mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 15:08:28 -04:00
39969e7d8e
AP_NavEKF3: Implement same maths as PX4/ecl EKF Replace attitude vector states with quaternions Remove gyro scale factor states Add XY accel delta velocity bias estimation Initial tuning Add GPS body frame offset compensation AP_NavEKF3: Fix bugs and consolidate aiding switch logic Switching in and out of aiding modes was being performed in more than one place and was using two variables. The reversion out of GPS mode due to prolonged loss of GPS was not working. This consolidates the logic and ensures that PV_AidingMode is only changed by the setAidingMode function. AP_NavEKF3: prevent multiple fusion mode changes per filter update AP_NavEKF3: Update tuning defaults AP_NavEKF3: Fix bug causing switching in and out of aiding If the GPS receiver was disconnected and no data received, then then the gpsGoodToAlign check did not get a chance to run and becasue it was previously true the EKF would switch back into aiding. This prevents this by ensuring that gpsGoodToAlign defaults to false when the check is not being performed. An additional check has also been dded to ensure that there is GPS data to fuse before we declare ready to use GPS. AP_NavEKF3: Fix bug preventing planes recovering from bad magnetometers This bug created a race condition whereby if the EKF had to reset the yaw to the GPS ground course to recover from a bad magnetometer, the new heading could be over-written by the bad magnetic heading when the plane reached the height for the scheduled reset. AP_NavEKF3: Improve switch-over to backup magnetometer When switching over to a back up magnetometer, ensure that the earth field estimate are reset. Otherwise mag earth field estimates due to the previous failed mag could cause data from the new mag to be rejected. AP_NavEKF3: enable automatic use of range finder height AP_NavEKF3: Fix bug in handling of invalid range data AP_NavEKF3: Fix height drift on ground using range finder without GPSAP_NavEKF3: AP_NavEKF3: Handle yaw jumps due to core switches AP_NavEKF3: Enable simultaneous GPS and optical flow use AP_NavEKF3: fix console status reporting AP_NavEKF3: send messages to mavlink instead of console This allows the GCS to better handle the display of messages to the user. AP_NavEKF3: replace deprecated function call AP_NavEKF3: Compensate for sensor body frame offsets AP_NavEKF3: Fix bug in median filter code AP_NavEKF3: save some memory in the position offsets in EKF3 We don't need to copy that vector3f for every sample. A uint8_t does the job AP_NavEKF3: Add fusion of range beacon data AP_NavEKF3: Bring up to date with EKF2 AP_NavEKF3: Misc range beacon updates AP_NavEKF3: Add mising accessors AP_NavEKF3: remove duplicate include AP_NavEKF3: Prevent NaN's when accessing range beacon debug data AP_NavEKF3: Update range beacon naming AP_NavEKF3: updates AP_NavEKF3: miscellaneous changes AP_NavEKF3: misc updates AP_NavEKF3: misc range beacons updates AP_NavEKF3: add missing rover default param
