ardupilot/libraries/AP_InertialSensor/AP_InertialSensor.h

806 lines
29 KiB
C++

#pragma once
#include "AP_InertialSensor_config.h"
// Gyro and Accelerometer calibration criteria
#define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0f
#define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0f
#define AP_INERTIAL_SENSOR_ACCEL_VIBE_FLOOR_FILT_HZ 5.0f // accel vibration floor filter hz
#define AP_INERTIAL_SENSOR_ACCEL_VIBE_FILT_HZ 2.0f // accel vibration filter hz
#define AP_INERTIAL_SENSOR_ACCEL_PEAK_DETECT_TIMEOUT_MS 500 // peak-hold detector timeout
#include <AP_HAL/AP_HAL_Boards.h>
#include <stdint.h>
#include <AP_AccelCal/AP_AccelCal.h>
#include <AP_HAL/utility/RingBuffer.h>
#include <AP_Math/AP_Math.h>
#include <AP_ExternalAHRS/AP_ExternalAHRS.h>
#include <Filter/LowPassFilter.h>
#include <Filter/HarmonicNotchFilter.h>
#include <AP_SerialManager/AP_SerialManager_config.h>
#include "AP_InertialSensor_Params.h"
#include "AP_InertialSensor_tempcal.h"
#ifndef AP_SIM_INS_ENABLED
#define AP_SIM_INS_ENABLED AP_SIM_ENABLED
#endif
#ifndef AP_SIM_INS_FILE_ENABLED
#define AP_SIM_INS_FILE_ENABLED AP_SIM_ENABLED
#endif
class AP_InertialSensor_Backend;
class AuxiliaryBus;
class AP_AHRS;
/*
forward declare AP_Logger class. We can't include logger.h
because of mutual dependencies
*/
class AP_Logger;
/* AP_InertialSensor is an abstraction for gyro and accel measurements
* which are correctly aligned to the body axes and scaled to SI units.
*
* Gauss-Newton accel calibration routines borrowed from Rolfe Schmidt
* blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
* original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
*/
class AP_InertialSensor : AP_AccelCal_Client
{
friend class AP_InertialSensor_Backend;
public:
AP_InertialSensor();
/* Do not allow copies */
CLASS_NO_COPY(AP_InertialSensor);
static AP_InertialSensor *get_singleton();
enum Gyro_Calibration_Timing {
GYRO_CAL_NEVER = 0,
GYRO_CAL_STARTUP_ONLY = 1
};
/// Perform startup initialisation.
///
/// Called to initialise the state of the IMU.
///
/// Gyros will be calibrated unless INS_GYRO_CAL is zero
///
/// @param style The initialisation startup style.
///
void init(uint16_t sample_rate_hz);
// get accel/gyro instance numbers that a backend will get when they register
bool get_accel_instance(uint8_t &instance) const;
bool get_gyro_instance(uint8_t &instance) const;
/// Register a new gyro/accel driver, allocating an instance
/// number
bool register_gyro(uint8_t &instance, uint16_t raw_sample_rate_hz, uint32_t id);
bool register_accel(uint8_t &instance, uint16_t raw_sample_rate_hz, uint32_t id);
// a function called by the main thread at the main loop rate:
void periodic();
/// calibrating - returns true if the gyros or accels are currently being calibrated
bool calibrating() const;
/// calibrating - returns true if a temperature calibration is running
bool temperature_cal_running() const;
/// Perform cold-start initialisation for just the gyros.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work
///
void init_gyro(void);
// get startup messages to output to the GCS
bool get_output_banner(uint8_t instance_id, char* banner, uint8_t banner_len);
/// Fetch the current gyro values
///
/// @returns vector of rotational rates in radians/sec
///
const Vector3f &get_gyro(uint8_t i) const { return _gyro[i]; }
