ardupilot/libraries/AP_Mount/AP_Mount.cpp
Amilcar Lucas f4e9587aca Move local temp variables to the stack it saves 1952 bytes
Add function comments
Only use _ on class member variables
Only point to a 3D GPS point if GPS has a fix
Implement MAV_MOUNT_MODE_MAVLINK_TARGETING
2012-06-17 22:25:51 +02:00

340 lines
11 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
#include <AP_Mount.h>
extern RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; // the aux. servo ch. assigned to each function
AP_Mount::AP_Mount(const struct Location *current_loc, GPS *&gps, AP_AHRS *ahrs):
_gps(gps)
{
_ahrs = ahrs;
_current_loc = current_loc;
//set_mode(MAV_MOUNT_MODE_RETRACT);
set_mode(MAV_MOUNT_MODE_RC_TARGETING); // FIXME: This is just to test without mavlink
//set_mode(MAV_MOUNT_MODE_GPS_POINT); // FIXME: this is to test ONLY targeting
_retract_angles.x=0;
_retract_angles.y=0;
_retract_angles.z=0;
}
//sets the servo angles for retraction, note angles are * 100
void AP_Mount::set_retract_angles(int roll, int pitch, int yaw)
{
_retract_angles.x=roll;
_retract_angles.y=pitch;
_retract_angles.z=yaw;
}
//sets the servo angles for neutral, note angles are * 100
void AP_Mount::set_neutral_angles(int roll, int pitch, int yaw)
{
_neutral_angles.x=roll;
_neutral_angles.y=pitch;
_neutral_angles.z=yaw;
}
//sets the servo angles for MAVLink, note angles are * 100
void AP_Mount::set_mavlink_angles(int roll, int pitch, int yaw)
{
_mavlink_angles.x = roll;
_mavlink_angles.y = pitch;
_mavlink_angles.z = yaw;
}
// used to tell the mount to track GPS location
void AP_Mount::set_GPS_target_location(Location targetGPSLocation)
{
_target_GPS_location=targetGPSLocation;
}
// This one should be called periodically
void AP_Mount::update_mount_position()
{
switch(_mount_mode)
{
// move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage
case MAV_MOUNT_MODE_RETRACT:
_roll_angle =100*_retract_angles.x;
_pitch_angle=100*_retract_angles.y;
_yaw_angle =100*_retract_angles.z;
break;
// move mount to a neutral position, typically pointing forward
case MAV_MOUNT_MODE_NEUTRAL:
_roll_angle =100*_neutral_angles.x;
_pitch_angle=100*_neutral_angles.y;
_yaw_angle =100*_neutral_angles.z;
break;
// point to the angles given by a mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
{
_roll_control_angle = _mavlink_angles.x;
_pitch_control_angle = _mavlink_angles.y;
_yaw_control_angle = _mavlink_angles.z;
calculate();
break;
}
// RC radio manual angle control, but with stabilization from the AHRS
case MAV_MOUNT_MODE_RC_TARGETING:
{
G_RC_AUX(k_mount_roll)->rc_input(&_roll_control_angle, _roll_angle);
G_RC_AUX(k_mount_pitch)->rc_input(&_pitch_control_angle, _pitch_angle);
G_RC_AUX(k_mount_yaw)->rc_input(&_yaw_control_angle, _yaw_angle);
if (_ahrs){
calculate();
} else {
if (g_rc_function[RC_Channel_aux::k_mount_roll])
_roll_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_roll]);
if (g_rc_function[RC_Channel_aux::k_mount_pitch])
_pitch_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_pitch]);
if (g_rc_function[RC_Channel_aux::k_mount_yaw])
_yaw_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_yaw]);
}
break;
}
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
{
if(_gps->fix){
calc_GPS_target_angle(&_target_GPS_location);
calculate();
}
break;
}
default:
//do nothing
break;
}
// write the results to the servos
/*
G_RC_AUX(k_mount_roll)->angle_out(_roll_angle);
G_RC_AUX(k_mount_pitch)->angle_out(_pitch_angle);
G_RC_AUX(k_mount_yaw)->angle_out(_yaw_angle);
*/
// Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic
G_RC_AUX(k_mount_roll)->closest_limit(_roll_angle/10);
G_RC_AUX(k_mount_pitch)->closest_limit(_pitch_angle/10);
G_RC_AUX(k_mount_yaw)->closest_limit(_yaw_angle/10);
}
void AP_Mount::set_mode(enum MAV_MOUNT_MODE mode)
{
_mount_mode=mode;
}
// Change the configuration of the mount
// triggered by a MavLink packet.
