ardupilot/ArduCopter/motors.pde

727 lines
24 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define ARM_DELAY 20 // called at 10hz so 2 seconds
#define DISARM_DELAY 20 // called at 10hz so 2 seconds
#define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds
#define AUTO_DISARMING_DELAY 15 // called at 1hz so 15 seconds
static uint8_t auto_disarming_counter;
// arm_motors_check - checks for pilot input to arm or disarm the copter
// called at 10hz
static void arm_motors_check()
{
static int16_t arming_counter;
// ensure throttle is down
if (g.rc_3.control_in > 0) {
arming_counter = 0;
return;
}
int16_t tmp = g.rc_4.control_in;
// full right
if (tmp > 4000) {
// increase the arming counter to a maximum of 1 beyond the auto trim counter
if( arming_counter <= AUTO_TRIM_DELAY ) {
arming_counter++;
}
// arm the motors and configure for flight
if (arming_counter == ARM_DELAY && !motors.armed()) {
// reset arming counter if arming fail
if (!init_arm_motors(false)) {
arming_counter = 0;
}
}
// arm the motors and configure for flight
if (arming_counter == AUTO_TRIM_DELAY && motors.armed() && control_mode == STABILIZE) {
auto_trim_counter = 250;
// ensure auto-disarm doesn't trigger immediately
auto_disarming_counter = 0;
}
// full left
}else if (tmp < -4000) {
if (!mode_has_manual_throttle(control_mode) && !ap.land_complete) {
arming_counter = 0;
return;
}
// increase the counter to a maximum of 1 beyond the disarm delay
if( arming_counter <= DISARM_DELAY ) {
arming_counter++;
}
// disarm the motors
if (arming_counter == DISARM_DELAY && motors.armed()) {
init_disarm_motors();
}
// Yaw is centered so reset arming counter
}else{
arming_counter = 0;
}
}
// auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 15 seconds
// called at 1hz
static void auto_disarm_check()
{
// exit immediately if we are already disarmed or throttle is not zero
if (!motors.armed() || !ap.throttle_zero) {
auto_disarming_counter = 0;
return;
}
// allow auto disarm in manual flight modes or Loiter/AltHold if we're landed
if (mode_has_manual_throttle(control_mode) || ap.land_complete) {
auto_disarming_counter++;
if(auto_disarming_counter >= AUTO_DISARMING_DELAY) {
init_disarm_motors();
auto_disarming_counter = 0;
}
}else{
auto_disarming_counter = 0;
}
}
// init_arm_motors - performs arming process including initialisation of barometer and gyros
// returns false if arming failed because of pre-arm checks, arming checks or a gyro calibration failure
static bool init_arm_motors(bool arming_from_gcs)
{
// arming marker
// Flag used to track if we have armed the motors the first time.
// This is used to decide if we should run the ground_start routine
// which calibrates the IMU
static bool did_ground_start = false;
static bool in_arm_motors = false;
// exit immediately if already in this function
if (in_arm_motors) {
return false;
}
in_arm_motors = true;
// run pre-arm-checks and display failures
if(!pre_arm_checks(true) || !arm_checks(true, arming_from_gcs)) {
AP_Notify::events.arming_failed = true;
in_arm_motors = false;
return false;
}
// disable cpu failsafe because initialising everything takes a while
failsafe_disable();
// reset battery failsafe
set_failsafe_battery(false);
// notify that arming will occur (we do this early to give plenty of warning)
AP_Notify::flags.armed = true;
// call update_notify a few times to ensure the message gets out
for (uint8_t i=0; i<=10; i++) {
update_notify();
}
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS"));
#endif
// Remember Orientation
// --------------------
init_simple_bearing();
initial_armed_bearing = ahrs.yaw_sensor;
// Reset home position if it has already been set before (but not locked)
if (ap.home_state == HOME_SET_NOT_LOCKED) {
set_home_to_current_location();
}
calc_distance_and_bearing();
if(did_ground_start == false) {
startup_ground(true);
// final check that gyros calibrated successfully
if (((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) && !ins.gyro_calibrated_ok_all()) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Gyro calibration failed"));
AP_Notify::flags.armed = false;
failsafe_enable();
in_arm_motors = false;
return false;
}
did_ground_start = true;
}
// go back to normal AHRS gains
ahrs.set_fast_gains(false);
// enable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(true);
hal.util->set_soft_armed(true);
// set hover throttle
motors.set_hover_throttle(g.throttle_mid);