const Vector3f &get_gyro(void) const { return get_gyro(_first_usable_gyro); }
// set gyro offsets in radians/sec
const Vector3f &get_gyro_offsets(uint8_t i) const { return _gyro_offset(i); }
const Vector3f &get_gyro_offsets(void) const { return get_gyro_offsets(_first_usable_gyro); }
//get delta angle if available
bool get_delta_angle(uint8_t i, Vector3f &delta_angle, float &delta_angle_dt) const;
bool get_delta_angle(Vector3f &delta_angle, float &delta_angle_dt) const {
return get_delta_angle(_first_usable_gyro, delta_angle, delta_angle_dt);
}
//get delta velocity if available
bool get_delta_velocity(uint8_t i, Vector3f &delta_velocity, float &delta_velocity_dt) const;
bool get_delta_velocity(Vector3f &delta_velocity, float &delta_velocity_dt) const {
return get_delta_velocity(_first_usable_accel, delta_velocity, delta_velocity_dt);
}
/// Fetch the current accelerometer values
///
/// @returns vector of current accelerations in m/s/s
///
const Vector3f &get_accel(uint8_t i) const { return _accel[i]; }
const Vector3f &get_accel(void) const { return get_accel(_first_usable_accel); }
// multi-device interface
bool get_gyro_health(uint8_t instance) const { return (instance<_gyro_count) ? _gyro_healthy[instance] : false; }
bool get_gyro_health(void) const { return get_gyro_health(_first_usable_gyro); }
bool get_gyro_health_all(void) const;
bool gyros_consistent(uint8_t threshold) const;
uint8_t get_gyro_count(void) const { return MIN(INS_MAX_INSTANCES, _gyro_count); }
bool gyro_calibrated_ok(uint8_t instance) const { return _gyro_cal_ok[instance]; }
bool gyro_calibrated_ok_all() const;
bool use_gyro(uint8_t instance) const;
Gyro_Calibration_Timing gyro_calibration_timing();
bool get_accel_health(uint8_t instance) const { return (instance<_accel_count) ? _accel_healthy[instance] : false; }
bool get_accel_health(void) const { return get_accel_health(_first_usable_accel); }
bool get_accel_health_all(void) const;
bool accels_consistent(float accel_error_threshold) const;
uint8_t get_accel_count(void) const { return MIN(INS_MAX_INSTANCES, _accel_count); }
bool accel_calibrated_ok_all() const;
bool use_accel(uint8_t instance) const;
// get observed sensor rates, including any internal sampling multiplier
uint16_t get_gyro_rate_hz(uint8_t instance) const { return uint16_t(_gyro_raw_sample_rates[instance] * _gyro_over_sampling[instance]); }
uint16_t get_accel_rate_hz(uint8_t instance) const { return uint16_t(_accel_raw_sample_rates[instance] * _accel_over_sampling[instance]); }
// FFT support access
#if HAL_GYROFFT_ENABLED
const Vector3f& get_gyro_for_fft(void) const { return _gyro_for_fft[_first_usable_gyro]; }
FloatBuffer& get_raw_gyro_window(uint8_t instance, uint8_t axis) { return _gyro_window[instance][axis]; }
FloatBuffer& get_raw_gyro_window(uint8_t axis) { return get_raw_gyro_window(_first_usable_gyro, axis); }
uint16_t get_raw_gyro_rate_hz() const { return get_raw_gyro_rate_hz(_first_usable_gyro); }
uint16_t get_raw_gyro_rate_hz(uint8_t instance) const { return _gyro_raw_sample_rates[_first_usable_gyro]; }
#if AP_INERTIALSENSOR_HARMONICNOTCH_ENABLED
bool has_fft_notch() const;
#endif
#endif
bool set_gyro_window_size(uint16_t size);
// get accel offsets in m/s/s
const Vector3f &get_accel_offsets(uint8_t i) const { return _accel_offset(i); }
