mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-09 17:38:32 -04:00
399e5d97a8
Antenna Tracker mod from William Bryan Scaling mods battery screen mods failsafe screen pwm checking remove reverse radio options when we are using a quad config menu reorganise add Ateryx stuff
217 lines
7.8 KiB
C#
217 lines
7.8 KiB
C#
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
using System.Text;
|
|
|
|
namespace ArdupilotMega.HIL
|
|
{
|
|
public class Wind : Utils
|
|
{
|
|
Wind self;
|
|
public float speed;
|
|
public float direction;
|
|
public float turbulance;
|
|
public double cross_section;
|
|
public double turbulance_time_constant;
|
|
public DateTime tlast;
|
|
public double turbulance_mul;
|
|
|
|
//'''a wind generation object//'''
|
|
public Wind (string windstring, double cross_section=0.1) {
|
|
|
|
self = this;
|
|
|
|
string[] a = windstring.Split(',');
|
|
if (Utils.len(a) != 3)
|
|
{
|
|
return;
|
|
//raise RuntimeError("Expected wind in speed,direction,turbulance form, not %s" % windstring);
|
|
}
|
|
self.speed = float.Parse(a[0]); //# m/s
|
|
self.direction = float.Parse(a[1]); //# direction the wind is going in
|
|
self.turbulance= float.Parse(a[2]); //# turbulance factor (standard deviation)
|
|
|
|
//# the cross-section of the aircraft to wind. This is multiplied by the
|
|
//# difference in the wind and the velocity of the aircraft to give the acceleration
|
|
self.cross_section = cross_section;
|
|
|
|
//# the time constant for the turbulance - the average period of the
|
|
//# changes over time
|
|
self.turbulance_time_constant = 5.0;
|
|
|
|
//# wind time record
|
|
self.tlast = DateTime.Now;
|
|
|
|
//# initial turbulance multiplier
|
|
self.turbulance_mul = 1.0;
|
|
}
|
|
|
|
public void current(double deltat, out double speed, out double direction) {
|
|
//'''return current wind speed and direction as a tuple
|
|
//speed is in m/s, direction in degrees
|
|
//'''
|
|
if (deltat == 0) {
|
|
DateTime tnow = DateTime.Now;
|
|
deltat = (tnow - self.tlast).TotalSeconds;
|
|
self.tlast = tnow;
|
|
}
|
|
|
|
//# update turbulance random walk
|
|
double w_delta = Utils.sqrt(deltat) * (1.0 - new GaussianRandom().NextGaussian(1.0, self.turbulance));
|
|
w_delta -= (self.turbulance_mul-1.0)*(deltat/self.turbulance_time_constant);
|
|
self.turbulance_mul += w_delta;
|
|
speed = self.speed * (float)Utils.fabs(self.turbulance_mul);
|
|
|
|
direction = self.direction;
|
|
}
|
|
|
|
//# Calculate drag.
|
|
public Vector3 drag(Vector3 velocity, double deltat = 0)//, testing=None)
|
|
{
|
|
//'''return current wind force in Earth frame. The velocity parameter is
|
|
// a Vector3 of the current velocity of the aircraft in earth frame, m/s//'''
|
|
|
|
//# (m/s, degrees) : wind vector as a magnitude and angle.
|
|
double speed, direction;
|
|
self.current(deltat,out speed,out direction);
|
|
//# speed = self.speed
|
|
//# direction = self.direction
|
|
|
|
//# Get the wind vector.
|
|
Vector3 w = toVec(speed, Utils.radians(direction));
|
|
|
|
double obj_speed = velocity.length();
|
|
|
|
//# Compute the angle between the object vector and wind vector by taking
|
|
//# the dot product and dividing by the magnitudes.
|
|
double alpha = 0;
|
|
double d = w.length() * obj_speed;
|
|
if (d == 0) {
|
|
alpha = 0;
|
|
}else{
|
|
int checkme;
|
|
alpha = Utils.acos(((w * velocity).length() / d));
|
|
}
|
|
|
|
//# Get the relative wind speed and angle from the object. Note that the
|
|
//# relative wind speed includes the velocity of the object; i.e., there
|
|
//# is a headwind equivalent to the object's speed even if there is no
|
|
//# absolute wind.
|
|
double rel_speed, beta;
|
|
apparent_wind(speed, obj_speed, alpha,out rel_speed,out beta);
|
|
|
|
//# Return the vector of the relative wind, relative to the coordinate
|
|
//# system.
|
|
Vector3 relWindVec = toVec(rel_speed, beta + Utils.atan2(velocity.y, velocity.x));
|
|
|
|
//# Combine them to get the acceleration vector.
