mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 01:58:29 -04:00
e53bcba4d9
the AP_IMU keeps the handling of the calibration, but most of the real work happens in the lower level AP_IntertialSensor library
251 lines
5.8 KiB
C++
251 lines
5.8 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
//
|
|
//
|
|
// AP_IMU_INS.cpp - IMU Sensor Library for Ardupilot Mega
|
|
// Code by Michael Smith, Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
|
|
/// @file AP_IMU_INS.cpp
|
|
/// @brief IMU driver on top of an INS driver. Provides calibration for the
|
|
// inertial sensors (gyro and accel)
|
|
|
|
#include <FastSerial.h>
|
|
#include <AP_Common.h>
|
|
|
|
#include <avr/eeprom.h>
|
|
|
|
#include "AP_IMU_INS.h"
|
|
|
|
// XXX secret knowledge about the APM/oilpan wiring
|
|
//
|
|
#define A_LED_PIN 37
|
|
#define C_LED_PIN 35
|
|
|
|
void
|
|
AP_IMU_INS::init( Start_style style,
|
|
void (*delay_cb)(unsigned long t),
|
|
AP_PeriodicProcess * scheduler )
|
|
{
|
|
_ins->init(scheduler);
|
|
// if we are warm-starting, load the calibration data from EEPROM and go
|
|
//
|
|
if (WARM_START == style) {
|
|
_sensor_cal.load();
|
|
} else {
|
|
|
|
// do cold-start calibration for both accel and gyro
|
|
_init_gyro(delay_cb);
|
|
_init_accel(delay_cb);
|
|
|
|
// save calibration
|
|
_sensor_cal.save();
|
|
}
|
|
}
|
|
|
|
/**************************************************/
|
|
|
|
void
|
|
AP_IMU_INS::init_gyro(void (*delay_cb)(unsigned long t))
|
|
{
|
|
_init_gyro(delay_cb);
|
|
_sensor_cal.save();
|
|
}
|
|
|
|
void
|
|
AP_IMU_INS::_init_gyro(void (*delay_cb)(unsigned long t))
|
|
{
|
|
int flashcount = 0;
|
|
float adc_in;
|
|
float prev[3] = {0,0,0};
|
|
float total_change;
|
|
float max_offset;
|
|
float ins_gyro[6];
|
|
|
|
// cold start
|
|
delay_cb(500);
|
|
Serial.printf_P(PSTR("Init Gyro"));
|
|
|
|
for(int c = 0; c < 25; c++){
|
|
// Mostly we are just flashing the LED's here
|
|
// to tell the user to keep the IMU still
|
|
digitalWrite(A_LED_PIN, LOW);
|
|
digitalWrite(C_LED_PIN, HIGH);
|
|
delay_cb(20);
|
|
|
|
_ins->update();
|
|
_ins->get_gyros(ins_gyro);
|
|
|
|
digitalWrite(A_LED_PIN, HIGH);
|
|
digitalWrite(C_LED_PIN, LOW);
|
|
delay_cb(20);
|
|
}
|
|
|
|
for (int j = 0; j <= 2; j++)
|
|
_sensor_cal[j] = 500; // Just a large value to load prev[j] the first time
|
|
|
|
do {
|
|
|
|
_ins->update();
|
|
_ins->get_gyros(ins_gyro);
|
|
|
|
for (int j = 0; j <= 2; j++){
|
|
prev[j] = _sensor_cal[j];
|
|
adc_in = ins_gyro[j];
|
|
_sensor_cal[j] = adc_in;
|
|
}
|
|
|
|
for(int i = 0; i < 50; i++){
|
|
|
|
_ins->update();
|
|
_ins->get_gyros(ins_gyro);
|
|
|
|
for (int j = 0; j < 3; j++){
|
|
adc_in = ins_gyro[j];
|
|
// filter
|
|
_sensor_cal[j] = _sensor_cal[j] * 0.9 + adc_in * 0.1;
|
|
}
|
|
|
|
delay_cb(20);
|
|
if(flashcount == 5) {
|
|
Serial.printf_P(PSTR("*"));
|
|
digitalWrite(A_LED_PIN, LOW);
|
|
digitalWrite(C_LED_PIN, HIGH);
|
|
}
|
|
|
|
if(flashcount >= 10) {
|
|
flashcount = 0;
|
|
digitalWrite(C_LED_PIN, LOW);
|
|
digitalWrite(A_LED_PIN, HIGH);
|
|
}
|
|
flashcount++;
|
|
}
|
|
|
|
total_change = fabs(prev[0] - _sensor_cal[0]) + fabs(prev[1] - _sensor_cal[1]) +fabs(prev[2] - _sensor_cal[2]);