584 lines
23 KiB
C++
584 lines
23 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
|
|
|
#include "AP_NavEKF3.h"
|
|
#include "AP_NavEKF3_core.h"
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/********************************************************
|
|
* FUSE MEASURED_DATA *
|
|
********************************************************/
|
|
|
|
// select fusion of range beacon measurements
|
|
void NavEKF3_core::SelectRngBcnFusion()
|
|
{
|
|
// read range data from the sensor and check for new data in the buffer
|
|
readRngBcnData();
|
|
|
|
// Determine if we need to fuse range beacon data on this time step
|
|
if (rngBcnDataToFuse) {
|
|
if (PV_AidingMode == AID_ABSOLUTE) {
|
|
// Normal operating mode is to fuse the range data into the main filter
|
|
FuseRngBcn();
|
|
} else {
|
|
// If we aren't able to use the data in the main filter, use a simple 3-state filter to estimte position only
|
|
FuseRngBcnStatic();
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavEKF3_core::FuseRngBcn()
|
|
{
|
|
// declarations
|
|
float pn;
|
|
float pe;
|
|
float pd;
|
|
float bcn_pn;
|
|
float bcn_pe;
|
|
float bcn_pd;
|
|
const float R_BCN = sq(MAX(rngBcnDataDelayed.rngErr , 0.1f));
|
|
float rngPred;
|
|
|
|
// health is set bad until test passed
|
|
rngBcnHealth = false;
|
|
|
|
if (activeHgtSource != HGT_SOURCE_BCN) {
|
|
// calculate the vertical offset from EKF datum to beacon datum
|
|
CalcRangeBeaconPosDownOffset(R_BCN, stateStruct.position, false);
|
|
} else {
|
|
bcnPosOffset = 0.0f;
|
|
}
|
|
|
|
// copy required states to local variable names
|
|
pn = stateStruct.position.x;
|
|
pe = stateStruct.position.y;
|
|
pd = stateStruct.position.z;
|
|
bcn_pn = rngBcnDataDelayed.beacon_posNED.x;
|
|
bcn_pe = rngBcnDataDelayed.beacon_posNED.y;
|
|
bcn_pd = rngBcnDataDelayed.beacon_posNED.z + bcnPosOffset;
|
|
|
|
// predicted range
|
|
Vector3f deltaPosNED = stateStruct.position - rngBcnDataDelayed.beacon_posNED;
|
|
rngPred = deltaPosNED.length();
|
|
|
|
// calculate measurement innovation
|
|
innovRngBcn = rngPred - rngBcnDataDelayed.rng;
|
|
|
|
// perform fusion of range measurement
|
|
if (rngPred > 0.1f)
|
|
{
|
|
// calculate observation jacobians
|
|
float H_BCN[24];
|
|
memset(H_BCN, 0, sizeof(H_BCN));
|
|
float t2 = bcn_pd-pd;
|
|
float t3 = bcn_pe-pe;
|
|
float t4 = bcn_pn-pn;
|
|
float t5 = t2*t2;
|
|
float t6 = t3*t3;
|
|
float t7 = t4*t4;
|
|
float t8 = t5+t6+t7;
|
|
float t9 = 1.0f/sqrtf(t8);
|
|
H_BCN[7] = -t4*t9;
|
|
H_BCN[8] = -t3*t9;
|
|
// If we are not using the beacons as a height reference, we pretend that the beacons
|
|
// are a the same height as the flight vehicle when calculating the observation derivatives
|
|
// and Kalman gains
|
|
// TODO - less hacky way of achieving this, preferably using an alternative derivation
|
|
if (activeHgtSource != HGT_SOURCE_BCN) {
|
|
t2 = 0.0f;
|
|
}
|
|