const Vector3f &get_accel_offsets(void) const { return get_accel_offsets(_first_usable_accel); }
// get accel scale
const Vector3f &get_accel_scale(uint8_t i) const { return _accel_scale(i); }
const Vector3f &get_accel_scale(void) const { return get_accel_scale(_first_usable_accel); }
// return a 3D vector defining the position offset of the IMU accelerometer in metres relative to the body frame origin
const Vector3f &get_imu_pos_offset(uint8_t instance) const {
return _accel_pos(instance);
}
const Vector3f &get_imu_pos_offset(void) const {
return _accel_pos(_first_usable_accel);
}
// return the temperature if supported. Zero is returned if no
// temperature is available
float get_temperature(uint8_t instance) const { return _temperature[instance]; }
/* get_delta_time returns the time period in seconds
* overwhich the sensor data was collected
*/
float get_delta_time() const { return MIN(_delta_time, _loop_delta_t_max); }
// return the maximum gyro drift rate in radians/s/s. This
// depends on what gyro chips are being used
float get_gyro_drift_rate(void) const { return ToRad(0.5f/60); }
// update gyro and accel values from accumulated samples
void update(void) __RAMFUNC__;
// wait for a sample to be available
void wait_for_sample(void) __RAMFUNC__;
// class level parameters
static const struct AP_Param::GroupInfo var_info[];
#if INS_AUX_INSTANCES
AP_InertialSensor_Params params[INS_AUX_INSTANCES];
#endif
// set overall board orientation
void set_board_orientation(enum Rotation orientation) {
_board_orientation = orientation;
}
// return the selected loop rate at which samples are made avilable
uint16_t get_loop_rate_hz(void) const { return _loop_rate; }
// return the main loop delta_t in seconds
float get_loop_delta_t(void) const { return _loop_delta_t; }
bool healthy(void) const { return get_gyro_health() && get_accel_health(); }
uint8_t get_first_usable_accel(void) const { return _first_usable_accel; }
uint8_t get_first_usable_gyro(void) const { return _first_usable_gyro; }
// get the gyro filter rate in Hz
uint16_t get_gyro_filter_hz(void) const { return _gyro_filter_cutoff; }
// get the accel filter rate in Hz
uint16_t get_accel_filter_hz(void) const { return _accel_filter_cutoff; }
#if AP_INERTIALSENSOR_HARMONICNOTCH_ENABLED
// setup the notch for throttle based tracking
bool setup_throttle_gyro_harmonic_notch(float center_freq_hz, float lower_freq_hz, float ref, uint8_t harmonics);
// write out harmonic notch log messages
void write_notch_log_messages() const;
#endif
// indicate which bit in LOG_BITMASK indicates raw logging enabled
void set_log_raw_bit(uint32_t log_raw_bit) { _log_raw_bit = log_raw_bit; }
// Logging Functions
void Write_IMU() const;
void Write_Vibration() const;
// calculate vibration levels and check for accelerometer clipping (called by a backends)
void calc_vibration_and_clipping(uint8_t instance, const Vector3f &accel, float dt);
// retrieve latest calculated vibration levels
Vector3f get_vibration_levels() const { return get_vibration_levels(_first_usable_accel); }
Vector3f get_vibration_levels(uint8_t instance) const;
// retrieve and clear accelerometer clipping count
uint32_t get_accel_clip_count(uint8_t instance) const;
// check for vibration movement. True when all axis show nearly zero movement
bool is_still();
AuxiliaryBus *get_auxiliary_bus(int16_t backend_id) { return get_auxiliary_bus(backend_id, 0); }