void AP_Mount::configure_msg(mavlink_message_t* msg)
{
__mavlink_mount_configure_t packet;
mavlink_msg_mount_configure_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
set_mode((enum MAV_MOUNT_MODE)packet.mount_mode);
_stab_pitch = packet.stab_pitch;
_stab_roll = packet.stab_roll;
_stab_yaw = packet.stab_yaw;
}
// Control the mount (depends on the previously set mount configuration)
// triggered by a MavLink packet.
void AP_Mount::control_msg(mavlink_message_t *msg)
{
__mavlink_mount_control_t packet;
mavlink_msg_mount_control_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
switch (_mount_mode)
{
case MAV_MOUNT_MODE_RETRACT: // Load and keep safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization
set_retract_angles(packet.input_b, packet.input_a, packet.input_c);
if (packet.save_position)
{
// TODO: Save current trimmed position on EEPROM
}
break;
case MAV_MOUNT_MODE_NEUTRAL: // Load and keep neutral position (Roll,Pitch,Yaw) from EEPROM
set_neutral_angles(packet.input_b, packet.input_a, packet.input_c);
if (packet.save_position)
{
// TODO: Save current trimmed position on EEPROM
}
break;
case MAV_MOUNT_MODE_MAVLINK_TARGETING: // Load neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization
set_mavlink_angles(packet.input_b, packet.input_a, packet.input_c);
break;
case MAV_MOUNT_MODE_RC_TARGETING: // Load neutral position and start RC Roll,Pitch,Yaw control with stabilization
break;
case MAV_MOUNT_MODE_GPS_POINT: // Load neutral position and start to point to Lat,Lon,Alt
Location targetGPSLocation;
targetGPSLocation.lat = packet.input_a;
targetGPSLocation.lng = packet.input_b;
targetGPSLocation.alt = packet.input_c;
set_GPS_target_location(targetGPSLocation);
break;
}
}
// Return mount status information (depends on the previously set mount configuration)
// triggered by a MavLink packet.
void AP_Mount::status_msg(mavlink_message_t *msg)
{
__mavlink_mount_status_t packet;
mavlink_msg_mount_status_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
switch (_mount_mode)
{
case MAV_MOUNT_MODE_RETRACT: // safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization
case MAV_MOUNT_MODE_NEUTRAL: // neutral position (Roll,Pitch,Yaw) from EEPROM
case MAV_MOUNT_MODE_MAVLINK_TARGETING: // neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization
case MAV_MOUNT_MODE_RC_TARGETING: // neutral position and start RC Roll,Pitch,Yaw control with stabilization
packet.pointing_b = _roll_angle; ///< degrees*100
packet.pointing_a = _pitch_angle; ///< degrees*100
packet.pointing_c = _yaw_angle; ///< degrees*100
break;
case MAV_MOUNT_MODE_GPS_POINT: // neutral position and start to point to Lat,Lon,Alt
packet.pointing_a = _target_GPS_location.lat; ///< latitude
packet.pointing_b = _target_GPS_location.lng; ///< longitude
packet.pointing_c = _target_GPS_location.alt; ///< altitude
break;
}
// status reply
// TODO: is COMM_3 correct ?
