mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 01:58:29 -04:00
553 lines
21 KiB
C++
553 lines
21 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
* AP_MotorsMatrix.cpp - ArduCopter motors library
|
|
* Code by RandyMackay. DIYDrones.com
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*/
|
|
#include <AP_HAL.h>
|
|
#include "AP_MotorsMatrix.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// Init
|
|
void AP_MotorsMatrix::Init()
|
|
{
|
|
// call parent Init function to set-up throttle curve
|
|
AP_Motors::Init();
|
|
|
|
// setup the motors
|
|
setup_motors();
|
|
|
|
// enable fast channels or instant pwm
|
|
set_update_rate(_speed_hz);
|
|
}
|
|
|
|
// set update rate to motors - a value in hertz
|
|
void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz )
|
|
{
|
|
int8_t i;
|
|
|
|
// record requested speed
|
|
_speed_hz = speed_hz;
|
|
|
|
// check each enabled motor
|
|
uint32_t mask = 0;
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
mask |= 1U << _motor_to_channel_map[i];
|
|
}
|
|
}
|
|
hal.rcout->set_freq( mask, _speed_hz );
|
|
}
|
|
|
|
// set frame orientation (normally + or X)
|
|
void AP_MotorsMatrix::set_frame_orientation( uint8_t new_orientation )
|
|
{
|
|
// return if nothing has changed
|
|
if( new_orientation == _frame_orientation ) {
|
|
return;
|
|
}
|
|
|
|
// call parent
|
|
AP_Motors::set_frame_orientation( new_orientation );
|
|
|
|
// setup the motors
|
|
setup_motors();
|
|
|
|
// enable fast channels or instant pwm
|
|
set_update_rate(_speed_hz);
|
|
}
|
|
|
|
// enable - starts allowing signals to be sent to motors
|
|
void AP_MotorsMatrix::enable()
|
|
{
|
|
int8_t i;
|
|
|
|
// enable output channels
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
hal.rcout->enable_ch(_motor_to_channel_map[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// output_min - sends minimum values out to the motors
|
|
void AP_MotorsMatrix::output_min()
|
|
{
|
|
int8_t i;
|
|
|
|
// fill the motor_out[] array for HIL use and send minimum value to each motor
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
motor_out[i] = _rc_throttle->radio_min;
|
|
hal.rcout->write(_motor_to_channel_map[i], motor_out[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef AP_MOTORS_MATRIX_SCALING_STABILITY_PATCH
|
|
// output_armed - sends commands to the motors
|
|
// includes new scaling stability patch
|
|
void AP_MotorsMatrix::output_armed()
|
|
{
|
|
int8_t i;
|
|
int16_t out_min = _rc_throttle->radio_min + _min_throttle;
|
|
int16_t out_max = _rc_throttle->radio_max;
|
|
int16_t out_mid = (out_min+out_max)/2;
|
|
int16_t out_max_range; // the is the allowable throttle out setting that allowes maximum roll, pitch and yaw range
|
|
float rpy_scale = 1.0; // this is used to scale the roll, pitch and yaw to fit within the motor limits
|
|
|
|
int16_t rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times.