H_BCN[9] = -t2*t9;
|
|
|
|
// calculate Kalman gains
|
|
float t10 = P[9][9]*t2*t9;
|
|
float t11 = P[8][9]*t3*t9;
|
|
float t12 = P[7][9]*t4*t9;
|
|
float t13 = t10+t11+t12;
|
|
float t14 = t2*t9*t13;
|
|
float t15 = P[9][8]*t2*t9;
|
|
float t16 = P[8][8]*t3*t9;
|
|
float t17 = P[7][8]*t4*t9;
|
|
float t18 = t15+t16+t17;
|
|
float t19 = t3*t9*t18;
|
|
float t20 = P[9][7]*t2*t9;
|
|
float t21 = P[8][7]*t3*t9;
|
|
float t22 = P[7][7]*t4*t9;
|
|
float t23 = t20+t21+t22;
|
|
float t24 = t4*t9*t23;
|
|
varInnovRngBcn = R_BCN+t14+t19+t24;
|
|
float t26;
|
|
if (varInnovRngBcn >= R_BCN) {
|
|
t26 = 1.0f/varInnovRngBcn;
|
|
faultStatus.bad_rngbcn = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
faultStatus.bad_rngbcn = true;
|
|
return;
|
|
}
|
|
|
|
Kfusion[0] = -t26*(P[0][7]*t4*t9+P[0][8]*t3*t9+P[0][9]*t2*t9);
|
|
Kfusion[1] = -t26*(P[1][7]*t4*t9+P[1][8]*t3*t9+P[1][9]*t2*t9);
|
|
Kfusion[2] = -t26*(P[2][7]*t4*t9+P[2][8]*t3*t9+P[2][9]*t2*t9);
|
|
Kfusion[3] = -t26*(P[3][7]*t4*t9+P[3][8]*t3*t9+P[3][9]*t2*t9);
|
|
Kfusion[4] = -t26*(P[4][7]*t4*t9+P[4][8]*t3*t9+P[4][9]*t2*t9);
|
|
Kfusion[5] = -t26*(P[5][7]*t4*t9+P[5][8]*t3*t9+P[5][9]*t2*t9);
|
|
Kfusion[7] = -t26*(t22+P[7][8]*t3*t9+P[7][9]*t2*t9);
|
|
Kfusion[8] = -t26*(t16+P[8][7]*t4*t9+P[8][9]*t2*t9);
|
|
Kfusion[10] = -t26*(P[10][7]*t4*t9+P[10][8]*t3*t9+P[10][9]*t2*t9);
|
|
Kfusion[11] = -t26*(P[11][7]*t4*t9+P[11][8]*t3*t9+P[11][9]*t2*t9);
|
|
Kfusion[12] = -t26*(P[12][7]*t4*t9+P[12][8]*t3*t9+P[12][9]*t2*t9);
|
|
Kfusion[13] = -t26*(P[13][7]*t4*t9+P[13][8]*t3*t9+P[13][9]*t2*t9);
|
|
Kfusion[14] = -t26*(P[14][7]*t4*t9+P[14][8]*t3*t9+P[14][9]*t2*t9);
|
|
Kfusion[15] = -t26*(P[15][7]*t4*t9+P[15][8]*t3*t9+P[15][9]*t2*t9);
|
|
// only allow the range observations to modify the vertical states if we are using it as a height reference
|
|
if (activeHgtSource == HGT_SOURCE_BCN) {
|
|
Kfusion[6] = -t26*(P[6][7]*t4*t9+P[6][8]*t3*t9+P[6][9]*t2*t9);
|
|
Kfusion[9] = -t26*(t10+P[9][7]*t4*t9+P[9][8]*t3*t9);
|
|
} else {
|
|
Kfusion[6] = 0.0f;
|
|
Kfusion[9] = 0.0f;
|
|
}
|
|
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = -t26*(P[16][7]*t4*t9+P[16][8]*t3*t9+P[16][9]*t2*t9);
|
|
Kfusion[17] = -t26*(P[17][7]*t4*t9+P[17][8]*t3*t9+P[17][9]*t2*t9);
|
|
Kfusion[18] = -t26*(P[18][7]*t4*t9+P[18][8]*t3*t9+P[18][9]*t2*t9);
|
|
Kfusion[19] = -t26*(P[19][7]*t4*t9+P[19][8]*t3*t9+P[19][9]*t2*t9);
|
|
Kfusion[20] = -t26*(P[20][7]*t4*t9+P[20][8]*t3*t9+P[20][9]*t2*t9);
|
|
Kfusion[21] = -t26*(P[21][7]*t4*t9+P[21][8]*t3*t9+P[21][9]*t2*t9);
|
|
} else {
|
|
// zero indexes 16 to 21 = 6*4 bytes
|
|
memset(&Kfusion[16], 0, 24);
|
|
}
|
|
Kfusion[22] = -t26*(P[22][7]*t4*t9+P[22][8]*t3*t9+P[22][9]*t2*t9);
|
|
Kfusion[23] = -t26*(P[23][7]*t4*t9+P[23][8]*t3*t9+P[23][9]*t2*t9);
|
|
|
|
// Calculate innovation using the selected offset value
|
|
Vector3f delta = stateStruct.position - rngBcnDataDelayed.beacon_posNED;
|
|
innovRngBcn = delta.length() - rngBcnDataDelayed.rng;
|
|
|
|