#if SPRAYER == ENABLED
// turn off sprayer's test if on
sprayer.test_pump(false);
#endif
// short delay to allow reading of rc inputs
delay(30);
// enable output to motors
output_min();
// finally actually arm the motors
motors.armed(true);
// log arming to dataflash
Log_Write_Event(DATA_ARMED);
// log flight mode in case it was changed while vehicle was disarmed
DataFlash.Log_Write_Mode(control_mode);
// reenable failsafe
failsafe_enable();
// perf monitor ignores delay due to arming
perf_ignore_this_loop();
// flag exiting this function
in_arm_motors = false;
// return success
return true;
}
// perform pre-arm checks and set ap.pre_arm_check flag
// return true if the checks pass successfully
static bool pre_arm_checks(bool display_failure)
{
// exit immediately if already armed
if (motors.armed()) {
return true;
}
// exit immediately if we've already successfully performed the pre-arm check
if (ap.pre_arm_check) {
// run gps checks because results may change and affect LED colour
// no need to display failures because arm_checks will do that if the pilot tries to arm
pre_arm_gps_checks(false);
return true;
}
// succeed if pre arm checks are disabled
if(g.arming_check == ARMING_CHECK_NONE) {
set_pre_arm_check(true);
set_pre_arm_rc_check(true);
return true;
}
// pre-arm rc checks a prerequisite
pre_arm_rc_checks();
if(!ap.pre_arm_rc_check) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: RC not calibrated"));
}
return false;
}
// check Baro
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
// barometer health check
if(!barometer.all_healthy()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Barometer not healthy"));
}
return false;
}
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
// that may differ from the baro height due to baro drift.
nav_filter_status filt_status = inertial_nav.get_filter_status();
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
if (using_baro_ref) {
if (fabs(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Altitude disparity"));
}
return false;
}
}
}
// check Compass
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) {
// check the primary compass is healthy
if(!compass.healthy()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not healthy"));
}
return false;
}
// check compass learning is on or offsets have been set
if(!compass.configured()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not calibrated"));
}
return false;
}
// check for unreasonable compass offsets
Vector3f offsets = compass.get_offsets();
if(offsets.length() > COMPASS_OFFSETS_MAX) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass offsets too high"));
}
return false;
}
// check for unreasonable mag field length
float mag_field = compass.get_field().length();
if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65 || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check mag field"));
}
return false;
}
#if COMPASS_MAX_INSTANCES > 1
// check all compasses point in roughly same direction
if (compass.get_count() > 1) {
Vector3f prime_mag_vec = compass.get_field();
prime_mag_vec.normalize();
for(uint8_t i=0; i<compass.get_count(); i++) {
// get next compass
Vector3f mag_vec = compass.get_field(i);
mag_vec.normalize();
Vector3f vec_diff = mag_vec - prime_mag_vec;
if (vec_diff.length() > COMPASS_ACCEPTABLE_VECTOR_DIFF) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent compasses"));
}
return false;
}
}
}
#endif
}
// check GPS
if (!pre_arm_gps_checks(display_failure)) {
return false;
}
#if AC_FENCE == ENABLED
// check fence is initialised
if(!fence.pre_arm_check()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: check fence"));
}
return false;
}
#endif
// check INS
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
// check accelerometers have been calibrated
if(!ins.calibrated()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not calibrated"));
}
return false;
}
// check accels are healthy
if(!ins.get_accel_health_all()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Accelerometers not healthy"));
}
return false;
}
#if INS_MAX_INSTANCES > 1
// check all accelerometers point in roughly same direction
if (ins.get_accel_count() > 1) {
const Vector3f &prime_accel_vec = ins.get_accel();
for(uint8_t i=0; i<ins.get_accel_count(); i++) {
// get next accel vector
const Vector3f &accel_vec = ins.get_accel(i);
Vector3f vec_diff = accel_vec - prime_accel_vec;
