ardupilot/libraries/AP_HAL_PX4/HAL_PX4_Class.cpp

323 lines
9.7 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "AP_HAL_PX4.h"
#include "AP_HAL_PX4_Namespace.h"
#include "HAL_PX4_Class.h"
#include "Scheduler.h"
#include "UARTDriver.h"
#include "Storage.h"
#include "RCInput.h"
#include "RCOutput.h"
#include "AnalogIn.h"
#include "Util.h"
#include "GPIO.h"
#include "I2CDevice.h"
#include "SPIDevice.h"
#include <AP_HAL_Empty/AP_HAL_Empty.h>
#include <AP_HAL_Empty/AP_HAL_Empty_Private.h>
#include <stdlib.h>
#include <systemlib/systemlib.h>
#include <nuttx/config.h>
#include <unistd.h>
#include <stdio.h>
#include <pthread.h>
#include <poll.h>
#include <drivers/drv_hrt.h>
using namespace PX4;
//static Empty::GPIO gpioDriver;
static PX4Scheduler schedulerInstance;
static PX4Storage storageDriver;
static PX4RCInput rcinDriver;
static PX4RCOutput rcoutDriver;
static PX4AnalogIn analogIn;
static PX4Util utilInstance;
static PX4GPIO gpioDriver;
static PX4::I2CDeviceManager i2c_mgr_instance;
static PX4::SPIDeviceManager spi_mgr_instance;
#if defined(CONFIG_ARCH_BOARD_PX4FMU_V2)
#define UARTA_DEFAULT_DEVICE "/dev/ttyACM0"
#define UARTB_DEFAULT_DEVICE "/dev/ttyS3"
#define UARTC_DEFAULT_DEVICE "/dev/ttyS1"
#define UARTD_DEFAULT_DEVICE "/dev/ttyS2"
#define UARTE_DEFAULT_DEVICE "/dev/ttyS6"
#define UARTF_DEFAULT_DEVICE "/dev/null"
#elif defined(CONFIG_ARCH_BOARD_PX4FMU_V4)
#define UARTA_DEFAULT_DEVICE "/dev/ttyACM0"
#define UARTB_DEFAULT_DEVICE "/dev/ttyS3"
#define UARTC_DEFAULT_DEVICE "/dev/ttyS1"
#define UARTD_DEFAULT_DEVICE "/dev/ttyS2"
#define UARTE_DEFAULT_DEVICE "/dev/ttyS6" // frsky telem
#define UARTF_DEFAULT_DEVICE "/dev/ttyS0" // wifi
#else
#define UARTA_DEFAULT_DEVICE "/dev/ttyACM0"
#define UARTB_DEFAULT_DEVICE "/dev/ttyS3"
#define UARTC_DEFAULT_DEVICE "/dev/ttyS2"
#define UARTD_DEFAULT_DEVICE "/dev/null"
#define UARTE_DEFAULT_DEVICE "/dev/null"
#define UARTF_DEFAULT_DEVICE "/dev/null"
#endif
// 3 UART drivers, for GPS plus two mavlink-enabled devices
static PX4UARTDriver uartADriver(UARTA_DEFAULT_DEVICE, "APM_uartA");
static PX4UARTDriver uartBDriver(UARTB_DEFAULT_DEVICE, "APM_uartB");
static PX4UARTDriver uartCDriver(UARTC_DEFAULT_DEVICE, "APM_uartC");
static PX4UARTDriver uartDDriver(UARTD_DEFAULT_DEVICE, "APM_uartD");
static PX4UARTDriver uartEDriver(UARTE_DEFAULT_DEVICE, "APM_uartE");
static PX4UARTDriver uartFDriver(UARTF_DEFAULT_DEVICE, "APM_uartF");
HAL_PX4::HAL_PX4() :
AP_HAL::HAL(
&uartADriver, /* uartA */
&uartBDriver, /* uartB */
&uartCDriver, /* uartC */
&uartDDriver, /* uartD */
&uartEDriver, /* uartE */
&uartFDriver, /* uartF */
&i2c_mgr_instance,
&spi_mgr_instance,
&analogIn, /* analogin */
&storageDriver, /* storage */
&uartADriver, /* console */
&gpioDriver, /* gpio */
&rcinDriver, /* rcinput */
&rcoutDriver, /* rcoutput */
&schedulerInstance, /* scheduler */
&utilInstance, /* util */
nullptr) /* no onboard optical flow */
{}
bool _px4_thread_should_exit = false; /**< Daemon exit flag */
static bool thread_running = false; /**< Daemon status flag */
static int daemon_task; /**< Handle of daemon task / thread */
bool px4_ran_overtime;
extern const AP_HAL::HAL& hal;
/*
set the priority of the main APM task
*/
void hal_px4_set_priority(uint8_t priority)
{
struct sched_param param;
param.sched_priority = priority;
sched_setscheduler(daemon_task, SCHED_FIFO, &param);
}
/*
this is called when loop() takes more than 1 second to run. If that
happens then something is blocking for a long time in the main
sketch - probably waiting on a low priority driver. Set the priority
of the APM task low to let the driver run.