|
|
|
|
int16_t rpy_low = 0; // lowest motor value
|
|
int16_t rpy_high = 0; // highest motor value
|
|
int16_t yaw_allowed; // amount of yaw we can fit in
|
|
int16_t thr_adj; // how far we move the throttle point from out_max_range
|
|
|
|
// initialize reached_limit flag
|
|
_reached_limit = AP_MOTOR_NO_LIMITS_REACHED;
|
|
|
|
// Throttle is 0 to 1000 only
|
|
// To-Do: we should not really be limiting this here because we don't "own" this _rc_throttle object
|
|
_rc_throttle->servo_out = constrain_int16(_rc_throttle->servo_out, 0, _max_throttle);
|
|
|
|
// capture desired roll, pitch, yaw and throttle from receiver
|
|
_rc_roll->calc_pwm();
|
|
_rc_pitch->calc_pwm();
|
|
_rc_throttle->calc_pwm();
|
|
_rc_yaw->calc_pwm();
|
|
|
|
// if we are not sending a throttle output, we cut the motors
|
|
if (_rc_throttle->servo_out == 0) {
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = _rc_throttle->radio_min;
|
|
}
|
|
}
|
|
|
|
// Every thing is limited
|
|
_reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT | AP_MOTOR_THROTTLE_LIMIT;
|
|
|
|
} else {
|
|
|
|
// check if throttle is below limit
|
|
if (_rc_throttle->radio_out < out_min) {
|
|
_reached_limit |= AP_MOTOR_THROTTLE_LIMIT;
|
|
}
|
|
|
|
// calculate roll and pitch for each motor
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
rpy_out[i] = _rc_roll->pwm_out * _roll_factor[i] +
|
|
_rc_pitch->pwm_out * _pitch_factor[i];
|
|
|
|
// record lowest roll pitch command
|
|
if (rpy_out[i] < rpy_low) {
|
|
rpy_low = rpy_out[i];
|
|
}
|
|
// record highest roll pich command
|
|
if (rpy_out[i] > rpy_high) {
|
|
rpy_high = rpy_out[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculate throttle that gives most possible room for yaw (range 1000 ~ 2000)
|
|
// this value is either:
|
|
// mid throttle - average of highest and lowest motor
|
|
// the higher of the pilot's throttle input or hover-throttle -- this ensure we never increase the throttle above hover throttle unless the pilot has commanded that
|
|
int16_t motor_mid = (rpy_low+rpy_high)/2;
|
|
out_max_range = min(out_mid - motor_mid, max(_rc_throttle->radio_out, (_rc_throttle->radio_out+_hover_out)/2));
|
|
|
|
// calculate amount of yaw we can fit into the throttle range
|
|
// this is always equal to or less than the requested yaw from the pilot or rate controller
|
|
yaw_allowed = min(out_max - out_max_range, out_max_range - out_min) - (rpy_high-rpy_low)/2;
|
|
yaw_allowed = max(yaw_allowed, AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM); // allow at least 200 of yaw
|
|
|
|
if (_rc_yaw->pwm_out > 0) {
|
|
// if yawing right
|
|
yaw_allowed = min(yaw_allowed, _rc_yaw->pwm_out); // minimum that we can fit vs what we have asked for
|
|
// we haven't even been able to apply full yaw command
|
|
_reached_limit |= AP_MOTOR_YAW_LIMIT;
|
|
}else if(_rc_yaw->pwm_out < 0) {
|
|
// if yawing left
|
|
yaw_allowed = max(-yaw_allowed, _rc_yaw->pwm_out);
|
|
// we haven't even been able to apply full yaw command
|
|
_reached_limit |= AP_MOTOR_YAW_LIMIT;
|
|
}else{
|
|
yaw_allowed = 0;
|
|
}
|
|
|
|
// add yaw to intermediate numbers for each motor
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
rpy_out[i] = rpy_out[i] +
|
|
yaw_allowed * _yaw_factor[i];
|
|
|
|
// record lowest roll+pitch+yaw command
|
|
if( rpy_out[i] < rpy_low ) {
|
|
rpy_low = rpy_out[i];
|
|
}
|
|
// record highest roll+pitch+yaw command
|
|
if( rpy_out[i] > rpy_high) {
|
|
rpy_high = rpy_out[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// check everything fits
|
|
thr_adj = _rc_throttle->radio_out - out_max_range;
|
|
|
|
if (thr_adj > 0) {
|
|
// increase throttle as close as possible to requested throttle
|
|
// without going over out_max
|
|
if (thr_adj > out_max-(rpy_high+out_max_range)){
|
|
thr_adj = out_max-(rpy_high+out_max_range);
|
|
// we haven't even been able to apply full throttle command
|
|
_reached_limit |= AP_MOTOR_THROTTLE_LIMIT;
|
|
}
|
|
}else if(thr_adj < 0){
|
|
// decrease throttle as close as possible to requested throttle
|
|
// without going under out_min or over out_max
|
|
// earlier code ensures we can't break both boundaryies
|
|
thr_adj = max(min(thr_adj,out_max-(rpy_high+out_max_range)), min(out_min-(rpy_low+out_max_range),0));
|
|
}
|
|
|
|
// do we need to reduce roll, pitch, yaw command
|
|
// earlier code does not allow both limit's to be passed simultainiously with abs(_yaw_factor)<1
|
|
if ((rpy_low+out_max_range)+thr_adj < out_min){
|
|
rpy_scale = (float)(out_min-thr_adj-out_max_range)/rpy_low;
|
|