AuxiliaryBus *get_auxiliary_bus(int16_t backend_id, uint8_t instance);
void detect_backends(void);
// accel peak hold detector
void set_accel_peak_hold(uint8_t instance, const Vector3f &accel);
float get_accel_peak_hold_neg_x() const { return _peak_hold_state.accel_peak_hold_neg_x; }
//Returns accel calibrator interface object pointer
AP_AccelCal* get_acal() const { return _acal; }
// Returns body fixed accelerometer level data averaged during accel calibration's first step
bool get_fixed_mount_accel_cal_sample(uint8_t sample_num, Vector3f& ret) const;
// Returns primary accelerometer level data averaged during accel calibration's first step
bool get_first_usable_accel_cal_sample_avg(uint8_t sample_num, Vector3f& ret) const;
// Returns newly calculated trim values if calculated
bool get_new_trim(Vector3f &trim_rad);
#if HAL_INS_ACCELCAL_ENABLED
// initialise and register accel calibrator
// called during the startup of accel cal
void acal_init();
// update accel calibrator
void acal_update();
#endif
#if HAL_GCS_ENABLED
bool calibrate_gyros();
MAV_RESULT calibrate_trim();
// simple accel calibration
MAV_RESULT simple_accel_cal();
private:
uint32_t last_accel_cal_ms;
public:
#endif
bool accel_cal_requires_reboot() const { return _accel_cal_requires_reboot; }
// return time in microseconds of last update() call
uint32_t get_last_update_usec(void) const { return _last_update_usec; }
// for killing an IMU for testing purposes
void kill_imu(uint8_t imu_idx, bool kill_it);
#if AP_SERIALMANAGER_IMUOUT_ENABLED
// optional UART for sending IMU data to an external process
void set_imu_out_uart(AP_HAL::UARTDriver *uart);
void send_uart_data(void);
struct {
uint16_t counter;
AP_HAL::UARTDriver *imu_out_uart;
} uart;
#endif // AP_SERIALMANAGER_IMUOUT_ENABLED
enum IMU_SENSOR_TYPE {
IMU_SENSOR_TYPE_ACCEL = 0,
IMU_SENSOR_TYPE_GYRO = 1,
};
#if AP_INERTIALSENSOR_BATCHSAMPLER_ENABLED
class BatchSampler {
public:
BatchSampler(const AP_InertialSensor &imu) :
type(IMU_SENSOR_TYPE_ACCEL),
_imu(imu) {
AP_Param::setup_object_defaults(this, var_info);
};
void init();
void sample(uint8_t instance, IMU_SENSOR_TYPE _type, uint64_t sample_us, const Vector3f &sample) __RAMFUNC__;
// a function called by the main thread at the main loop rate:
void periodic();
bool doing_sensor_rate_logging() const { return _doing_sensor_rate_logging; }
bool doing_post_filter_logging() const {
return (_doing_post_filter_logging && (post_filter || !_doing_sensor_rate_logging))
|| (_doing_pre_post_filter_logging && post_filter);
}
// Getters for arming check
bool is_initialised() const { return initialised; }
bool enabled() const { return _sensor_mask > 0; }
// class level parameters
static const struct AP_Param::GroupInfo var_info[];
// Parameters
AP_Int16 _required_count;
uint16_t _real_required_count;
AP_Int8 _sensor_mask;
AP_Int8 _batch_options_mask;
// Parameters controlling pushing data to AP_Logger:
// Each DF message is ~ 108 bytes in size, so we use about 1kB/s of
// logging bandwidth with a 100ms interval. If we are taking
// 1024 samples then we need to send 32 packets, so it will
// take ~3 seconds to push a complete batch to the log. If
// you are running a on an FMU with three IMUs then you
// will loop back around to the first sensor after about
// twenty seconds.