if (vec_diff.length() > PREARM_MAX_ACCEL_VECTOR_DIFF) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent Accelerometers"));
}
return false;
}
}
}
#endif
// check gyros are healthy
if(!ins.get_gyro_health_all()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Gyros not healthy"));
}
return false;
}
#if INS_MAX_INSTANCES > 1
// check all gyros are consistent
if (ins.get_gyro_count() > 1) {
for(uint8_t i=0; i<ins.get_gyro_count(); i++) {
// get rotation rate difference between gyro #i and primary gyro
Vector3f vec_diff = ins.get_gyro(i) - ins.get_gyro();
if (vec_diff.length() > PREARM_MAX_GYRO_VECTOR_DIFF) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent Gyros"));
}
return false;
}
}
}
#endif
}
#if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN
#ifndef CONFIG_ARCH_BOARD_PX4FMU_V1
// check board voltage
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
if(hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Board Voltage"));
}
return false;
}
}
#endif
#endif
// check various parameter values
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {
// ensure ch7 and ch8 have different functions
if (check_duplicate_auxsw()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Duplicate Aux Switch Options"));
}
return false;
}
// failsafe parameter checks
if (g.failsafe_throttle) {
// check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900
if (g.rc_3.radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check FS_THR_VALUE"));
}
return false;
}
}
// lean angle parameter check
if (aparm.angle_max < 1000 || aparm.angle_max > 8000) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check ANGLE_MAX"));
}
return false;
}
// acro balance parameter check
if ((g.acro_balance_roll > g.p_stabilize_roll.kP()) || (g.acro_balance_pitch > g.p_stabilize_pitch.kP())) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: ACRO_BAL_ROLL/PITCH"));
}
return false;
}
}
// if we've gotten this far then pre arm checks have completed
set_pre_arm_check(true);
return true;
}
// perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag
static void pre_arm_rc_checks()
{
// exit immediately if we've already successfully performed the pre-arm rc check
if( ap.pre_arm_rc_check ) {
return;
}
// set rc-checks to success if RC checks are disabled
if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) {
set_pre_arm_rc_check(true);
return;
}
// check if radio has been calibrated
if(!g.rc_3.radio_min.load() && !g.rc_3.radio_max.load()) {
return;
}
// check channels 1 & 2 have min <= 1300 and max >= 1700
if (g.rc_1.radio_min > 1300 || g.rc_1.radio_max < 1700 || g.rc_2.radio_min > 1300 || g.rc_2.radio_max < 1700) {
return;
}
// check channels 3 & 4 have min <= 1300 and max >= 1700
if (g.rc_3.radio_min > 1300 || g.rc_3.radio_max < 1700 || g.rc_4.radio_min > 1300 || g.rc_4.radio_max < 1700) {
return;
}
// check channels 1 & 2 have trim >= 1300 and <= 1700
if (g.rc_1.radio_trim < 1300 || g.rc_1.radio_trim > 1700 || g.rc_2.radio_trim < 1300 || g.rc_2.radio_trim > 1700) {
return;
}
// check channel 4 has trim >= 1300 and <= 1700
if (g.rc_4.radio_trim < 1300 || g.rc_4.radio_trim > 1700) {
return;
}
// if we've gotten this far rc is ok
set_pre_arm_rc_check(true);
}
// performs pre_arm gps related checks and returns true if passed
static bool pre_arm_gps_checks(bool display_failure)
{
// always check if inertial nav has started and is ready
if(!ahrs.healthy()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Waiting for Nav Checks"));
}
return false;
}
// return true immediately if gps check is disabled
if (!(g.arming_check == ARMING_CHECK_ALL || g.arming_check & ARMING_CHECK_GPS)) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// check if flight mode requires GPS
bool gps_required = mode_requires_GPS(control_mode);
#if AC_FENCE == ENABLED
// if circular fence is enabled we need GPS
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) {
gps_required = true;
}
#endif
// return true if GPS is not required
if (!gps_required) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// ensure GPS is ok
if (!position_ok()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Need 3D Fix"));
}
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// check home and EKF origin are not too far
if (far_from_EKF_origin(ahrs.get_home())) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: EKF-home variance"));
}