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
|
|
_reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT;
|
|
}else if((rpy_high+out_max_range)+thr_adj > out_max){
|
|
rpy_scale = (float)(out_max-thr_adj-out_max_range)/rpy_high;
|
|
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
|
|
_reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT;
|
|
}
|
|
|
|
// add scaled roll, pitch, constrained yaw and throttle for each motor
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = out_max_range+thr_adj +
|
|
rpy_scale*rpy_out[i];
|
|
}
|
|
}
|
|
|
|
// adjust for throttle curve
|
|
if (_throttle_curve_enabled) {
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = _throttle_curve.get_y(motor_out[i]);
|
|
}
|
|
}
|
|
}
|
|
// clip motor output if required (shouldn't be)
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = constrain_int16(motor_out[i], out_min, out_max);
|
|
}
|
|
}
|
|
}
|
|
|
|
// send output to each motor
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
hal.rcout->write(_motor_to_channel_map[i], motor_out[i]);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
// output_armed - sends commands to the motors
|
|
void AP_MotorsMatrix::output_armed()
|
|
{
|
|
int8_t i;
|
|
int16_t out_min = _rc_throttle->radio_min;
|
|
int16_t out_max = _rc_throttle->radio_max;
|
|
int16_t rc_yaw_constrained_pwm;
|
|
int16_t rc_yaw_excess;
|
|
int16_t upper_margin, lower_margin;
|
|
int16_t motor_adjustment = 0;
|
|
int16_t yaw_to_execute = 0;
|
|
|
|
// initialize reached_limit flag
|
|
_reached_limit = AP_MOTOR_NO_LIMITS_REACHED;
|
|
|
|
// Throttle is 0 to 1000 only
|
|
_rc_throttle->servo_out = constrain_int16(_rc_throttle->servo_out, 0, _max_throttle);
|
|
|
|
// capture desired roll, pitch, yaw and throttle from receiver
|
|
_rc_roll->calc_pwm();
|
|
_rc_pitch->calc_pwm();
|
|
_rc_throttle->calc_pwm();
|
|
_rc_yaw->calc_pwm();
|
|
|
|
// if we are not sending a throttle output, we cut the motors
|
|
if(_rc_throttle->servo_out == 0) {
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
motor_out[i] = _rc_throttle->radio_min;
|
|
}
|
|
}
|
|
// if we have any roll, pitch or yaw input then it's breaching the limit
|
|
if( _rc_roll->pwm_out != 0 || _rc_pitch->pwm_out != 0 ) {
|
|
_reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT;
|
|
}
|
|
if( _rc_yaw->pwm_out != 0 ) {
|
|
_reached_limit |= AP_MOTOR_YAW_LIMIT;
|
|
}
|
|
} else { // non-zero throttle
|
|
|
|
out_min = _rc_throttle->radio_min + _min_throttle;
|
|
|
|
// initialise rc_yaw_contrained_pwm that we will certainly output and rc_yaw_excess that we will do on best-efforts basis.
|
|
// Note: these calculations and many others below depend upon _yaw_factors always being 0, -1 or 1.
|
|
if( _rc_yaw->pwm_out < -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
|
|
rc_yaw_constrained_pwm = -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
|
rc_yaw_excess = _rc_yaw->pwm_out+AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
|
}else if( _rc_yaw->pwm_out > AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
|
|
rc_yaw_constrained_pwm = AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
|
rc_yaw_excess = _rc_yaw->pwm_out-AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
|
}else{
|
|
rc_yaw_constrained_pwm = _rc_yaw->pwm_out;
|
|
rc_yaw_excess = 0;
|
|
}
|
|
|
|
// initialise upper and lower margins
|
|
upper_margin = lower_margin = out_max - out_min;
|
|
|
|
// add roll, pitch, throttle and constrained yaw for each motor
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
motor_out[i] = _rc_throttle->radio_out +
|
|
_rc_roll->pwm_out * _roll_factor[i] +
|
|
_rc_pitch->pwm_out * _pitch_factor[i] +
|
|
rc_yaw_constrained_pwm * _yaw_factor[i];
|
|
|
|
// calculate remaining room between fastest running motor and top of pwm range
|
|
if( out_max - motor_out[i] < upper_margin) {
|
|
upper_margin = out_max - motor_out[i];
|
|
}
|
|
// calculate remaining room between slowest running motor and bottom of pwm range
|
|
if( motor_out[i] - out_min < lower_margin ) {
|
|
lower_margin = motor_out[i] - out_min;
|
|
}
|
|
}
|
|
}
|
|
|
|
// if motors are running too fast and we have enough room below, lower overall throttle
|
|
if( upper_margin < 0 || lower_margin < 0 ) {
|
|
|
|
// calculate throttle adjustment that equalizes upper and lower margins. We will never push the throttle beyond this point
|
|
motor_adjustment = (upper_margin - lower_margin) / 2; // i.e. if overflowed by 20 on top, 30 on bottom, upper_margin = -20, lower_margin = -30. will adjust motors -5.