AP_Int16 samples_per_msg;
AP_Int8 push_interval_ms;
// end Parameters
private:
enum batch_opt_t {
BATCH_OPT_SENSOR_RATE = (1<<0),
BATCH_OPT_POST_FILTER = (1<<1),
BATCH_OPT_PRE_POST_FILTER = (1<<2),
};
void rotate_to_next_sensor();
void update_doing_sensor_rate_logging();
bool should_log(uint8_t instance, IMU_SENSOR_TYPE type) __RAMFUNC__;
void push_data_to_log();
// Logging functions
bool Write_ISBH(const float sample_rate_hz) const;
bool Write_ISBD() const;
bool has_option(batch_opt_t option) const { return _batch_options_mask & uint16_t(option); }
uint64_t measurement_started_us;
bool initialised;
bool isbh_sent;
bool _doing_sensor_rate_logging;
bool _doing_post_filter_logging;
bool _doing_pre_post_filter_logging;
uint8_t instance; // instance we are sending data for
bool post_filter; // whether we are sending post-filter data
AP_InertialSensor::IMU_SENSOR_TYPE type;
uint16_t isb_seqnum;
int16_t *data_x;
int16_t *data_y;
int16_t *data_z;
uint16_t data_write_offset; // units: samples
uint16_t data_read_offset; // units: samples
uint32_t last_sent_ms;
// all samples are multiplied by this
uint16_t multiplier; // initialised as part of init()
const AP_InertialSensor &_imu;
};
BatchSampler batchsampler{*this};
#endif
#if HAL_EXTERNAL_AHRS_ENABLED
// handle external AHRS data
void handle_external(const AP_ExternalAHRS::ins_data_message_t &pkt);
#endif
#if HAL_INS_TEMPERATURE_CAL_ENABLE
/*
get a string representation of parameters that should be made
persistent across changes of firmware type
*/
void get_persistent_params(ExpandingString &str) const;
#endif
// force save of current calibration as valid
void force_save_calibration(void);
#if AP_INERTIALSENSOR_HARMONICNOTCH_ENABLED
// structure per harmonic notch filter. This is public to allow for
// easy iteration
class HarmonicNotch {
public:
HarmonicNotchFilterParams params;
HarmonicNotchFilterVector3f filter[INS_MAX_INSTANCES];
uint8_t num_dynamic_notches;
// the current center frequency for the notch
float calculated_notch_freq_hz[INS_MAX_NOTCHES];
uint8_t num_calculated_notch_frequencies;
// runtime update of notch parameters
void update_params(uint8_t instance, bool converging, float gyro_rate);
// Update the harmonic notch frequencies
void update_freq_hz(float scaled_freq);
void update_frequencies_hz(uint8_t num_freqs, const float scaled_freq[]);
// enable/disable the notch
void set_inactive(bool _inactive) {
inactive = _inactive;
}
bool is_inactive(void) const {
return inactive;
}
private:
// support for updating harmonic filter at runtime
float last_center_freq_hz[INS_MAX_INSTANCES];
float last_bandwidth_hz[INS_MAX_INSTANCES];
float last_attenuation_dB[INS_MAX_INSTANCES];
bool inactive;
} harmonic_notches[HAL_INS_NUM_HARMONIC_NOTCH_FILTERS];
#endif // AP_INERTIALSENSOR_HARMONICNOTCH_ENABLED
private:
// load backend drivers
bool _add_backend(AP_InertialSensor_Backend *backend);
void _start_backends();
AP_InertialSensor_Backend *_find_backend(int16_t backend_id, uint8_t instance);
// gyro initialisation
void _init_gyro();
// Calibration routines borrowed from Rolfe Schmidt
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