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// warn about hdop separately - to prevent user confusion with no gps lock
if (gps.get_hdop() > g.gps_hdop_good) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: High GPS HDOP"));
}
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// if we got here all must be ok
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// arm_checks - perform final checks before arming
// always called just before arming. Return true if ok to arm
// has side-effect that logging is started
static bool arm_checks(bool display_failure, bool arming_from_gcs)
{
#if LOGGING_ENABLED == ENABLED
// start dataflash
start_logging();
#endif
// always check if inertial nav has started and is ready
if(!ahrs.healthy()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Waiting for Nav Checks"));
}
return false;
}
// always check if the current mode allows arming
if (!mode_allows_arming(control_mode, arming_from_gcs)) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Mode not armable"));
}
return false;
}
// always check if rotor is spinning on heli
#if FRAME_CONFIG == HELI_FRAME
// heli specific arming check
if (!motors.allow_arming()){
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Rotor not spinning"));
}
return false;
}
#endif // HELI_FRAME
// succeed if arming checks are disabled
if (g.arming_check == ARMING_CHECK_NONE) {
return true;
}
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
// that may differ from the baro height due to baro drift.
nav_filter_status filt_status = inertial_nav.get_filter_status();
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
if (((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) && using_baro_ref) {
if (fabs(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Altitude disparity"));
}
return false;
}
}
// check gps
if (!pre_arm_gps_checks(display_failure)) {
return false;
}
// check lean angle
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
if (labs(ahrs.roll_sensor) > aparm.angle_max || labs(ahrs.pitch_sensor) > aparm.angle_max) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Leaning"));
}
return false;
}
}
// check throttle
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) {
// check throttle is not too low - must be above failsafe throttle
if (g.failsafe_throttle != FS_THR_DISABLED && g.rc_3.radio_in < g.failsafe_throttle_value) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Throttle below Failsafe"));
}
return false;
}
// check throttle is not too high - skips checks if arming from GCS in Guided
if (!(arming_from_gcs && control_mode == GUIDED)) {
// above top of deadband is too always high
if (g.rc_3.control_in > (g.rc_3.get_control_mid() + g.throttle_deadzone)) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Throttle too high"));
}
return false;
}
// in manual modes throttle must be at zero
if ((mode_has_manual_throttle(control_mode) || control_mode == DRIFT) && g.rc_3.control_in > 0) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Throttle too high"));
}
return false;
}
}
}
// check if safety switch has been pushed
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Safety Switch"));
}
return false;
}
// if we've gotten this far all is ok
return true;
}
// init_disarm_motors - disarm motors
static void init_disarm_motors()
{
// return immediately if we are already disarmed
if (!motors.armed()) {
return;
}
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS"));
#endif
motors.armed(false);
// save compass offsets learned by the EKF
Vector3f magOffsets;
if (ahrs.use_compass() && ahrs.getMagOffsets(magOffsets)) {
compass.set_and_save_offsets(compass.get_primary(), magOffsets);
}
#if AUTOTUNE_ENABLED == ENABLED
// save auto tuned parameters
autotune_save_tuning_gains();
#endif
// we are not in the air
set_land_complete(true);
set_land_complete_maybe(true);
// reset the mission
mission.reset();
// setup fast AHRS gains to get right attitude
ahrs.set_fast_gains(true);
// log disarm to the dataflash
Log_Write_Event(DATA_DISARMED);
// suspend logging
if (!(g.log_bitmask & MASK_LOG_WHEN_DISARMED)) {
DataFlash.EnableWrites(false);
}
// disable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(false);
hal.util->set_soft_armed(false);
}
// motors_output - send output to motors library which will adjust and send to ESCs and servos
static void motors_output()
{
// check if we are performing the motor test
if (ap.motor_test) {
motor_test_output();
} else {
motors.output();
}
}