ardupilot/AntennaTracker/GCS_Mavlink.pde
Randy Mackay 3e62b188a1 Tracker: process mavlink msgs from vehicle once
previously heartbeat messages from the vehicle could be processed twice.
Once at the top of hte handleMessage function where they were forwarded
onto the GCS and then again lower down in the function where all
received heartbeats were sent to the vehicle.
2014-10-01 15:54:21 +09:00

992 lines
31 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS)
// use this to prevent recursion during sensor init
static bool in_mavlink_delay;
// check if a message will fit in the payload space available
#define CHECK_PAYLOAD_SIZE(id) if (txspace < MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_ ## id ## _LEN) return false
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
static NOINLINE void send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = MAV_STATE_ACTIVE;
uint32_t custom_mode = control_mode;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (control_mode) {
case MANUAL:
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case STOP:
break;
case SCAN:
case AUTO:
base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED |
MAV_MODE_FLAG_STABILIZE_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case INITIALISING:
system_status = MAV_STATE_CALIBRATING;
break;
}
mavlink_msg_heartbeat_send(
chan,
MAV_TYPE_ANTENNA_TRACKER,
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode,
custom_mode,
system_status);
}
static NOINLINE void send_attitude(mavlink_channel_t chan)
{
Vector3f omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
hal.scheduler->millis(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
static void NOINLINE send_location(mavlink_channel_t chan)
{
uint32_t fix_time;
if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) {
fix_time = gps.last_fix_time_ms();
} else {
fix_time = hal.scheduler->millis();
}
const Vector3f &vel = gps.velocity();
mavlink_msg_global_position_int_send(
chan,
fix_time,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
current_loc.alt * 10, // millimeters above sea level
0,
vel.x * 100, // X speed cm/s (+ve North)
vel.y * 100, // Y speed cm/s (+ve East)
vel.z * -100, // Z speed cm/s (+ve up)
ahrs.yaw_sensor);
}
static void NOINLINE send_radio_out(mavlink_channel_t chan)
{
mavlink_msg_servo_output_raw_send(
chan,
hal.scheduler->micros(),
0, // port
hal.rcout->read(0),
hal.rcout->read(1),
hal.rcout->read(2),
hal.rcout->read(3),
hal.rcout->read(4),
hal.rcout->read(5),
hal.rcout->read(6),
hal.rcout->read(7));
}
static void NOINLINE send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
0,
hal.i2c->lockup_count());
}
static void NOINLINE send_waypoint_request(mavlink_channel_t chan)
{
gcs[chan-MAVLINK_COMM_0].queued_waypoint_send();
}
static void NOINLINE send_statustext(mavlink_channel_t chan)
{
mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status;
mavlink_msg_statustext_send(
chan,
s->severity,
s->text);
}
static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
0,
nav_status.pitch,
nav_status.bearing,
nav_status.bearing,
nav_status.distance,
nav_status.altitude_difference,
0,
0);
}
// report simulator state
static void NOINLINE send_simstate(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
sitl.simstate_send(chan);
#endif
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK::try_send_message(enum ap_message id)
{
uint16_t txspace = comm_get_txspace(chan);
switch (id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
send_heartbeat(chan);
return true;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_location(chan);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output(chan);
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
gcs[chan-MAVLINK_COMM_0].send_gps_raw(gps);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_radio_out(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
gcs[chan-MAVLINK_COMM_0].send_raw_imu(ins, compass);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
gcs[chan-MAVLINK_COMM_0].send_scaled_pressure(barometer);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
gcs[chan-MAVLINK_COMM_0].send_sensor_offsets(ins, compass, barometer);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
gcs[chan-MAVLINK_COMM_0].queued_param_send();
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
send_waypoint_request(chan);
break;
case MSG_STATUSTEXT:
CHECK_PAYLOAD_SIZE(STATUSTEXT);
send_statustext(chan);
break;
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
gcs[chan-MAVLINK_COMM_0].send_ahrs(ahrs);
break;
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate(chan);
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus(chan);
break;
case MSG_SERVO_OUT:
case MSG_EXTENDED_STATUS1:
case MSG_EXTENDED_STATUS2:
case MSG_RETRY_DEFERRED:
case MSG_CURRENT_WAYPOINT:
case MSG_VFR_HUD:
case MSG_RADIO_IN:
case MSG_SYSTEM_TIME:
case MSG_LIMITS_STATUS:
case MSG_FENCE_STATUS:
case MSG_WIND:
case MSG_RANGEFINDER:
break; // just here to prevent a warning
}
return true;
}
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Raw sensor stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Extended status stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: RC Channel stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Raw Control stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Position stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Extra data type 1 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Extra data type 2 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Extra data type 3 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Parameter stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10),
AP_GROUPEND
};
// see if we should send a stream now. Called at 50Hz
bool GCS_MAVLINK::stream_trigger(enum streams stream_num)
{
if (stream_num >= NUM_STREAMS) {
return false;
}
float rate = (uint8_t)streamRates[stream_num].get();
// send at a much lower rate during parameter sends
if (_queued_parameter != NULL) {
rate *= 0.25;
}
if (rate <= 0) {
return false;
}
if (stream_ticks[stream_num] == 0) {
// we're triggering now, setup the next trigger point
if (rate > 50) {
rate = 50;
}
stream_ticks[stream_num] = (50 / rate) + stream_slowdown;
return true;
}
// count down at 50Hz
stream_ticks[stream_num]--;
return false;
}
void
GCS_MAVLINK::data_stream_send(void)
{
if (_queued_parameter != NULL) {
if (streamRates[STREAM_PARAMS].get() <= 0) {
streamRates[STREAM_PARAMS].set(10);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
}
if (in_mavlink_delay) {
// don't send any other stream types while in the delay callback
return;
}
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
}
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_GPS_RAW);
}
if (stream_trigger(STREAM_POSITION)) {
send_message(MSG_LOCATION);
}
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
}
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
}
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_SIMSTATE);
}
}
void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
if (g.proxy_mode == true && chan == proxy_vehicle.chan) {
// From the remote vehicle.
// All messages from the remote are proxied to GCS
// We also eavesdrop on MAVLINK_MSG_ID_GLOBAL_POSITION_INT and MAVLINK_MSG_ID_SCALED_PRESSUREs
switch (msg->msgid)
{
case MAVLINK_MSG_ID_GLOBAL_POSITION_INT:
{
// decode
mavlink_global_position_int_t packet;
mavlink_msg_global_position_int_decode(msg, &packet);
tracking_update_position(packet);
break;
}
case MAVLINK_MSG_ID_SCALED_PRESSURE:
{
// decode
mavlink_scaled_pressure_t packet;
mavlink_msg_scaled_pressure_decode(msg, &packet);
tracking_update_pressure(packet);
break;
}
}
// Proxy to all the GCS stations
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
mavlink_channel_t out_chan = (mavlink_channel_t)i;
// only forward if it would fit in the transmit buffer
if (comm_get_txspace(out_chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES) {
_mavlink_resend_uart(out_chan, msg);
}
}
}
// no further processing of messages from vehicle
return;
}
switch (msg->msgid) {
// If we are currently operating as a proxy for a remote,
// alas we have to look inside each packet to see if its for us or for the remote
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
{
if (g.proxy_mode == true && proxy_vehicle.initialised)
{
// See if its for the remote
mavlink_request_data_stream_t packet;
mavlink_msg_request_data_stream_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
{
// Not for us, must be for the remote
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
break;
}
// Else its for us, the tracker
}
handle_request_data_stream(msg, true);
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
{
if (g.proxy_mode == true && proxy_vehicle.initialised)
{
// See if its for the remote
mavlink_param_request_list_t packet;
mavlink_msg_param_request_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
{
// Not for us, must be for the remote
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
break;
}
// Else its for us, the tracker
}
handle_param_request_list(msg);
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
{
if (g.proxy_mode == true && proxy_vehicle.initialised)
{
// See if its for the remote
mavlink_param_request_read_t packet;
mavlink_msg_param_request_read_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
{
// Not for us, must be for the remote
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
break;
}
// Else its for us, the tracker
}
handle_param_request_read(msg);
break;
}
case MAVLINK_MSG_ID_PARAM_SET:
{
if (g.proxy_mode == true && proxy_vehicle.initialised)
{
// See if its for the remote
mavlink_param_set_t packet;
mavlink_msg_param_set_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