bool _calculate_trim(const Vector3f &accel_sample, Vector3f &trim_rad);
// save gyro calibration values to eeprom
void _save_gyro_calibration();
// Logging function
void Write_IMU_instance(const uint64_t time_us, const uint8_t imu_instance) const;
// backend objects
AP_InertialSensor_Backend *_backends[INS_MAX_BACKENDS];
// number of gyros and accel drivers. Note that most backends
// provide both accel and gyro data, so will increment both
// counters on initialisation
uint8_t _gyro_count;
uint8_t _accel_count;
uint8_t _backend_count;
// the selected loop rate at which samples are made available
uint16_t _loop_rate;
float _loop_delta_t;
float _loop_delta_t_max;
// Most recent accelerometer reading
Vector3f _accel[INS_MAX_INSTANCES];
Vector3f _delta_velocity[INS_MAX_INSTANCES];
float _delta_velocity_dt[INS_MAX_INSTANCES];
bool _delta_velocity_valid[INS_MAX_INSTANCES];
// delta velocity accumulator
Vector3f _delta_velocity_acc[INS_MAX_INSTANCES];
// time accumulator for delta velocity accumulator
float _delta_velocity_acc_dt[INS_MAX_INSTANCES];
// Low Pass filters for gyro and accel
LowPassFilter2pVector3f _accel_filter[INS_MAX_INSTANCES];
LowPassFilter2pVector3f _gyro_filter[INS_MAX_INSTANCES];
Vector3f _accel_filtered[INS_MAX_INSTANCES];
Vector3f _gyro_filtered[INS_MAX_INSTANCES];
#if HAL_GYROFFT_ENABLED
// Thread-safe public version of _last_raw_gyro
Vector3f _gyro_for_fft[INS_MAX_INSTANCES];
Vector3f _last_gyro_for_fft[INS_MAX_INSTANCES];
FloatBuffer _gyro_window[INS_MAX_INSTANCES][XYZ_AXIS_COUNT];
uint16_t _gyro_window_size;
// capture a gyro window after the filters
LowPassFilter2pVector3f _post_filter_gyro_filter[INS_MAX_INSTANCES];
bool _post_filter_fft;
uint8_t _fft_window_phase;
#endif
bool _new_accel_data[INS_MAX_INSTANCES];
bool _new_gyro_data[INS_MAX_INSTANCES];
// Most recent gyro reading
Vector3f _gyro[INS_MAX_INSTANCES];
Vector3f _delta_angle[INS_MAX_INSTANCES];
float _delta_angle_dt[INS_MAX_INSTANCES];
bool _delta_angle_valid[INS_MAX_INSTANCES];
// time accumulator for delta angle accumulator
float _delta_angle_acc_dt[INS_MAX_INSTANCES];
Vector3f _delta_angle_acc[INS_MAX_INSTANCES];
Vector3f _last_delta_angle[INS_MAX_INSTANCES];
Vector3f _last_raw_gyro[INS_MAX_INSTANCES];
// bitmask indicating if a sensor is doing sensor-rate sampling:
uint8_t _accel_sensor_rate_sampling_enabled;
uint8_t _gyro_sensor_rate_sampling_enabled;
// multipliers for data supplied via sensor-rate logging:
uint16_t _accel_raw_sampling_multiplier[INS_MAX_INSTANCES];
uint16_t _gyro_raw_sampling_multiplier[INS_MAX_INSTANCES];
// IDs to uniquely identify each sensor: shall remain
// the same across reboots
AP_Int32 _accel_id_old_param[INS_MAX_INSTANCES-INS_AUX_INSTANCES];
AP_Int32 _gyro_id_old_param[INS_MAX_INSTANCES-INS_AUX_INSTANCES];
// accelerometer scaling and offsets
AP_Vector3f _accel_scale_old_param[INS_MAX_INSTANCES-INS_AUX_INSTANCES];
AP_Vector3f _accel_offset_old_param[INS_MAX_INSTANCES-INS_AUX_INSTANCES];
AP_Vector3f _gyro_offset_old_param[INS_MAX_INSTANCES-INS_AUX_INSTANCES];
// accelerometer position offset in body frame