// calculate the innovation consistency test ratio
|
|
rngBcnTestRatio = sq(innovRngBcn) / (sq(MAX(0.01f * (float)frontend->_rngBcnInnovGate, 1.0f)) * varInnovRngBcn);
|
|
|
|
// fail if the ratio is > 1, but don't fail if bad IMU data
|
|
rngBcnHealth = ((rngBcnTestRatio < 1.0f) || badIMUdata);
|
|
|
|
// test the ratio before fusing data
|
|
if (rngBcnHealth) {
|
|
|
|
// restart the counter
|
|
lastRngBcnPassTime_ms = imuSampleTime_ms;
|
|
|
|
// correct the covariance P = (I - K*H)*P
|
|
// take advantage of the empty columns in KH to reduce the
|
|
// number of operations
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=6; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
for (unsigned j = 7; j<=9; j++) {
|
|
KH[i][j] = Kfusion[i] * H_BCN[j];
|
|
}
|
|
for (unsigned j = 10; j<=23; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
}
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
ftype res = 0;
|
|
res += KH[i][7] * P[7][j];
|
|
res += KH[i][8] * P[8][j];
|
|
res += KH[i][9] * P[9][j];
|
|
KHP[i][j] = res;
|
|
}
|
|
}
|
|
// Check that we are not going to drive any variances negative and skip the update if so
|
|
bool healthyFusion = true;
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
if (KHP[i][i] > P[i][i]) {
|
|
healthyFusion = false;
|
|
}
|
|
}
|
|
if (healthyFusion) {
|
|
// update the covariance matrix
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
|
|
// correct the state vector
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
statesArray[j] = statesArray[j] - Kfusion[j] * innovRngBcn;
|
|
}
|
|
|
|
// record healthy fusion
|
|
faultStatus.bad_rngbcn = false;
|
|
|
|
} else {
|
|
// record bad fusion
|
|
faultStatus.bad_rngbcn = true;
|
|
|
|
}
|
|
}
|
|
|
|
// Update the fusion report
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].beaconPosNED = rngBcnDataDelayed.beacon_posNED;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].innov = innovRngBcn;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].innovVar = varInnovRngBcn;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].rng = rngBcnDataDelayed.rng;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].testRatio = rngBcnTestRatio;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Use range beaon measurements to calculate a static position using a 3-state EKF algorithm.
|
|
Algorihtm based on the following:
|
|
https://github.com/priseborough/InertialNav/blob/master/derivations/range_beacon.m
|
|
*/
|
|
void NavEKF3_core::FuseRngBcnStatic()
|
|
{
|
|
// get the estimated range measurement variance
|
|
const float R_RNG = sq(MAX(rngBcnDataDelayed.rngErr , 0.1f));
|
|
|
|
/*
|
|
The first thing to do is to check if we have started the alignment and if not, initialise the
|
|
states and covariance to a first guess. To do this iterate through the avilable beacons and then
|
|
initialise the initial position to the mean beacon position. The initial position uncertainty
|
|
is set to the mean range measurement.