mavlink_msg_mount_status_send(MAVLINK_COMM_3, packet.target_system, packet.target_component,
packet.pointing_a, packet.pointing_b, packet.pointing_c);
}
// Set mount point/region of interest, triggered by mission script commands
void AP_Mount::set_roi_cmd()
{
// TODO get the information out of the mission command and use it
}
// Set mount configuration, triggered by mission script commands
void AP_Mount::configure_cmd()
{
// TODO get the information out of the mission command and use it
}
// Control the mount (depends on the previously set mount configuration), triggered by mission script commands
void AP_Mount::control_cmd()
{
// TODO get the information out of the mission command and use it
}
void
AP_Mount::calc_GPS_target_angle(struct Location *target)
{
float GPS_vector_x = (target->lng-_current_loc->lng)*cos(ToRad((_current_loc->lat+target->lat)/(t7*2.0)))*.01113195;
float GPS_vector_y = (target->lat-_current_loc->lat)*.01113195;
float GPS_vector_z = (target->alt-_current_loc->alt); // baro altitude(IN CM) should be adjusted to known home elevation before take off (Set altimeter).
float target_distance = 100.0*sqrt(GPS_vector_x*GPS_vector_x + GPS_vector_y*GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters.
_roll_control_angle = 0;
_pitch_control_angle = atan2(GPS_vector_z, target_distance);
_yaw_control_angle = atan2(GPS_vector_x, GPS_vector_y);
// Converts +/- 180 into 0-360.
if(_yaw_control_angle<0){
_yaw_control_angle += 2*M_PI;
}
}
// Auto-detect the mount gimbal type depending on the functions assigned to the servos
void
AP_Mount::update_mount_type()
{
if ((g_rc_function[RC_Channel_aux::k_mount_roll] == NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] != NULL))
{
_mount_type = k_pan_tilt;
}
if ((g_rc_function[RC_Channel_aux::k_mount_roll] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] == NULL))
{
_mount_type = k_tilt_roll;
}
if ((g_rc_function[RC_Channel_aux::k_mount_roll] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] != NULL))
{
_mount_type = k_pan_tilt_roll;
}
}
// Inputs desired _roll_control_angle, _pitch_control_angle and _yaw_control_angle stabilizes them relative to the airframe
// and calculates output _roll_angle, _pitch_angle and _yaw_angle
void
AP_Mount::calculate()
{
Matrix3f m; ///< holds 3 x 3 matrix, var is used as temp in calcs
Matrix3f cam; ///< Rotation matrix earth to camera. Desired camera from input.
Matrix3f gimbal_target; ///< Rotation matrix from plane to camera. Then Euler angles to the servos.
float roll;
float pitch;
float yaw;
if (_ahrs){
m = _ahrs->get_dcm_matrix();
m.transpose();
cam.from_euler(_roll_control_angle, _pitch_control_angle, _yaw_control_angle);
gimbal_target = m * cam;
gimbal_target.to_euler(&roll, &pitch, &yaw);
_roll_angle = degrees(roll)*100;
_pitch_angle = degrees(pitch)*100;
_yaw_angle = degrees(yaw)*100;
}
}
// This function is needed to let the HIL code compile
long
AP_Mount::rc_map(RC_Channel_aux* rc_ch)
{
return (rc_ch->radio_in - rc_ch->radio_min) * (rc_ch->angle_max - rc_ch->angle_min) / (rc_ch->radio_max - rc_ch->radio_min) + rc_ch->angle_min;
}
// For testing and development. Called in the medium loop.
void
AP_Mount::debug_output()
{ Serial3.print("current - ");
Serial3.print("lat ");
Serial3.print(_current_loc->lat);
Serial3.print(",lon ");
Serial3.print(_current_loc->lng);
Serial3.print(",alt ");
Serial3.println(_current_loc->alt);
Serial3.print("gps - ");
Serial3.print("lat ");
Serial3.print(_gps->latitude);
Serial3.print(",lon ");
Serial3.print(_gps->longitude);
Serial3.print(",alt ");
Serial3.print(_gps->altitude);
Serial3.println();
Serial3.print("target - ");
Serial3.print("lat ");
Serial3.print(_target_GPS_location.lat);
Serial3.print(",lon ");
Serial3.print(_target_GPS_location.lng);
Serial3.print(",alt ");
Serial3.print(_target_GPS_location.alt);
Serial3.print(" hdg to targ ");
Serial3.print(degrees(_yaw_control_angle));
Serial3.println();
}