AP_Vector3f _accel_pos_old_param[INS_MAX_INSTANCES-INS_AUX_INSTANCES];
// Use Accessor methods to access above variables
#if INS_AUX_INSTANCES
#define INS_PARAM_WRAPPER(var) \
inline decltype(var##_old_param[0])& var(uint8_t i) { \
if (i<(INS_MAX_INSTANCES-INS_AUX_INSTANCES)) { \
return var##_old_param[i]; \
} else { \
return params[i-(INS_MAX_INSTANCES-INS_AUX_INSTANCES)].var; \
} \
} \
inline decltype(var##_old_param[0])& var(uint8_t i) const { \
return const_cast<AP_InertialSensor*>(this)->var(i); \
}
#else
#define INS_PARAM_WRAPPER(var) \
inline decltype(var##_old_param[0])& var(uint8_t i) { \
return var##_old_param[i]; \
} \
inline decltype(var##_old_param[0])& var(uint8_t i) const { \
return const_cast<AP_InertialSensor*>(this)->var(i); \
}
#endif
// Accessor methods for old parameters
INS_PARAM_WRAPPER(_accel_id);
INS_PARAM_WRAPPER(_gyro_id);
INS_PARAM_WRAPPER(_accel_scale);
INS_PARAM_WRAPPER(_accel_offset);
INS_PARAM_WRAPPER(_gyro_offset);
INS_PARAM_WRAPPER(_accel_pos);
// accelerometer max absolute offsets to be used for calibration
float _accel_max_abs_offsets[INS_MAX_INSTANCES];
// accelerometer and gyro raw sample rate in units of Hz
float _accel_raw_sample_rates[INS_MAX_INSTANCES];
float _gyro_raw_sample_rates[INS_MAX_INSTANCES];
// how many sensors samples per notify to the backend
uint8_t _accel_over_sampling[INS_MAX_INSTANCES];
uint8_t _gyro_over_sampling[INS_MAX_INSTANCES];
// last sample time in microseconds. Use for deltaT calculations
// on non-FIFO sensors
uint64_t _accel_last_sample_us[INS_MAX_INSTANCES];
uint64_t _gyro_last_sample_us[INS_MAX_INSTANCES];
// sample times for checking real sensor rate for FIFO sensors
uint16_t _sample_accel_count[INS_MAX_INSTANCES];
uint32_t _sample_accel_start_us[INS_MAX_INSTANCES];
uint16_t _sample_gyro_count[INS_MAX_INSTANCES];
uint32_t _sample_gyro_start_us[INS_MAX_INSTANCES];
// temperatures for an instance if available
float _temperature[INS_MAX_INSTANCES];
// filtering frequency (0 means default)
AP_Int16 _accel_filter_cutoff;
AP_Int16 _gyro_filter_cutoff;
AP_Int8 _gyro_cal_timing;
// use for attitude, velocity, position estimates
AP_Int8 _use_old_param[INS_MAX_INSTANCES - INS_AUX_INSTANCES];
INS_PARAM_WRAPPER(_use);
// control enable of fast sampling
AP_Int8 _fast_sampling_mask;
// control enable of fast sampling
AP_Int8 _fast_sampling_rate;
// control enable of detected sensors
AP_Int8 _enable_mask;
// board orientation from AHRS
enum Rotation _board_orientation;
// per-sensor orientation to allow for board type defaults at runtime
enum Rotation _gyro_orientation[INS_MAX_INSTANCES];
enum Rotation _accel_orientation[INS_MAX_INSTANCES];
// calibrated_ok/id_ok flags
bool _gyro_cal_ok[INS_MAX_INSTANCES];
bool _accel_id_ok[INS_MAX_INSTANCES];
// primary accel and gyro
uint8_t _first_usable_gyro;
uint8_t _first_usable_accel;
// mask of accels and gyros which we will be actively using
// and this should wait for in wait_for_sample()
uint8_t _gyro_wait_mask;
uint8_t _accel_wait_mask;
// bitmask bit which indicates if we should log raw accel and gyro data
uint32_t _log_raw_bit;
// has wait_for_sample() found a sample?