|
|
*/
|
|
if (!rngBcnAlignmentStarted) {
|
|
if (rngBcnDataDelayed.beacon_ID != lastBeaconIndex) {
|
|
rngBcnPosSum += rngBcnDataDelayed.beacon_posNED;
|
|
lastBeaconIndex = rngBcnDataDelayed.beacon_ID;
|
|
rngSum += rngBcnDataDelayed.rng;
|
|
numBcnMeas++;
|
|
|
|
// capture the beacon vertical spread
|
|
if (rngBcnDataDelayed.beacon_posNED.z > maxBcnPosD) {
|
|
maxBcnPosD = rngBcnDataDelayed.beacon_posNED.z;
|
|
} else if(rngBcnDataDelayed.beacon_posNED.z < minBcnPosD) {
|
|
minBcnPosD = rngBcnDataDelayed.beacon_posNED.z;
|
|
}
|
|
}
|
|
if (numBcnMeas >= 100) {
|
|
rngBcnAlignmentStarted = true;
|
|
float tempVar = 1.0f / (float)numBcnMeas;
|
|
// initialise the receiver position to the centre of the beacons and at zero height
|
|
receiverPos.x = rngBcnPosSum.x * tempVar;
|
|
receiverPos.y = rngBcnPosSum.y * tempVar;
|
|
receiverPos.z = 0.0f;
|
|
receiverPosCov[2][2] = receiverPosCov[1][1] = receiverPosCov[0][0] = rngSum * tempVar;
|
|
lastBeaconIndex = 0;
|
|
numBcnMeas = 0;
|
|
rngBcnPosSum.zero();
|
|
rngSum = 0.0f;
|
|
}
|
|
}
|
|
|
|
if (rngBcnAlignmentStarted) {
|
|
numBcnMeas++;
|
|
|
|
if (numBcnMeas >= 100) {
|
|
// 100 observations is enough for a stable estimate under most conditions
|
|
// TODO monitor stability of the position estimate
|
|
rngBcnAlignmentCompleted = true;
|
|
|
|
}
|
|
|
|
if (rngBcnAlignmentCompleted) {
|
|
if (activeHgtSource != HGT_SOURCE_BCN) {
|
|
// We are using a different height reference for the main EKF so need to estimate a vertical
|
|
// position offset to be applied to the beacon system that minimises the range innovations
|
|
// The position estimate should be stable after 100 iterations so we use a simple dual
|
|
// hypothesis 1-state EKF to estiate the offset
|
|
Vector3f refPosNED;
|
|
refPosNED.x = receiverPos.x;
|
|
refPosNED.y = receiverPos.y;
|
|
refPosNED.z = stateStruct.position.z;
|
|
CalcRangeBeaconPosDownOffset(R_RNG, refPosNED, true);
|
|
|
|
} else {
|
|
// we are using the beacons as the primary height source, so don't modify their vertical position
|
|
bcnPosOffset = 0.0f;
|
|
|
|
}
|
|
} else {
|
|
if (activeHgtSource != HGT_SOURCE_BCN) {
|
|
// The position estimate is not yet stable so we cannot run the 1-state EKF to estimate
|
|
// beacon system vertical position offset. Instead we initialise the dual hypothesis offset states
|
|
// using the beacon vertical position, vertical position estimate relative to the beacon origin
|
|
// and the main EKF vertical position
|
|
|
|
// Calculate the mid vertical position of all beacons
|
|
float bcnMidPosD = 0.5f * (minBcnPosD + maxBcnPosD);
|
|
|
|
// calculate the delta to the estimated receiver position
|
|
float delta = receiverPos.z - bcnMidPosD;
|
|
|
|
// calcuate the two hypothesis for our vertical position
|
|
float receverPosDownMax;
|
|
float receverPosDownMin;
|
|
if (delta >= 0.0f) {
|
|
receverPosDownMax = receiverPos.z;
|
|
receverPosDownMin = receiverPos.z - 2.0f * delta;
|
|
} else {
|
|
receverPosDownMax = receiverPos.z - 2.0f * delta;
|
|
receverPosDownMin = receiverPos.z;