|
|
return new Vector3( acc(relWindVec.x, drag_force(self, relWindVec.x))
|
|
, acc(relWindVec.y, drag_force(self, relWindVec.y))
|
|
, 0 );
|
|
}
|
|
//# http://en.wikipedia.org/wiki/Apparent_wind
|
|
//#
|
|
//# Returns apparent wind speed and angle of apparent wind. Alpha is the angle
|
|
//# between the object and the true wind. alpha of 0 rads is a headwind; pi a
|
|
//# tailwind. Speeds should always be positive.
|
|
public void apparent_wind(double wind_sp, double obj_speed, double alpha, out double rel_speed, out double beta)
|
|
{
|
|
double delta = wind_sp * Utils.cos(alpha);
|
|
double x = Math.Pow(wind_sp, 2) + Math.Pow(obj_speed, 2) + 2 * obj_speed * delta;
|
|
rel_speed = Utils.sqrt(x);
|
|
if (rel_speed == 0)
|
|
{
|
|
beta = Math.PI;
|
|
}
|
|
else
|
|
{
|
|
beta = acos((delta + obj_speed) / rel_speed);
|
|
}
|
|
}
|
|
|
|
//# See http://en.wikipedia.org/wiki/Drag_equation
|
|
//#
|
|
//# Drag equation is F(a) = cl * p/2 * v^2 * a, where cl : drag coefficient
|
|
//# (let's assume it's low, .e.g., 0.2), p : density of air (assume about 1
|
|
//# kg/m^3, the density just over 1500m elevation), v : relative speed of wind
|
|
//# (to the body), a : area acted on (this is captured by the cross_section
|
|
//# paramter).
|
|
//#
|
|
//# So then we have
|
|
//# F(a) = 0.2 * 1/2 * v^2 * cross_section = 0.1 * v^2 * cross_section
|
|
public double drag_force(Wind wind, double sp){
|
|
return (Math.Pow(sp,2.0)) * 0.1 * wind.cross_section;
|
|
}
|
|
|
|
//# Function to make the force vector. relWindVec is the direction the apparent
|
|
//# wind comes *from*. We want to compute the accleration vector in the direction
|
|
//# the wind blows to.
|
|
public double acc(double val,double mag){
|
|
if (val == 0) {
|
|
return mag;
|
|
}else{
|
|
return (val / Utils.fabs(val)) * (0 - mag);
|
|
}
|
|
}
|
|
//# Converts a magnitude and angle (radians) to a vector in the xy plane.
|
|
public Vector3 toVec(double magnitude, double angle)
|
|
{
|
|
Vector3 v = new Vector3(magnitude, 0, 0);
|
|
Matrix3 m = new Matrix3();
|
|
m.from_euler(0, 0, angle);
|
|
return m.transposed() * v;
|
|
}
|
|
}
|
|
|
|
public sealed class GaussianRandom
|
|
{
|
|
private bool _hasDeviate;
|
|
private double _storedDeviate;
|
|
private readonly Random _random;
|
|
|
|
public GaussianRandom(Random random = null)
|
|
{
|
|
_random = random ?? new Random();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Obtains normally (Gaussian) distributed random numbers, using the Box-Muller
|
|
/// transformation. This transformation takes two uniformly distributed deviates
|
|
/// within the unit circle, and transforms them into two independently
|
|
/// distributed normal deviates.
|
|
/// </summary>
|
|
/// <param name="mu">The mean of the distribution. Default is zero.</param>
|
|
/// <param name="sigma">The standard deviation of the distribution. Default is one.</param>
|
|
/// <returns></returns>
|
|
public double NextGaussian(double mu = 0, double sigma = 1)
|
|
{
|
|
if (sigma <= 0)
|
|
throw new ArgumentOutOfRangeException("sigma", "Must be greater than zero.");
|
|
|
|
if (_hasDeviate)
|
|
{
|
|
_hasDeviate = false;
|
|
return _storedDeviate * sigma + mu;
|
|
}
|
|
|
|
double v1, v2, rSquared;
|
|
do
|
|
{
|
|
// two random values between -1.0 and 1.0
|
|
v1 = 2 * _random.NextDouble() - 1;
|
|
v2 = 2 * _random.NextDouble() - 1;
|
|
rSquared = v1 * v1 + v2 * v2;
|
|
// ensure within the unit circle
|
|
} while (rSquared >= 1 || rSquared == 0);
|
|
|
|
// calculate polar tranformation for each deviate
|
|
var polar = Math.Sqrt(-2 * Math.Log(rSquared) / rSquared);
|
|
// store first deviate
|
|
_storedDeviate = v2 * polar;
|
|
_hasDeviate = true;
|
|
// return second deviate
|
|
return v1 * polar * sigma + mu;
|
|
}
|
|
}
|
|
}
|