{
// Not for us, must be for the remote
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
break;
}
// Else its for us, the tracker
}
handle_param_set(msg, NULL);
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
{
// Heartbeats are always proxied to the remote and also handled locally
if (g.proxy_mode == true && proxy_vehicle.initialised)
{
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
}
if (msg->sysid != g.sysid_my_gcs) break;
break;
}
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// Its for the remote, proxy it
if (g.proxy_mode == true && proxy_vehicle.initialised) {
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
}
break;
}
uint8_t result = MAV_RESULT_UNSUPPORTED;
// do command
send_text_P(SEVERITY_LOW,PSTR("command received: "));
switch(packet.command) {
case MAV_CMD_PREFLIGHT_CALIBRATION:
{
if (packet.param1 == 1 ||
packet.param2 == 1) {
calibrate_ins();
} else if (packet.param3 == 1) {
init_barometer();
// zero the altitude difference on next baro update
nav_status.need_altitude_calibration = true;
}
if (packet.param4 == 1) {
// Cant trim radio
}
#if !defined( __AVR_ATmega1280__ )
if (packet.param5 == 1) {
float trim_roll, trim_pitch;
AP_InertialSensor_UserInteract_MAVLink interact(chan);
if(ins.calibrate_accel(&interact, trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
}
}
#endif
result = MAV_RESULT_ACCEPTED;
break;
}
case MAV_CMD_COMPONENT_ARM_DISARM:
if (packet.target_component == MAV_COMP_ID_SYSTEM_CONTROL) {
if (packet.param1 == 1.0f) {
arm_servos();
result = MAV_RESULT_ACCEPTED;
} else if (packet.param1 == 0.0f) {
disarm_servos();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_UNSUPPORTED;
}
} else {
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_SET_MODE:
switch ((uint16_t)packet.param1) {
case MAV_MODE_MANUAL_ARMED:
case MAV_MODE_MANUAL_DISARMED:
set_mode(MANUAL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_AUTO_ARMED:
case MAV_MODE_AUTO_DISARMED:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
}
break;
// mavproxy/mavutil sends this when auto command is entered
case MAV_CMD_MISSION_START:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
{
if (packet.param1 == 1 || packet.param1 == 3) {
// when packet.param1 == 3 we reboot to hold in bootloader
hal.scheduler->reboot(packet.param1 == 3);
result = MAV_RESULT_ACCEPTED;
}
break;
}
default:
break;
}
mavlink_msg_command_ack_send(
chan,
packet.command,
result);
break;
}
// When mavproxy 'wp sethome'
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
{
// decode
mavlink_mission_write_partial_list_t packet;
mavlink_msg_mission_write_partial_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) {
if (g.proxy_mode == true && proxy_vehicle.initialised) {
// Its for the remote, proxy it
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
}
break;
}
if (packet.start_index == 0)
{
// New home at wp index 0. Ask for it
waypoint_receiving = true;
waypoint_request_i = 0;
waypoint_request_last = 0;
send_message(MSG_NEXT_WAYPOINT);
waypoint_receiving = true;
}
break;
}
// XXX receive a WP from GCS and store in EEPROM if it is HOME
case MAVLINK_MSG_ID_MISSION_ITEM:
{
// decode
mavlink_mission_item_t packet;
uint8_t result = MAV_MISSION_ACCEPTED;
mavlink_msg_mission_item_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) {
if (g.proxy_mode == true && proxy_vehicle.initialised) {
// Its for the remote, proxy it
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
}
break;
}
struct Location tell_command = {};
switch (packet.frame)
{
case MAV_FRAME_MISSION:
case MAV_FRAME_GLOBAL:
{
tell_command.lat = 1.0e7f*packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7f*packet.y; // in as DD converted to * t7
tell_command.alt = packet.z*1.0e2f; // in as m converted to cm
tell_command.options = 0; // absolute altitude
break;
}
#ifdef MAV_FRAME_LOCAL_NED
case MAV_FRAME_LOCAL_NED: // local (relative to home position)
{
tell_command.lat = 1.0e7f*ToDeg(packet.x/
(RADIUS_OF_EARTH*cosf(ToRad(home.lat/1.0e7f)))) + home.lat;
tell_command.lng = 1.0e7f*ToDeg(packet.y/RADIUS_OF_EARTH) + home.lng;
tell_command.alt = -packet.z*1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
break;
}
#endif
#ifdef MAV_FRAME_LOCAL
case MAV_FRAME_LOCAL: // local (relative to home position)
{
tell_command.lat = 1.0e7f*ToDeg(packet.x/
(RADIUS_OF_EARTH*cosf(ToRad(home.lat/1.0e7f)))) + home.lat;
tell_command.lng = 1.0e7f*ToDeg(packet.y/RADIUS_OF_EARTH) + home.lng;
tell_command.alt = packet.z*1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
break;
}
#endif
case MAV_FRAME_GLOBAL_RELATIVE_ALT: // absolute lat/lng, relative altitude
{
tell_command.lat = 1.0e7f * packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7f * packet.y; // in as DD converted to * t7
tell_command.alt = packet.z * 1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT; // store altitude relative!! Always!!