|
|
}
|
|
|
|
bcnPosDownOffsetMax = stateStruct.position.z - receverPosDownMin;
|
|
bcnPosDownOffsetMin = stateStruct.position.z - receverPosDownMax;
|
|
} else {
|
|
// We are using the beacons as the primary height reference, so don't modify their vertical position
|
|
bcnPosOffset = 0.0f;
|
|
}
|
|
}
|
|
|
|
// Add some process noise to the states at each time step
|
|
for (uint8_t i= 0; i<=2; i++) {
|
|
receiverPosCov[i][i] += 0.1f;
|
|
}
|
|
|
|
// calculate the observation jacobian
|
|
float t2 = rngBcnDataDelayed.beacon_posNED.z - receiverPos.z + bcnPosOffset;
|
|
float t3 = rngBcnDataDelayed.beacon_posNED.y - receiverPos.y;
|
|
float t4 = rngBcnDataDelayed.beacon_posNED.x - receiverPos.x;
|
|
float t5 = t2*t2;
|
|
float t6 = t3*t3;
|
|
float t7 = t4*t4;
|
|
float t8 = t5+t6+t7;
|
|
if (t8 < 0.1f) {
|
|
// calculation will be badly conditioned
|
|
return;
|
|
}
|
|
float t9 = 1.0f/sqrtf(t8);
|
|
float t10 = rngBcnDataDelayed.beacon_posNED.x*2.0f;
|
|
float t15 = receiverPos.x*2.0f;
|
|
float t11 = t10-t15;
|
|
float t12 = rngBcnDataDelayed.beacon_posNED.y*2.0f;
|
|
float t14 = receiverPos.y*2.0f;
|
|
float t13 = t12-t14;
|
|
float t16 = rngBcnDataDelayed.beacon_posNED.z*2.0f;
|
|
float t18 = receiverPos.z*2.0f;
|
|
float t17 = t16-t18;
|
|
float H_RNG[3];
|
|
H_RNG[0] = -t9*t11*0.5f;
|
|
H_RNG[1] = -t9*t13*0.5f;
|
|
H_RNG[2] = -t9*t17*0.5f;
|
|
|
|
// calculate the Kalman gains
|
|
float t19 = receiverPosCov[0][0]*t9*t11*0.5f;
|
|
float t20 = receiverPosCov[1][1]*t9*t13*0.5f;
|
|
float t21 = receiverPosCov[0][1]*t9*t11*0.5f;
|
|
float t22 = receiverPosCov[2][1]*t9*t17*0.5f;
|
|
float t23 = t20+t21+t22;
|
|
float t24 = t9*t13*t23*0.5f;
|
|
float t25 = receiverPosCov[1][2]*t9*t13*0.5f;
|
|
float t26 = receiverPosCov[0][2]*t9*t11*0.5f;
|
|
float t27 = receiverPosCov[2][2]*t9*t17*0.5f;
|
|
float t28 = t25+t26+t27;
|
|
float t29 = t9*t17*t28*0.5f;
|
|
float t30 = receiverPosCov[1][0]*t9*t13*0.5f;
|
|
float t31 = receiverPosCov[2][0]*t9*t17*0.5f;
|
|
float t32 = t19+t30+t31;
|
|
float t33 = t9*t11*t32*0.5f;
|
|
varInnovRngBcn = R_RNG+t24+t29+t33;
|
|
float t35 = 1.0f/varInnovRngBcn;
|
|
float K_RNG[3];
|
|
K_RNG[0] = -t35*(t19+receiverPosCov[0][1]*t9*t13*0.5f+receiverPosCov[0][2]*t9*t17*0.5f);
|
|
K_RNG[1] = -t35*(t20+receiverPosCov[1][0]*t9*t11*0.5f+receiverPosCov[1][2]*t9*t17*0.5f);
|
|
K_RNG[2] = -t35*(t27+receiverPosCov[2][0]*t9*t11*0.5f+receiverPosCov[2][1]*t9*t13*0.5f);
|
|
|
|
// calculate range measurement innovation
|
|
Vector3f deltaPosNED = receiverPos - rngBcnDataDelayed.beacon_posNED;
|
|
deltaPosNED.z -= bcnPosOffset;
|
|
innovRngBcn = deltaPosNED.length() - rngBcnDataDelayed.rng;
|
|
|
|
// update the state
|
|
receiverPos.x -= K_RNG[0] * innovRngBcn;
|
|
receiverPos.y -= K_RNG[1] * innovRngBcn;
|
|
receiverPos.z -= K_RNG[2] * innovRngBcn;
|
|
receiverPos.z = MAX(receiverPos.z, minBcnPosD + 1.2f);
|
|
|
|
// calculate the covariance correction
|
|
for (unsigned i = 0; i<=2; i++) {
|
|
for (unsigned j = 0; j<=2; j++) {
|
|
KH[i][j] = K_RNG[i] * H_RNG[j];
|
|
}
|
|
}
|
|
