ardupilot/libraries/AP_Common/Location.h
2021-07-23 10:19:49 +09:00

151 lines
6.1 KiB
C++

#pragma once
#include <AP_Math/AP_Math.h>
class AP_Terrain;
#define LOCATION_ALT_MAX_M 83000 // maximum altitude (in meters) that can be fit into Location structure's alt field
class Location
{
public:
uint8_t relative_alt : 1; // 1 if altitude is relative to home
uint8_t loiter_ccw : 1; // 0 if clockwise, 1 if counter clockwise
uint8_t terrain_alt : 1; // this altitude is above terrain
uint8_t origin_alt : 1; // this altitude is above ekf origin
uint8_t loiter_xtrack : 1; // 0 to crosstrack from center of waypoint, 1 to crosstrack from tangent exit location
// note that mission storage only stores 24 bits of altitude (~ +/- 83km)
int32_t alt;
int32_t lat;
int32_t lng;
/// enumeration of possible altitude types
enum class AltFrame {
ABSOLUTE = 0,
ABOVE_HOME = 1,
ABOVE_ORIGIN = 2,
ABOVE_TERRAIN = 3
};
/// constructors
Location();
Location(int32_t latitude, int32_t longitude, int32_t alt_in_cm, AltFrame frame);
Location(const Vector3f &ekf_offset_neu, AltFrame frame);
Location(const Vector3d &ekf_offset_neu, AltFrame frame);
static void set_terrain(AP_Terrain* terrain) { _terrain = terrain; }
// set altitude
void set_alt_cm(int32_t alt_cm, AltFrame frame);
// get altitude (in cm) in the desired frame
// returns false on failure to get altitude in the desired frame which
// can only happen if the original frame or desired frame is above-terrain
bool get_alt_cm(AltFrame desired_frame, int32_t &ret_alt_cm) const WARN_IF_UNUSED;
// get altitude frame
AltFrame get_alt_frame() const;
// converts altitude to new frame
// returns false on failure to convert which can only happen if
// the original frame or desired frame is above-terrain
bool change_alt_frame(AltFrame desired_frame);
// get position as a vector from origin (x,y only or x,y,z)
// return false on failure to get the vector which can only
// happen if the EKF origin has not been set yet
// x, y and z are in centimetres
bool get_vector_xy_from_origin_NE(Vector2f &vec_ne) const WARN_IF_UNUSED;
bool get_vector_from_origin_NEU(Vector3f &vec_neu) const WARN_IF_UNUSED;
// return distance in meters between two locations
ftype get_distance(const struct Location &loc2) const;
// return the distance in meters in North/East/Down plane as a N/E/D vector to loc2
Vector3f get_distance_NED(const Location &loc2) const;
Vector3d get_distance_NED_double(const Location &loc2) const;
// return the distance in meters in North/East plane as a N/E vector to loc2
Vector2f get_distance_NE(const Location &loc2) const;
Vector2d get_distance_NE_double(const Location &loc2) const;
Vector2F get_distance_NE_ftype(const Location &loc2) const;
// extrapolate latitude/longitude given distances (in meters) north and east
static void offset_latlng(int32_t &lat, int32_t &lng, ftype ofs_north, ftype ofs_east);
void offset(ftype ofs_north, ftype ofs_east);
// extrapolate latitude/longitude given bearing and distance
void offset_bearing(ftype bearing_deg, ftype distance);
// extrapolate latitude/longitude given bearing, pitch and distance
void offset_bearing_and_pitch(ftype bearing_deg, ftype pitch_deg, ftype distance);
// longitude_scale - returns the scaler to compensate for
// shrinking longitude as you move north or south from the equator
// Note: this does not include the scaling to convert
// longitude/latitude points to meters or centimeters
static ftype longitude_scale(int32_t lat);
bool is_zero(void) const WARN_IF_UNUSED;
void zero(void);
// return bearing in centi-degrees from location to loc2
int32_t get_bearing_to(const struct Location &loc2) const;
// return the bearing in radians
ftype get_bearing(const struct Location &loc2) const { return radians(get_bearing_to(loc2) * 0.01); } ;
// check if lat and lng match. Ignore altitude and options
bool same_latlon_as(const Location &loc2) const;
/*
* convert invalid waypoint with useful data. return true if location changed
*/
bool sanitize(const struct Location &defaultLoc);
// return true when lat and lng are within range
bool check_latlng() const;
// see if location is past a line perpendicular to
// the line between point1 and point2 and passing through point2.
// If point1 is our previous waypoint and point2 is our target waypoint
// then this function returns true if we have flown past
// the target waypoint
bool past_interval_finish_line(const Location &point1, const Location &point2) const;
/*
return the proportion we are along the path from point1 to
point2, along a line parallel to point1<->point2.
This will be more than 1 if we have passed point2
*/
float line_path_proportion(const Location &point1, const Location &point2) const;
// update altitude and alt-frame base on this location's horizontal position between point1 and point2
// this location's lat,lon is used to calculate the alt of the closest point on the line between point1 and point2
// origin and destination's altitude frames must be the same
// this alt-frame will be updated to match the destination alt frame
void linearly_interpolate_alt(const Location &point1, const Location &point2);
bool initialised() const { return (lat !=0 || lng != 0 || alt != 0); }
// wrap longitude at -180e7 to 180e7
static int32_t wrap_longitude(int64_t lon);
// limit lattitude to -90e7 to 90e7
static int32_t limit_lattitude(int32_t lat);
// get lon1-lon2, wrapping at -180e7 to 180e7
static int32_t diff_longitude(int32_t lon1, int32_t lon2);
private:
static AP_Terrain *_terrain;
// scaling factor from 1e-7 degrees to meters at equator
// == 1.0e-7 * DEG_TO_RAD * RADIUS_OF_EARTH
static constexpr float LOCATION_SCALING_FACTOR = LATLON_TO_M;
// inverse of LOCATION_SCALING_FACTOR
static constexpr float LOCATION_SCALING_FACTOR_INV = LATLON_TO_M_INV;
};