrate(g.serial1_baud));
|
|
}
|
|
#endif
|
|
}
|
|
|