mirror of https://github.com/ArduPilot/ardupilot
238 lines
6.9 KiB
C++
238 lines
6.9 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include "Rover.h"
|
|
|
|
/*
|
|
allow for runtime change of control channel ordering
|
|
*/
|
|
void Rover::set_control_channels(void)
|
|
{
|
|
channel_steer = RC_Channel::rc_channel(rcmap.roll()-1);
|
|
channel_throttle = RC_Channel::rc_channel(rcmap.throttle()-1);
|
|
channel_learn = RC_Channel::rc_channel(g.learn_channel-1);
|
|
|
|
// set rc channel ranges
|
|
channel_steer->set_angle(SERVO_MAX);
|
|
channel_throttle->set_angle(100);
|
|
|
|
// For a rover safety is TRIM throttle
|
|
if (!arming.is_armed() && arming.arming_required() == AP_Arming::YES_MIN_PWM) {
|
|
hal.rcout->set_safety_pwm(1UL<<(rcmap.throttle()-1), channel_throttle->radio_trim);
|
|
}
|
|
|
|
// setup correct scaling for ESCs like the UAVCAN PX4ESC which
|
|
// take a proportion of speed.
|
|
hal.rcout->set_esc_scaling(channel_throttle->radio_min, channel_throttle->radio_max);
|
|
}
|
|
|
|
void Rover::init_rc_in()
|
|
{
|
|
// set rc dead zones
|
|
channel_steer->set_default_dead_zone(30);
|
|
channel_throttle->set_default_dead_zone(30);
|
|
|
|
//set auxiliary ranges
|
|
update_aux();
|
|
}
|
|
|
|
void Rover::init_rc_out()
|
|
{
|
|
RC_Channel::rc_channel(CH_1)->enable_out();
|
|
RC_Channel::rc_channel(CH_3)->enable_out();
|
|
|
|
if (arming.arming_required() != AP_Arming::YES_ZERO_PWM) {
|
|
channel_throttle->enable_out();
|
|
}
|
|
|
|
RC_Channel::output_trim_all();
|
|
|
|
// setup PWM values to send if the FMU firmware dies
|
|
RC_Channel::setup_failsafe_trim_all();
|
|
|
|
// output throttle trim when safety off if arming
|
|
// is setup for min on disarm. MIN is from plane where MIN is effectively no throttle.
|
|
// For Rover's no throttle means TRIM as rovers can go backwards i.e. MIN throttle is
|
|
// full speed backward.
|
|
if (arming.arming_required() == AP_Arming::YES_MIN_PWM) {
|
|
hal.rcout->set_safety_pwm(1UL<<(rcmap.throttle()-1), channel_throttle->radio_trim);
|
|
}
|
|
}
|
|
|
|
/*
|
|
check for driver input on rudder/steering stick for arming/disarming
|
|
*/
|
|
void Rover::rudder_arm_disarm_check()
|
|
{
|
|
// In Rover we need to check that its set to the throttle trim and within the DZ
|
|
// if throttle is not within trim dz, then pilot cannot rudder arm/disarm
|
|
if (!channel_throttle->in_trim_dz()) {
|
|
rudder_arm_timer = 0;
|
|
return;
|
|
}
|
|
|
|
// if not in a manual throttle mode then disallow rudder arming/disarming
|
|
if (auto_throttle_mode) {
|
|
rudder_arm_timer = 0;
|
|
return;
|
|
}
|
|
|
|
if (!arming.is_armed()) {
|
|
// when not armed, full right rudder starts arming counter
|
|
if (channel_steer->control_in > 4000) {
|
|
uint32_t now = millis();
|
|
|
|
if (rudder_arm_timer == 0 ||
|
|
now - rudder_arm_timer < 3000) {
|
|
|
|
if (rudder_arm_timer == 0) {
|
|
rudder_arm_timer = now;
|
|
}
|
|
} else {
|
|
//time to arm!
|
|
arm_motors(AP_Arming::RUDDER);
|
|
rudder_arm_timer = 0;
|
|
}
|
|
} else {
|
|
// not at full right rudder
|
|
rudder_arm_timer = 0;
|
|
}
|
|
} else if (!motor_active()) {
|
|
// when armed and motor not active (not moving), full left rudder starts disarming counter
|
|
if (channel_steer->control_in < -4000) {
|
|
uint32_t now = millis();
|
|
|
|
if (rudder_arm_timer == 0 ||
|
|
now - rudder_arm_timer < 3000) {
|
|
if (rudder_arm_timer == 0) {
|
|
rudder_arm_timer = now;
|
|
}
|
|
} else {
|
|
//time to disarm!