|
|
|
|
// if we have overflowed on the top, reduce but no more than to the mid point
|
|
if( upper_margin < 0 ) {
|
|
motor_adjustment = max(upper_margin, motor_adjustment);
|
|
}
|
|
|
|
// if we have underflowed on the bottom, increase throttle but no more than to the mid point
|
|
if( lower_margin < 0 ) {
|
|
motor_adjustment = min(-lower_margin, motor_adjustment);
|
|
}
|
|
}
|
|
|
|
// move throttle up or down to to pull within tolerance
|
|
if( motor_adjustment != 0 ) {
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
motor_out[i] += motor_adjustment;
|
|
}
|
|
}
|
|
|
|
// we haven't even been able to apply roll, pitch and minimal yaw without adjusting throttle so mark all limits as breached
|
|
_reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT | AP_MOTOR_THROTTLE_LIMIT;
|
|
}
|
|
|
|
// if we didn't give all the yaw requested, calculate how much additional yaw we can add
|
|
if( rc_yaw_excess != 0 ) {
|
|
|
|
// try for everything
|
|
yaw_to_execute = rc_yaw_excess;
|
|
|
|
// loop through motors and reduce as necessary
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] && _yaw_factor[i] != 0 ) {
|
|
|
|
// calculate upper and lower margins for this motor
|
|
upper_margin = max(0,out_max - motor_out[i]);
|
|
lower_margin = max(0,motor_out[i] - out_min);
|
|
|
|
// motor is increasing, check upper limit
|
|
if( rc_yaw_excess > 0 && _yaw_factor[i] > 0 ) {
|
|
yaw_to_execute = min(yaw_to_execute, upper_margin);
|
|
}
|
|
|
|
// motor is decreasing, check lower limit
|
|
if( rc_yaw_excess > 0 && _yaw_factor[i] < 0 ) {
|
|
yaw_to_execute = min(yaw_to_execute, lower_margin);
|
|
}
|
|
|
|
// motor is decreasing, check lower limit
|
|
if( rc_yaw_excess < 0 && _yaw_factor[i] > 0 ) {
|
|
yaw_to_execute = max(yaw_to_execute, -lower_margin);
|
|
}
|
|
|
|
// motor is increasing, check upper limit
|
|
if( rc_yaw_excess < 0 && _yaw_factor[i] < 0 ) {
|
|
yaw_to_execute = max(yaw_to_execute, -upper_margin);
|
|
}
|
|
}
|
|
}
|
|
// check yaw_to_execute is reasonable
|
|
if( yaw_to_execute != 0 && ((yaw_to_execute>0 && rc_yaw_excess>0) || (yaw_to_execute<0 && rc_yaw_excess<0)) ) {
|
|
// add the additional yaw
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
motor_out[i] += _yaw_factor[i] * yaw_to_execute;
|
|
}
|
|
}
|
|
}
|
|
// mark yaw limit reached if we didn't get everything we asked for
|
|
if( yaw_to_execute != rc_yaw_excess ) {
|
|
_reached_limit |= AP_MOTOR_YAW_LIMIT;
|
|
}
|
|
}
|
|
|
|
// adjust for throttle curve
|
|
if( _throttle_curve_enabled ) {
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
motor_out[i] = _throttle_curve.get_y(motor_out[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// clip motor output if required (shouldn't be)
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
motor_out[i] = constrain_int16(motor_out[i], out_min, out_max);
|
|
}
|
|
}
|
|
}
|
|
|
|
// send output to each motor
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
hal.rcout->write(_motor_to_channel_map[i], motor_out[i]);
|
|
}
|
|
}
|
|
}
|
|
#endif // AP_MOTORS_MATRIX_SCALING_STABILITY_PATCH
|
|
|
|
// output_disarmed - sends commands to the motors
