mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 16:38:30 -04:00
171 lines
5.2 KiB
Plaintext
171 lines
5.2 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
//****************************************************************
|
|
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed.
|
|
//****************************************************************
|
|
|
|
static void learning()
|
|
{
|
|
// Calculate desired servo output for the turn // Wheels Direction
|
|
// ---------------------------------------------
|
|
|
|
g.channel_roll.servo_out = nav_roll;
|
|
g.channel_roll.servo_out = g.channel_roll.servo_out * g.turn_gain;
|
|
g.channel_rudder.servo_out = g.channel_roll.servo_out;
|
|
}
|
|
|
|
|
|
static void crash_checker()
|
|
{
|
|
if(ahrs.pitch_sensor < -4500){
|
|
crash_timer = 255;
|
|
}
|
|
if(crash_timer > 0)
|
|
crash_timer--;
|
|
}
|
|
|
|
static void calc_throttle()
|
|
{ int rov_speed;
|
|
|
|
int throttle_target = g.throttle_cruise + throttle_nudge + 50;
|
|
|
|
target_airspeed = g.airspeed_cruise;
|
|
|
|
if(speed_boost)
|
|
rov_speed = g.booster * target_airspeed;
|
|
else
|
|
rov_speed = target_airspeed;
|
|
|
|
groundspeed_error = rov_speed - (float)ground_speed;
|
|
|
|
int throttle_req = (throttle_target + g.pidTeThrottle.get_pid(groundspeed_error)) * 10;
|
|
|
|
if(g.throttle_slewrate > 0)
|
|
{ if (throttle_req > throttle_last)
|
|
throttle = throttle + g.throttle_slewrate;
|
|
else if (throttle_req < throttle_last) {
|
|
throttle = throttle - g.throttle_slewrate;
|
|
}
|
|
throttle = constrain(throttle, 500, throttle_req);
|
|
throttle_last = throttle;
|
|
} else {
|
|
throttle = throttle_req;
|
|
}
|
|
g.channel_throttle.servo_out = constrain(((float)throttle / 10.0f), 0, g.throttle_max.get());
|
|
}
|
|
|
|
/*****************************************
|
|
* Calculate desired turn angles (in medium freq loop)
|
|
*****************************************/
|
|
|
|
static void calc_nav_roll()
|
|
{
|
|
|
|
// Adjust gain based on ground speed
|
|
nav_gain_scaler = (float)ground_speed / (g.airspeed_cruise * 100.0);
|
|
nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4);
|
|
|
|
// Calculate the required turn of the wheels rover
|
|
// ----------------------------------------
|
|
|
|
// negative error = left turn
|
|
// positive error = right turn
|
|
|
|
nav_roll = g.pidNavRoll.get_pid(bearing_error, nav_gain_scaler); //returns desired bank angle in degrees*100
|
|
|
|
if(obstacle) { // obstacle avoidance
|
|
nav_roll += 9000; // if obstacle in front turn 90° right
|
|
speed_boost = false;
|
|
}
|
|
nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get());
|
|
|
|
}
|
|
|
|
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
|
|
// Keeps outdated data out of our calculations
|
|
static void reset_I(void)
|
|
{
|
|
g.pidNavRoll.reset_I();
|
|
g.pidTeThrottle.reset_I();
|
|
// g.pidAltitudeThrottle.reset_I();
|
|
}
|
|
|
|
/*****************************************
|
|
* Set the flight control servos based on the current calculated values
|
|
*****************************************/
|
|
static void set_servos(void)
|
|
{
|
|
int flapSpeedSource = 0;
|
|
|
|
// vectorize the rc channels
|
|
RC_Channel_aux* rc_array[NUM_CHANNELS];
|
|
rc_array[CH_1] = NULL;
|
|
rc_array[CH_2] = NULL;
|
|
rc_array[CH_3] = NULL;
|
|
rc_array[CH_4] = NULL;
|
|
rc_array[CH_5] = &g.rc_5;
|
|
rc_array[CH_6] = &g.rc_6;
|
|
rc_array[CH_7] = &g.rc_7;
|
|
rc_array[CH_8] = &g.rc_8;
|
|
|
|
if((control_mode == MANUAL) || (control_mode == LEARNING)){
|
|
// do a direct pass through of radio values
|
|
g.channel_roll.radio_out = g.channel_roll.radio_in;
|
|
|
|
if(obstacle) // obstacle in front, turn right in Stabilize mode
|
|
g.channel_roll.radio_out -= 500;
|
|
|
|
g.channel_pitch.radio_out = g.channel_pitch.radio_in;
|
|
|
|
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
|
|
g.channel_rudder.radio_out = g.channel_roll.radio_in;
|
|
} else {
|
|
|
|
g.channel_roll.calc_pwm();
|
|
g.channel_pitch.calc_pwm();
|
|
g.channel_rudder.calc_pwm();
|
|
|
|
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
|
|
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
|
|
|
|
}
|
|
|
|
if (control_mode >= FLY_BY_WIRE_B) {
|
|
// convert 0 to 100% into PWM
|
|
g.channel_throttle.calc_pwm();
|
|
}
|
|
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
|
|
// send values to the PWM timers for output
|
|
// ----------------------------------------
|
|
APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos
|
|
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos
|
|
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos
|
|
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos
|
|
// Route configurable aux. functions to their respective servos
|
|
|
|
g.rc_5.output_ch(CH_5);
|
|
g.rc_6.output_ch(CH_6);
|
|
g.rc_7.output_ch(CH_7);
|
|
g.rc_8.output_ch(CH_8);
|
|
|
|
#endif
|
|
}
|
|
|
|
static void demo_servos(byte i) {
|
|
|
|
while(i > 0){
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
|
|
APM_RC.OutputCh(1, 1400);
|
|
mavlink_delay(400);
|
|
APM_RC.OutputCh(1, 1600);
|
|
mavlink_delay(200);
|
|
APM_RC.OutputCh(1, 1500);
|
|
#endif
|
|
mavlink_delay(400);
|
|
i--;
|
|
}
|
|
}
|