|
|
disarm_motors();
|
|
rudder_arm_timer = 0;
|
|
}
|
|
} else {
|
|
// not at full left rudder
|
|
rudder_arm_timer = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Rover::read_radio()
|
|
{
|
|
if (!hal.rcin->new_input()) {
|
|
control_failsafe(channel_throttle->radio_in);
|
|
return;
|
|
}
|
|
|
|
failsafe.last_valid_rc_ms = AP_HAL::millis();
|
|
|
|
RC_Channel::set_pwm_all();
|
|
|
|
control_failsafe(channel_throttle->radio_in);
|
|
|
|
channel_throttle->servo_out = channel_throttle->control_in;
|
|
|
|
// Check if the throttle value is above 50% and we need to nudge
|
|
// Make sure its above 50% in the direction we are travelling
|
|
if ((abs(channel_throttle->servo_out) > 50) &&
|
|
(((channel_throttle->servo_out < 0) && in_reverse) ||
|
|
((channel_throttle->servo_out > 0) && !in_reverse))) {
|
|
throttle_nudge = (g.throttle_max - g.throttle_cruise) *
|
|
((fabsf(channel_throttle->norm_input())-0.5f) / 0.5f);
|
|
} else {
|
|
throttle_nudge = 0;
|
|
}
|
|
|
|
if (g.skid_steer_in) {
|
|
// convert the two radio_in values from skid steering values
|
|
/*
|
|
mixing rule:
|
|
steering = motor1 - motor2
|
|
throttle = 0.5*(motor1 + motor2)
|
|
motor1 = throttle + 0.5*steering
|
|
motor2 = throttle - 0.5*steering
|
|
*/
|
|
|
|
float motor1 = channel_steer->norm_input();
|
|
float motor2 = channel_throttle->norm_input();
|
|
float steering_scaled = motor1 - motor2;
|
|
float throttle_scaled = 0.5f*(motor1 + motor2);
|
|
int16_t steer = channel_steer->radio_trim;
|
|
int16_t thr = channel_throttle->radio_trim;
|
|
if (steering_scaled > 0.0f) {
|
|
steer += steering_scaled*(channel_steer->radio_max-channel_steer->radio_trim);
|
|
} else {
|
|
steer += steering_scaled*(channel_steer->radio_trim-channel_steer->radio_min);
|
|
}
|
|
if (throttle_scaled > 0.0f) {
|
|
thr += throttle_scaled*(channel_throttle->radio_max-channel_throttle->radio_trim);
|
|
} else {
|
|
thr += throttle_scaled*(channel_throttle->radio_trim-channel_throttle->radio_min);
|
|
}
|
|
channel_steer->set_pwm(steer);
|
|
channel_throttle->set_pwm(thr);
|
|
}
|
|
|
|
rudder_arm_disarm_check();
|
|
|
|
}
|
|
|
|
void Rover::control_failsafe(uint16_t pwm)
|
|
{
|
|
if (!g.fs_throttle_enabled) {
|
|
// no throttle failsafe
|
|
return;
|
|
}
|
|
|
|
// Check for failsafe condition based on loss of GCS control
|
|
if (rc_override_active) {
|
|
failsafe_trigger(FAILSAFE_EVENT_RC, (millis() - failsafe.rc_override_timer) > 1500);
|
|
} else if (g.fs_throttle_enabled) {
|
|
bool failed = pwm < (uint16_t)g.fs_throttle_value;
|
|
if (AP_HAL::millis() - failsafe.last_valid_rc_ms > 2000) {
|
|
failed = true;
|
|
}
|
|
failsafe_trigger(FAILSAFE_EVENT_THROTTLE, failed);
|
|
}
|
|
}
|
|
|
|
/*
|
|
return true if throttle level is below throttle failsafe threshold
|
|
or RC input is invalid
|
|
*/
|
|
bool Rover::throttle_failsafe_active(void)
|
|
{
|
|
if (!g.fs_throttle_enabled) {
|
|
return false;
|
|
}
|
|
if (millis() - failsafe.last_valid_rc_ms > 1000) {
|
|
// we haven't had a valid RC frame for 1 seconds
|
|
return true;
|
|
}
|
|
if (channel_throttle->get_reverse()) {
|
|
return channel_throttle->radio_in >= g.fs_throttle_value;
|
|
}
|
|
return channel_throttle->radio_in <= g.fs_throttle_value;
|
|
}
|
|
|
|
void Rover::trim_control_surfaces()
|
|
{
|
|
read_radio();
|
|
// Store control surface trim values
|
|
// ---------------------------------
|
|
if (channel_steer->radio_in > 1400) {
|
|
channel_steer->radio_trim = channel_steer->radio_in;
|
|
// save to eeprom
|
|
channel_steer->save_eeprom();
|
|
}
|
|
}
|
|
|
|
void Rover::trim_radio()
|
|
{
|
|
for (int y = 0; y < 30; y++) {
|
|
read_radio();
|
|
}
|
|
trim_control_surfaces();
|
|
}
|