mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 15:08:28 -04:00
3c66cb8af1
this keeps the true airspeed ratio in the airspeed driver, which seems the most logical place
131 lines
3.6 KiB
C++
131 lines
3.6 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
* auto_calibration.cpp - airspeed auto calibration
|
|
|
|
* Algorithm by Paul Riseborough
|
|
*
|
|
*/
|
|
|
|
#include <AP_HAL.h>
|
|
#include <AP_Math.h>
|
|
#include <AP_Common.h>
|
|
#include <AP_Airspeed.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// constructor - fill in all the initial values
|
|
Airspeed_Calibration::Airspeed_Calibration() :
|
|
P(100, 0, 0,
|
|
0, 100, 0,
|
|
0, 0, 0.000001f),
|
|
Q0(0.01f),
|
|
Q1(0.000001f),
|
|
state(0, 0, 0),
|
|
DT(1)
|
|
{
|
|
}
|
|
|
|
/*
|
|
initialise the ratio
|
|
*/
|
|
void Airspeed_Calibration::init(float initial_ratio)
|
|
{
|
|
state.z = 1.0 / sqrtf(initial_ratio);
|
|
}
|
|
|
|
/*
|
|
update the state of the airspeed calibration - needs to be called
|
|
once a second
|
|
|
|
On an AVR2560 this costs 1.9 milliseconds per call
|
|
*/
|
|
float Airspeed_Calibration::update(float airspeed, const Vector3f &vg)
|
|
{
|
|
// Perform the covariance prediction
|
|
// Q is a diagonal matrix so only need to add three terms in
|
|
// C code implementation
|
|
// P = P + Q;
|
|
P.a.x += Q0;
|
|
P.b.y += Q0;
|
|
P.c.z += Q1;
|
|
|
|
// Perform the predicted measurement using the current state estimates
|
|
// No state prediction required because states are assumed to be time
|
|
// invariant plus process noise
|
|
// Ignore vertical wind component
|
|
float TAS_pred = state.z * sqrtf(sq(vg.x - state.x) + sq(vg.y - state.y) + sq(vg.z));
|
|
float TAS_mea = airspeed;
|
|
|
|
// Calculate the observation Jacobian H_TAS
|
|
float SH1 = sq(vg.y - state.y) + sq(vg.x - state.x);
|
|
if (SH1 < 0.000001f) {
|
|
// avoid division by a small number
|
|
return state.z;
|
|
}
|
|
float SH2 = 1/sqrt(SH1);
|
|
|
|
// observation Jacobian
|
|
Vector3f H_TAS(
|
|
-(state.z*SH2*(2*vg.x - 2*state.x))/2,
|
|
-(state.z*SH2*(2*vg.y - 2*state.y))/2,
|
|
1/SH2);
|
|
|
|
// Calculate the fusion innovaton covariance assuming a TAS measurement
|
|
// noise of 1.0 m/s
|
|
// S = H_TAS*P*H_TAS' + 1.0; % [1 x 3] * [3 x 3] * [3 x 1] + [1 x 1]
|
|
Vector3f PH = P * H_TAS;
|
|
float S = H_TAS * PH + 1.0f;
|
|
|
|
// Calculate the Kalman gain
|
|
// [3 x 3] * [3 x 1] / [1 x 1]
|
|
Vector3f KG = PH / S;
|
|
|
|
// Update the states
|
|
state += KG*(TAS_mea - TAS_pred); // [3 x 1] + [3 x 1] * [1 x 1]
|
|
|
|
// Update the covariance matrix
|
|
Vector3f HP2 = H_TAS * P;
|
|
P -= KG.mul_rowcol(HP2);
|
|
|
|
// force symmetry on the covariance matrix - necessary due to rounding
|
|
// errors
|
|
// Implementation will also need a further check to prevent diagonal
|
|
// terms becoming negative due to rounding errors
|
|
// This step can be made more efficient by excluding diagonal terms
|
|
// (would reduce processing by 1/3)
|
|
P = (P + P.transpose()) * 0.5f; // [1 x 1] * ( [3 x 3] + [3 x 3])
|
|
|
|
return state.z;
|
|
}
|
|
|
|
|
|
/*
|
|
called once a second to do calibration update
|
|
*/
|
|
void AP_Airspeed::update_calibration(Vector3f vground)
|
|
{
|
|
if (!_autocal) {
|
|
// auto-calibration not enabled
|
|
return;
|
|
}
|
|
// calculate true airspeed, assuming a airspeed ratio of 1.0
|
|
float true_airspeed = sqrtf(get_differential_pressure()) * _EAS2TAS;
|
|
float ratio = _calibration.update(true_airspeed, vground);
|
|
if (isnan(ratio) || isinf(ratio)) {
|
|
return;
|
|
}
|
|
// this constrains the resulting ratio to between 1.5 and 3
|
|
ratio = constrain_float(ratio, 0.577f, 0.816f);
|
|
_ratio.set(1/sq(ratio));
|
|
if (_counter > 60) {
|
|
if (_last_saved_ratio < 1.05f*_ratio ||
|
|
_last_saved_ratio < 0.95f*_ratio) {
|
|
_ratio.save();
|
|
_last_saved_ratio = _ratio;
|
|
_counter = 0;
|
|
}
|
|
} else {
|
|
_counter++;
|
|
}
|
|
}
|