for (unsigned j = 0; j<=2; j++) {
|
|
for (unsigned i = 0; i<=2; i++) {
|
|
ftype res = 0;
|
|
res += KH[i][0] * receiverPosCov[0][j];
|
|
res += KH[i][1] * receiverPosCov[1][j];
|
|
res += KH[i][2] * receiverPosCov[2][j];
|
|
KHP[i][j] = res;
|
|
}
|
|
}
|
|
// prevent negative variances
|
|
for (uint8_t i= 0; i<=2; i++) {
|
|
if (receiverPosCov[i][i] < 0.0f) {
|
|
receiverPosCov[i][i] = 0.0f;
|
|
KHP[i][i] = 0.0f;
|
|
} else if (KHP[i][i] > receiverPosCov[i][i]) {
|
|
KHP[i][i] = receiverPosCov[i][i];
|
|
}
|
|
}
|
|
// apply the covariance correction
|
|
for (uint8_t i= 0; i<=2; i++) {
|
|
for (uint8_t j= 0; j<=2; j++) {
|
|
receiverPosCov[i][j] -= KHP[i][j];
|
|
}
|
|
}
|
|
// ensure the covariance matrix is symmetric
|
|
for (uint8_t i=1; i<=2; i++) {
|
|
for (uint8_t j=0; j<=i-1; j++) {
|
|
float temp = 0.5f*(receiverPosCov[i][j] + receiverPosCov[j][i]);
|
|
receiverPosCov[i][j] = temp;
|
|
receiverPosCov[j][i] = temp;
|
|
}
|
|
}
|
|
|
|
if (numBcnMeas >= 100) {
|
|
// 100 observations is enough for a stable estimate under most conditions
|
|
// TODO monitor stability of the position estimate
|
|
rngBcnAlignmentCompleted = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Run a single state Kalman filter to estimate the vertical position offset of the range beacon constellation
|
|
Calculate using a high and low hypothesis and select the hypothesis with the lowest innovation sequence
|
|
*/
|
|
void NavEKF3_core::CalcRangeBeaconPosDownOffset(float obsVar, Vector3f &vehiclePosNED, bool aligning)
|
|
{
|
|
// Handle height offsets between the primary height source and the range beacons by estimating
|
|
// the beacon systems global vertical position offset using a single state Kalman filter
|
|
// The estimated offset is used to correct the beacon height when calculating innovations
|
|
// A high and low estimate is calculated to handle the ambiguity in height associated with beacon positions that are co-planar
|
|
// The main filter then uses the offset with the smaller innovations
|
|
|
|
float innov; // range measurement innovation (m)
|
|
float innovVar; // range measurement innovation variance (m^2)
|
|
float gain; // Kalman gain
|
|
float obsDeriv; // derivative of observation relative to state
|
|
|
|
const float stateNoiseVar = 0.1f; // State process noise variance
|
|
const float filtAlpha = 0.01f; // LPF constant
|
|
const float innovGateWidth = 5.0f; // width of innovation consistency check gate in std
|
|
|
|
// estimate upper value for offset
|
|
|
|
// calculate observation derivative
|
|
float t2 = rngBcnDataDelayed.beacon_posNED.z - vehiclePosNED.z + bcnPosDownOffsetMax;
|
|
float t3 = rngBcnDataDelayed.beacon_posNED.y - vehiclePosNED.y;
|
|
float t4 = rngBcnDataDelayed.beacon_posNED.x - vehiclePosNED.x;
|
|
float t5 = t2*t2;
|
|
float t6 = t3*t3;
|
|
float t7 = t4*t4;
|
|
float t8 = t5+t6+t7;
|
|
float t9;
|
|
if (t8 > 0.1f) {
|
|
t9 = 1.0f/sqrtf(t8);
|
|
obsDeriv = t2*t9;
|
|
|
|
// Calculate innovation
|
|
innov = sqrtf(t8) - rngBcnDataDelayed.rng;
|
|
|
|