*/
static void loop_overtime(void *)
{
hal_px4_set_priority(APM_OVERTIME_PRIORITY);
px4_ran_overtime = true;
}
static AP_HAL::HAL::Callbacks* g_callbacks;
static int main_loop(int argc, char **argv)
{
hal.uartA->begin(115200);
hal.uartB->begin(38400);
hal.uartC->begin(57600);
hal.uartD->begin(57600);
hal.uartE->begin(57600);
hal.scheduler->init();
/*
run setup() at low priority to ensure CLI doesn't hang the
system, and to allow initial sensor read loops to run
*/
hal_px4_set_priority(APM_STARTUP_PRIORITY);
schedulerInstance.hal_initialized();
g_callbacks->setup();
hal.scheduler->system_initialized();
perf_counter_t perf_loop = perf_alloc(PC_ELAPSED, "APM_loop");
perf_counter_t perf_overrun = perf_alloc(PC_COUNT, "APM_overrun");
struct hrt_call loop_overtime_call;
thread_running = true;
/*
switch to high priority for main loop
*/
hal_px4_set_priority(APM_MAIN_PRIORITY);
while (!_px4_thread_should_exit) {
perf_begin(perf_loop);
/*
this ensures a tight loop waiting on a lower priority driver
will eventually give up some time for the driver to run. It
will only ever be called if a loop() call runs for more than
0.1 second
*/
hrt_call_after(&loop_overtime_call, 100000, (hrt_callout)loop_overtime, nullptr);
g_callbacks->loop();
if (px4_ran_overtime) {
/*
we ran over 1s in loop(), and our priority was lowered
to let a driver run. Set it back to high priority now.
*/
hal_px4_set_priority(APM_MAIN_PRIORITY);
perf_count(perf_overrun);
px4_ran_overtime = false;
}
perf_end(perf_loop);
/*
give up 250 microseconds of time, to ensure drivers get a
chance to run. This relies on the accurate semaphore wait
using hrt in semaphore.cpp
*/
hal.scheduler->delay_microseconds(250);
}
thread_running = false;
return 0;
}
static void usage(void)
{
printf("Usage: %s [options] {start,stop,status}\n", SKETCHNAME);
printf("Options:\n");
printf("\t-d DEVICE set terminal device (default %s)\n", UARTA_DEFAULT_DEVICE);
printf("\t-d2 DEVICE set second terminal device (default %s)\n", UARTC_DEFAULT_DEVICE);
printf("\t-d3 DEVICE set 3rd terminal device (default %s)\n", UARTD_DEFAULT_DEVICE);
printf("\t-d4 DEVICE set 2nd GPS device (default %s)\n", UARTE_DEFAULT_DEVICE);
printf("\n");
}
void HAL_PX4::run(int argc, char * const argv[], Callbacks* callbacks) const
{
int i;
const char *deviceA = UARTA_DEFAULT_DEVICE;
const char *deviceC = UARTC_DEFAULT_DEVICE;
const char *deviceD = UARTD_DEFAULT_DEVICE;
const char *deviceE = UARTE_DEFAULT_DEVICE;
if (argc < 1) {
printf("%s: missing command (try '%s start')",
SKETCHNAME, SKETCHNAME);
usage();
exit(1);
}
assert(callbacks);
g_callbacks = callbacks;
for (i=0; i<argc; i++) {
if (strcmp(argv[i], "start") == 0) {
if (thread_running) {
printf("%s already running\n", SKETCHNAME);
/* this is not an error */
exit(0);
}
uartADriver.set_device_path(deviceA);
uartCDriver.set_device_path(deviceC);
uartDDriver.set_device_path(deviceD);
uartEDriver.set_device_path(deviceE);
printf("Starting %s uartA=%s uartC=%s uartD=%s uartE=%s\n",
SKETCHNAME, deviceA, deviceC, deviceD, deviceE);
_px4_thread_should_exit = false;
daemon_task = px4_task_spawn_cmd(SKETCHNAME,
SCHED_FIFO,
APM_MAIN_PRIORITY,
APM_MAIN_THREAD_STACK_SIZE,
main_loop,
nullptr);
exit(0);
}
if (strcmp(argv[i], "stop") == 0) {
_px4_thread_should_exit = true;
exit(0);
}
if (strcmp(argv[i], "status") == 0) {
if (_px4_thread_should_exit && thread_running) {
printf("\t%s is exiting\n", SKETCHNAME);
} else if (thread_running) {
printf("\t%s is running\n", SKETCHNAME);
} else {
printf("\t%s is not started\n", SKETCHNAME);
}
exit(0);
}
if (strcmp(argv[i], "-d") == 0) {
// set terminal device
if (argc > i + 1) {
deviceA = strdup(argv[i+1]);
} else {
printf("missing parameter to -d DEVICE\n");
usage();
exit(1);
}
}
if (strcmp(argv[i], "-d2") == 0) {
// set uartC terminal device
if (argc > i + 1) {
deviceC = strdup(argv[i+1]);
} else {
printf("missing parameter to -d2 DEVICE\n");
usage();
exit(1);
}
}
if (strcmp(argv[i], "-d3") == 0) {
// set uartD terminal device
if (argc > i + 1) {
deviceD = strdup(argv[i+1]);
} else {
printf("missing parameter to -d3 DEVICE\n");
usage();
exit(1);
}
}
if (strcmp(argv[i], "-d4") == 0) {
// set uartE 2nd GPS device
if (argc > i + 1) {
deviceE = strdup(argv[i+1]);
} else {
printf("missing parameter to -d4 DEVICE\n");
usage();
exit(1);
}
}
}
usage();
exit(1);
}
const AP_HAL::HAL& AP_HAL::get_HAL() {
static const HAL_PX4 hal_px4;
return hal_px4;
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_PX4