break;
}
default:
result = MAV_MISSION_UNSUPPORTED_FRAME;
break;
}
if (result != MAV_MISSION_ACCEPTED) goto mission_failed;
// Check if receiving waypoints (mission upload expected)
if (!waypoint_receiving) {
result = MAV_MISSION_ERROR;
goto mission_failed;
}
// check if this is the HOME wp
if (packet.seq == 0) {
set_home(tell_command); // New home in EEPROM
send_text_P(SEVERITY_LOW,PSTR("new HOME received"));
waypoint_receiving = false;
}
mission_failed:
// we are rejecting the mission/waypoint
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
result);
break;
}
case MAVLINK_MSG_ID_MANUAL_CONTROL:
{
mavlink_manual_control_t packet;
mavlink_msg_manual_control_decode(msg, &packet);
if (g.proxy_mode == true && proxy_vehicle.initialised) {
// Also proxy it to the remote
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
}
if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs
tracking_manual_control(packet);
break;
}
case MAVLINK_MSG_ID_GLOBAL_POSITION_INT:
{
// decode
mavlink_global_position_int_t packet;
mavlink_msg_global_position_int_decode(msg, &packet);
if (g.proxy_mode == true && proxy_vehicle.initialised) {
// Also proxy it to the remote
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
}
tracking_update_position(packet);
break;
}
case MAVLINK_MSG_ID_SCALED_PRESSURE:
{
// decode
mavlink_scaled_pressure_t packet;
mavlink_msg_scaled_pressure_decode(msg, &packet);
if (g.proxy_mode == true && proxy_vehicle.initialised) {
// Also proxy it to the remote
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
}
tracking_update_pressure(packet);
break;
}
case MAVLINK_MSG_ID_SET_MODE:
{
handle_set_mode(msg, mavlink_set_mode);
break;
}
#if HAL_CPU_CLASS > HAL_CPU_CLASS_16
case MAVLINK_MSG_ID_SERIAL_CONTROL:
handle_serial_control(msg, gps);
break;
#endif
default:
// Proxy all other messages to the remote
if (g.proxy_mode && proxy_vehicle.initialised) {
if (comm_get_txspace(proxy_vehicle.chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES)
_mavlink_resend_uart(proxy_vehicle.chan, msg);
}
break;
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
static void mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs[0].initialised) return;
in_mavlink_delay = true;
uint32_t tnow = hal.scheduler->millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
in_mavlink_delay = false;
}
/*
* send a message on both GCS links
*/
static void gcs_send_message(enum ap_message id)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_message(id);
}
}
}
/*
* send data streams in the given rate range on both links
*/
static void gcs_data_stream_send(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].data_stream_send();
}
}
}
/*
* look for incoming commands on the GCS links
*/
static void gcs_update(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].update(NULL);
}
}
// Also check for messages from the remote if we are in proxy mode
if (g.proxy_mode == true && proxy_vehicle.initialised) {
proxy_vehicle.update(NULL);
}
}
static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_text_P(severity, str);
}
}
#if LOGGING_ENABLED == ENABLED
DataFlash.Log_Write_Message_P(str);
#endif
}
/*
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
void gcs_send_text_fmt(const prog_char_t *fmt, ...)
{
va_list arg_list;
gcs[0].pending_status.severity = (uint8_t)SEVERITY_LOW;
va_start(arg_list, fmt);
hal.util->vsnprintf_P((char *)gcs[0].pending_status.text,
sizeof(gcs[0].pending_status.text), fmt, arg_list);
va_end(arg_list);
#if LOGGING_ENABLED == ENABLED
DataFlash.Log_Write_Message(gcs[0].pending_status.text);
#endif
gcs[0].send_message(MSG_STATUSTEXT);
for (uint8_t i=1; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].pending_status = gcs[0].pending_status;
gcs[i].send_message(MSG_STATUSTEXT);
}
}
}
/**
retry any deferred messages
*/
static void gcs_retry_deferred(void)
{
gcs_send_message(MSG_RETRY_DEFERRED);
}