bool _have_sample:1;
bool _backends_detected:1;
// are gyros or accels currently being calibrated
bool _calibrating_accel;
bool _calibrating_gyro;
bool _trimming_accel;
// the delta time in seconds for the last sample
float _delta_time;
// last time a wait_for_sample() returned a sample
uint32_t _last_sample_usec;
// target time for next wait_for_sample() return
uint32_t _next_sample_usec;
// time between samples in microseconds
uint32_t _sample_period_usec;
// last time update() completed
uint32_t _last_update_usec;
// health of gyros and accels
bool _gyro_healthy[INS_MAX_INSTANCES];
bool _accel_healthy[INS_MAX_INSTANCES];
uint32_t _accel_error_count[INS_MAX_INSTANCES];
uint32_t _gyro_error_count[INS_MAX_INSTANCES];
// vibration and clipping
uint32_t _accel_clip_count[INS_MAX_INSTANCES];
LowPassFilterVector3f _accel_vibe_floor_filter[INS_VIBRATION_CHECK_INSTANCES];
LowPassFilterVector3f _accel_vibe_filter[INS_VIBRATION_CHECK_INSTANCES];
// peak hold detector state for primary accel
struct PeakHoldState {
float accel_peak_hold_neg_x;
uint32_t accel_peak_hold_neg_x_age;
} _peak_hold_state;
// threshold for detecting stillness
AP_Float _still_threshold;
// Trim options
AP_Int8 _acc_body_aligned;
AP_Int8 _trim_option;
static AP_InertialSensor *_singleton;
AP_AccelCal* _acal;
AccelCalibrator *_accel_calibrator;
//save accelerometer bias and scale factors
void _acal_save_calibrations() override;
void _acal_event_failure() override;
// Returns AccelCalibrator objects pointer for specified acceleromter
AccelCalibrator* _acal_get_calibrator(uint8_t i) override { return i<get_accel_count()?&(_accel_calibrator[i]):nullptr; }
Vector3f _trim_rad;
bool _new_trim;
bool _accel_cal_requires_reboot;
// sensor error count at startup (used to ignore errors within 2 seconds of startup)
uint32_t _accel_startup_error_count[INS_MAX_INSTANCES];
uint32_t _gyro_startup_error_count[INS_MAX_INSTANCES];
bool _startup_error_counts_set;
uint32_t _startup_ms;
#if AP_INERTIALSENSOR_KILL_IMU_ENABLED
uint8_t imu_kill_mask;
#endif
#if HAL_INS_TEMPERATURE_CAL_ENABLE
public:
// instance number for logging
#if INS_AUX_INSTANCES
uint8_t tcal_instance(const AP_InertialSensor_TCal &tc) const {
for (uint8_t i=0; i<INS_MAX_INSTANCES - INS_AUX_INSTANCES; i++) {
if (&tc == &tcal_old_param[i]) {
return i;
}
}
for (uint8_t i=0; i<INS_AUX_INSTANCES; i++) {
if (&tc == &params[i].tcal) {
return i + INS_MAX_INSTANCES;
}
}
return 0;
}
#else
uint8_t tcal_instance(const AP_InertialSensor_TCal &tc) const {
return &tc - &tcal(0);
}
#endif
private:
AP_InertialSensor_TCal tcal_old_param[INS_MAX_INSTANCES - INS_AUX_INSTANCES];
enum class TCalOptions : uint8_t {
PERSIST_TEMP_CAL = (1U<<0),
PERSIST_ACCEL_CAL = (1U<<1),
};
// temperature that last calibration was run at
AP_Float caltemp_accel_old_param[INS_MAX_INSTANCES - INS_AUX_INSTANCES];
AP_Float caltemp_gyro_old_param[INS_MAX_INSTANCES - INS_AUX_INSTANCES];
INS_PARAM_WRAPPER(caltemp_accel);
INS_PARAM_WRAPPER(caltemp_gyro);
INS_PARAM_WRAPPER(tcal);
AP_Int32 tcal_options;
bool tcal_learning;
#endif
// Raw logging options bitmask and parameter
enum class RAW_LOGGING_OPTION {
PRIMARY_GYRO_ONLY = (1U<<0),
ALL_GYROS = (1U<<1),
POST_FILTER = (1U<<2),
PRE_AND_POST_FILTER = (1U<<3),
};
AP_Int16 raw_logging_options;
bool raw_logging_option_set(RAW_LOGGING_OPTION option) const {
return (raw_logging_options.get() & int32_t(option)) != 0;
}
};
namespace AP {
AP_InertialSensor &ins();
};