|
|
max_offset = (_sensor_cal[0] > _sensor_cal[1]) ? _sensor_cal[0] : _sensor_cal[1];
|
|
max_offset = (max_offset > _sensor_cal[2]) ? max_offset : _sensor_cal[2];
|
|
delay_cb(500);
|
|
} while ( total_change > _gyro_total_cal_change || max_offset > _gyro_max_cal_offset);
|
|
}
|
|
|
|
void
|
|
AP_IMU_INS::save()
|
|
{
|
|
_sensor_cal.save();
|
|
}
|
|
|
|
void
|
|
AP_IMU_INS::init_accel(void (*delay_cb)(unsigned long t))
|
|
{
|
|
_init_accel(delay_cb);
|
|
_sensor_cal.save();
|
|
}
|
|
|
|
void
|
|
AP_IMU_INS::_init_accel(void (*delay_cb)(unsigned long t))
|
|
{
|
|
int flashcount = 0;
|
|
float adc_in;
|
|
float prev[6] = {0,0,0};
|
|
float total_change;
|
|
float max_offset;
|
|
float ins_accel[3];
|
|
|
|
|
|
// cold start
|
|
delay_cb(500);
|
|
|
|
Serial.printf_P(PSTR("Init Accel"));
|
|
|
|
for (int j=3; j<=5; j++) _sensor_cal[j] = 500; // Just a large value to load prev[j] the first time
|
|
|
|
do {
|
|
_ins->update();
|
|
_ins->get_accels(ins_accel);
|
|
|
|
for (int j = 3; j <= 5; j++){
|
|
prev[j] = _sensor_cal[j];
|
|
adc_in = ins_accel[j-3];
|
|
_sensor_cal[j] = adc_in;
|
|
}
|
|
|
|
for(int i = 0; i < 50; i++){ // We take some readings...
|
|
|
|
delay_cb(20);
|
|
_ins->update();
|
|
_ins->get_accels(ins_accel);
|
|
|
|
for (int j = 3; j < 6; j++){
|
|
adc_in = ins_accel[j-3];
|
|
_sensor_cal[j] = _sensor_cal[j] * 0.9 + adc_in * 0.1;
|
|
}
|
|
|
|
if(flashcount == 5) {
|
|
Serial.printf_P(PSTR("*"));
|
|
digitalWrite(A_LED_PIN, LOW);
|
|
digitalWrite(C_LED_PIN, HIGH);
|
|
}
|
|
|
|
if(flashcount >= 10) {
|
|
flashcount = 0;
|
|
digitalWrite(C_LED_PIN, LOW);
|
|
digitalWrite(A_LED_PIN, HIGH);
|
|
}
|
|
flashcount++;
|
|
}
|
|
|
|
// null gravity from the Z accel
|
|
_sensor_cal[5] += 9.805;
|
|
|
|
total_change = fabs(prev[3] - _sensor_cal[3]) + fabs(prev[4] - _sensor_cal[4]) +fabs(prev[5] - _sensor_cal[5]);
|
|
max_offset = (_sensor_cal[3] > _sensor_cal[4]) ? _sensor_cal[3] : _sensor_cal[4];
|
|
max_offset = (max_offset > _sensor_cal[5]) ? max_offset : _sensor_cal[5];
|
|
|
|
delay_cb(500);
|
|
} while ( total_change > _accel_total_cal_change || max_offset > _accel_max_cal_offset);
|
|
|
|
Serial.printf_P(PSTR(" "));
|
|
}
|
|
|
|
float
|
|
AP_IMU_INS::_calibrated(uint8_t channel, float ins_value)
|
|
{
|
|
return ins_value - _sensor_cal[channel];
|
|
}
|
|
|
|
|
|
bool
|
|
AP_IMU_INS::update(void)
|
|
{
|
|
float gyros[3];
|
|
float accels[3];
|
|
|
|
_ins->update();
|
|
_ins->get_gyros(gyros);
|
|
_ins->get_accels(accels);
|
|
_sample_time = _ins->sample_time();
|
|
|
|
// convert corrected gyro readings to delta acceleration
|
|
//
|
|
_gyro.x = _calibrated(0, gyros[0]);
|
|
_gyro.y = _calibrated(1, gyros[1]);
|
|
_gyro.z = _calibrated(2, gyros[2]);
|
|
|
|
// convert corrected accelerometer readings to acceleration
|
|
//
|
|
_accel.x = _calibrated(3, accels[0]);
|
|
_accel.y = _calibrated(4, accels[1]);
|
|
_accel.z = _calibrated(5, accels[2]);
|
|
|
|
_accel_filtered.x = _accel_filtered.x / 2 + _accel.x / 2;
|
|
_accel_filtered.y = _accel_filtered.y / 2 + _accel.y / 2;
|
|
_accel_filtered.z = _accel_filtered.z / 2 + _accel.z / 2;
|
|
|
|
// always updated
|
|
return true;
|
|
}
|