ardupilot/libraries/GCS_MAVLink/GCS.cpp
Peter Barker 09f4961a63 GCS_MAVLink: increase statustext queue size to 7 on low-mem boards
... and SITL....

Copter currently spits out so many messages on a banner-send (e.g what
we do when parameters are fetched) that it puses the first sent message
straight out of the queue before it gets a chance to be sent from the
queue.
2021-05-27 12:39:04 +10:00

287 lines
9.3 KiB
C++

#include "GCS.h"
#include <AC_Fence/AC_Fence.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_BattMonitor/AP_BattMonitor.h>
#include <AP_Scheduler/AP_Scheduler.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_Arming/AP_Arming.h>
extern const AP_HAL::HAL& hal;
// if this assert fails then fix it and the comment in GCS.h where
// _statustext_queue is declared
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
assert_storage_size<GCS::statustext_t, 58> _assert_statustext_t_size;
#endif
void GCS::get_sensor_status_flags(uint32_t &present,
uint32_t &enabled,
uint32_t &health)
{
update_sensor_status_flags();
present = control_sensors_present;
enabled = control_sensors_enabled;
health = control_sensors_health;
}
MissionItemProtocol_Waypoints *GCS::_missionitemprotocol_waypoints;
MissionItemProtocol_Rally *GCS::_missionitemprotocol_rally;
MissionItemProtocol_Fence *GCS::_missionitemprotocol_fence;
const MAV_MISSION_TYPE GCS_MAVLINK::supported_mission_types[] = {
MAV_MISSION_TYPE_MISSION,
MAV_MISSION_TYPE_RALLY,
MAV_MISSION_TYPE_FENCE,
};
void GCS::init()
{
mavlink_system.sysid = sysid_this_mav();
}
/*
* returns a mask of channels that statustexts should be sent to
*/
uint8_t GCS::statustext_send_channel_mask() const
{
uint8_t ret = 0;
ret |= GCS_MAVLINK::active_channel_mask();
ret |= GCS_MAVLINK::streaming_channel_mask();
ret &= ~GCS_MAVLINK::private_channel_mask();
return ret;
}
/*
send a text message to all GCS
*/
void GCS::send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list)
{
uint8_t mask = statustext_send_channel_mask();
if (!update_send_has_been_called) {
// we have not yet initialised the streaming-channel-mask,
// which is done as part of the update() call. So just send
// it to all channels:
mask = (1<<_num_gcs)-1;
}
send_textv(severity, fmt, arg_list, mask);
}
void GCS::send_text(MAV_SEVERITY severity, const char *fmt, ...)
{
va_list arg_list;
va_start(arg_list, fmt);
send_textv(severity, fmt, arg_list);
va_end(arg_list);
}
void GCS::send_to_active_channels(uint32_t msgid, const char *pkt)
{
const mavlink_msg_entry_t *entry = mavlink_get_msg_entry(msgid);
if (entry == nullptr) {
return;
}
for (uint8_t i=0; i<num_gcs(); i++) {
GCS_MAVLINK &c = *chan(i);
if (c.is_private()) {
continue;
}
if (!c.is_active()) {
continue;
}
if (entry->max_msg_len + c.packet_overhead() > c.txspace()) {
// no room on this channel
continue;
}
c.send_message(pkt, entry);
}
}
void GCS::send_named_float(const char *name, float value) const
{
mavlink_named_value_float_t packet {};
packet.time_boot_ms = AP_HAL::millis();
packet.value = value;
memcpy(packet.name, name, MIN(strlen(name), (uint8_t)MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN));
gcs().send_to_active_channels(MAVLINK_MSG_ID_NAMED_VALUE_FLOAT,
(const char *)&packet);
}
/*
install an alternative protocol handler. This allows another
protocol to take over the link if MAVLink goes idle. It is used to
allow for the AP_BLHeli pass-thru protocols to run on hal.serial(0)
*/
bool GCS::install_alternative_protocol(mavlink_channel_t c, GCS_MAVLINK::protocol_handler_fn_t handler)
{
if (c >= num_gcs()) {
return false;
}
if (chan(c)->alternative.handler && handler) {
// already have one installed - we may need to add support for
// multiple alternative handlers
return false;
}
chan(c)->alternative.handler = handler;
return true;
}
void GCS::update_sensor_status_flags()
{
control_sensors_present = 0;
control_sensors_enabled = 0;
control_sensors_health = 0;
AP_AHRS &ahrs = AP::ahrs();
const AP_InertialSensor &ins = AP::ins();
control_sensors_present |= MAV_SYS_STATUS_AHRS;
if (ahrs.initialised()) {
control_sensors_enabled |= MAV_SYS_STATUS_AHRS;