// calculate a filtered innovation magnitude to be used to select between the high or low offset
|
|
OffsetMaxInnovFilt = (1.0f - filtAlpha) * bcnPosOffsetMaxVar + filtAlpha * fabsf(innov);
|
|
|
|
// covariance prediction
|
|
bcnPosOffsetMaxVar += stateNoiseVar;
|
|
|
|
// calculate the innovation variance
|
|
innovVar = obsDeriv * bcnPosOffsetMaxVar * obsDeriv + obsVar;
|
|
innovVar = MAX(innovVar, obsVar);
|
|
|
|
// Reject range innovation spikes using a 5-sigma threshold unless aligning
|
|
if ((sq(innov) < sq(innovGateWidth) * innovVar) || aligning) {
|
|
// calculate the Kalman gain
|
|
gain = (bcnPosOffsetMaxVar * obsDeriv) / innovVar;
|
|
|
|
// state update
|
|
bcnPosDownOffsetMax -= innov * gain;
|
|
|
|
// covariance update
|
|
bcnPosOffsetMaxVar -= gain * obsDeriv * bcnPosOffsetMaxVar;
|
|
bcnPosOffsetMaxVar = MAX(bcnPosOffsetMaxVar, 0.0f);
|
|
}
|
|
}
|
|
|
|
// estimate lower value for offset
|
|
|
|
// calculate observation derivative
|
|
t2 = rngBcnDataDelayed.beacon_posNED.z - vehiclePosNED.z + bcnPosDownOffsetMin;
|
|
t5 = t2*t2;
|
|
t8 = t5+t6+t7;
|
|
if (t8 > 0.1f) {
|
|
t9 = 1.0f/sqrtf(t8);
|
|
obsDeriv = t2*t9;
|
|
|
|
// Calculate innovation
|
|
innov = sqrtf(t8) - rngBcnDataDelayed.rng;
|
|
|
|
// calculate a filtered innovation magnitude to be used to select between the high or low offset
|
|
OffsetMinInnovFilt = (1.0f - filtAlpha) * OffsetMinInnovFilt + filtAlpha * fabsf(innov);
|
|
|
|
// covariance prediction
|
|
bcnPosOffsetMinVar += stateNoiseVar;
|
|
|
|
// calculate the innovation variance
|
|
innovVar = obsDeriv * bcnPosOffsetMinVar * obsDeriv + obsVar;
|
|
innovVar = MAX(innovVar, obsVar);
|
|
|
|
// Reject range innovation spikes using a 5-sigma threshold unless aligning
|
|
if ((sq(innov) < sq(innovGateWidth) * innovVar) || aligning) {
|
|
// calculate the Kalman gain
|
|
gain = (bcnPosOffsetMinVar * obsDeriv) / innovVar;
|
|
|
|
// state update
|
|
bcnPosDownOffsetMin -= innov * gain;
|
|
|
|
// covariance update
|
|
bcnPosOffsetMinVar -= gain * obsDeriv * bcnPosOffsetMinVar;
|
|
bcnPosOffsetMinVar = MAX(bcnPosOffsetMinVar, 0.0f);
|
|
}
|
|
}
|
|
|
|
// calculate the mid vertical position of all beacons
|
|
float bcnMidPosD = 0.5f * (minBcnPosD + maxBcnPosD);
|
|
|
|
// ensure the two beacon vertical offset hypothesis place the mid point of the beacons below and above the flight vehicle
|
|
bcnPosDownOffsetMax = MAX(bcnPosDownOffsetMax, vehiclePosNED.z - bcnMidPosD + 0.5f);
|
|
bcnPosDownOffsetMin = MIN(bcnPosDownOffsetMin, vehiclePosNED.z - bcnMidPosD - 0.5f);
|
|
|
|
// calculate the innovation for the main filter using the offset with the smallest innovation history
|
|
// apply hysteresis to prevent rapid switching
|
|
if (!usingMinHypothesis && OffsetMinInnovFilt < 0.8f * OffsetMaxInnovFilt) {
|
|
bcnPosOffset = bcnPosDownOffsetMin;
|
|
usingMinHypothesis = true;
|
|
} else if (usingMinHypothesis && OffsetMaxInnovFilt < 0.8f * OffsetMinInnovFilt) {
|
|
bcnPosOffset = bcnPosDownOffsetMax;
|
|
usingMinHypothesis = false;
|
|
}
|
|
|
|
}
|
|
|
|
#endif // HAL_CPU_CLASS
|