|
|
void AP_MotorsMatrix::output_disarmed()
|
|
{
|
|
// Send minimum values to all motors
|
|
output_min();
|
|
}
|
|
|
|
// output_disarmed - sends commands to the motors
|
|
void AP_MotorsMatrix::output_test()
|
|
{
|
|
uint8_t min_order, max_order;
|
|
uint8_t i,j;
|
|
|
|
// find min and max orders
|
|
min_order = _test_order[0];
|
|
max_order = _test_order[0];
|
|
for(i=1; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( _test_order[i] < min_order )
|
|
min_order = _test_order[i];
|
|
if( _test_order[i] > max_order )
|
|
max_order = _test_order[i];
|
|
}
|
|
|
|
// shut down all motors
|
|
output_min();
|
|
|
|
// first delay is longer
|
|
hal.scheduler->delay(4000);
|
|
|
|
// loop through all the possible orders spinning any motors that match that description
|
|
for( i=min_order; i<=max_order; i++ ) {
|
|
for( j=0; j<AP_MOTORS_MAX_NUM_MOTORS; j++ ) {
|
|
if( motor_enabled[j] && _test_order[j] == i ) {
|
|
// turn on this motor and wait 1/3rd of a second
|
|
hal.rcout->write(_motor_to_channel_map[j], _rc_throttle->radio_min + _min_throttle);
|
|
hal.scheduler->delay(300);
|
|
hal.rcout->write(_motor_to_channel_map[j], _rc_throttle->radio_min);
|
|
hal.scheduler->delay(2000);
|
|
}
|
|
}
|
|
}
|
|
|
|
// shut down all motors
|
|
output_min();
|
|
}
|
|
|
|
// add_motor
|
|
void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order)
|
|
{
|
|
// ensure valid motor number is provided
|
|
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
|
|
|
|
// increment number of motors if this motor is being newly motor_enabled
|
|
if( !motor_enabled[motor_num] ) {
|
|
motor_enabled[motor_num] = true;
|
|
_num_motors++;
|
|
}
|
|
|
|
// set roll, pitch, thottle factors and opposite motor (for stability patch)
|
|
_roll_factor[motor_num] = roll_fac;
|
|
_pitch_factor[motor_num] = pitch_fac;
|
|
_yaw_factor[motor_num] = yaw_fac;
|
|
|
|
// set order that motor appears in test
|
|
_test_order[motor_num] = testing_order;
|
|
}
|
|
}
|
|
|
|
// add_motor using just position and prop direction
|
|
void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order)
|
|
{
|
|
// call raw motor set-up method
|
|
add_motor_raw(
|
|
motor_num,
|
|
cosf(radians(angle_degrees + 90)), // roll factor
|
|
cosf(radians(angle_degrees)), // pitch factor
|
|
yaw_factor, // yaw factor
|
|
testing_order);
|
|
|
|
}
|
|
|
|
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor
|
|
void AP_MotorsMatrix::remove_motor(int8_t motor_num)
|
|
{
|
|
// ensure valid motor number is provided
|
|
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
|
|
|
|
// if the motor was enabled decrement the number of motors
|
|
if( motor_enabled[motor_num] )
|
|
_num_motors--;
|
|
|
|
// disable the motor, set all factors to zero
|
|
motor_enabled[motor_num] = false;
|
|
_roll_factor[motor_num] = 0;
|
|
_pitch_factor[motor_num] = 0;
|
|
_yaw_factor[motor_num] = 0;
|
|
}
|
|
}
|
|
|
|
// remove_all_motors - removes all motor definitions
|
|
void AP_MotorsMatrix::remove_all_motors()
|
|
{
|
|
for( int8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
remove_motor(i);
|
|
}
|
|
_num_motors = 0;
|
|
}
|