if (ahrs.healthy()) {
if (!ahrs.have_inertial_nav() || ins.accel_calibrated_ok_all()) {
control_sensors_health |= MAV_SYS_STATUS_AHRS;
}
}
}
const Compass &compass = AP::compass();
if (AP::compass().enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
if (compass.enabled() && compass.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
const AP_Baro &barometer = AP::baro();
control_sensors_present |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
if (barometer.all_healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
}
const AP_GPS &gps = AP::gps();
if (gps.status() > AP_GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_GPS;
}
if (gps.is_healthy() && gps.status() >= min_status_for_gps_healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
}
const AP_BattMonitor &battery = AP::battery();
control_sensors_present |= MAV_SYS_STATUS_SENSOR_BATTERY;
if (battery.num_instances() > 0) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY;
}
if (battery.healthy() && !battery.has_failsafed()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_BATTERY;
}
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_GYRO;
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_ACCEL;
if (!ins.calibrating()) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_3D_ACCEL;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_3D_GYRO;
if (ins.get_accel_health_all()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_ACCEL;
}
if (ins.get_gyro_health_all() && ins.gyro_calibrated_ok_all()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
}
const AP_Logger &logger = AP::logger();
if (logger.logging_present() || gps.logging_present()) { // primary logging only (usually File)
control_sensors_present |= MAV_SYS_STATUS_LOGGING;
}
if (logger.logging_enabled() || gps.logging_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_LOGGING;
}
if (!logger.logging_failed() && !gps.logging_failed()) {
control_sensors_health |= MAV_SYS_STATUS_LOGGING;
}
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
control_sensors_present |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
}
control_sensors_health |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (ahrs.get_ekf_type() == 10) {
// always show EKF type 10 as healthy. This prevents spurious error
// messages in xplane and other simulators that use EKF type 10
control_sensors_health |= MAV_SYS_STATUS_AHRS | MAV_SYS_STATUS_SENSOR_GPS | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
#endif
const AC_Fence *fence = AP::fence();
if (fence != nullptr) {
if (fence->sys_status_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE;
}
if (fence->sys_status_present()) {
control_sensors_present |= MAV_SYS_STATUS_GEOFENCE;
}
if (!fence->sys_status_failed()) {
control_sensors_health |= MAV_SYS_STATUS_GEOFENCE;
}
}
#if HAL_VISUALODOM_ENABLED
const AP_VisualOdom *visual_odom = AP::visualodom();
if (visual_odom && visual_odom->enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_VISION_POSITION;
if (visual_odom->healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_VISION_POSITION;
}
}
#endif
// give GCS status of prearm checks. This is enabled if any arming checks are enabled.
// it is healthy if armed or checks are passing
control_sensors_present |= MAV_SYS_STATUS_PREARM_CHECK;
if (AP::arming().get_enabled_checks()) {
control_sensors_enabled |= MAV_SYS_STATUS_PREARM_CHECK;
if (hal.util->get_soft_armed() || AP_Notify::flags.pre_arm_check) {
control_sensors_health |= MAV_SYS_STATUS_PREARM_CHECK;
}
}
update_vehicle_sensor_status_flags();
}
bool GCS::out_of_time() const
{
// while we are in the delay callback we are never out of time:
if (hal.scheduler->in_delay_callback()) {
return false;
}
// we always want to be able to send messages out while in the error loop:
if (AP_BoardConfig::in_config_error()) {
return false;
}
if (min_loop_time_remaining_for_message_send_us() <= AP::scheduler().time_available_usec()) {
return false;
}
return true;
}
void gcs_out_of_space_to_send_count(mavlink_channel_t chan)
{
gcs().chan(chan)->out_of_space_to_send();
}