ardupilot/libraries/AP_NavEKF2/AP_NavEKF2_Logging.cpp
Harshit Kumar Sankhla 56cbcb42ee AP_NavEKF2: Add core relative error and errorscore logging in NKF3 packet
TODO : Port lane switching logic from EKF3 to make use of these terms
Since both share the same NKF3 log structure, needed to do this.
Just log 0 as of.
2020-08-27 20:20:51 +10:00

357 lines
14 KiB
C++

#include "AP_NavEKF2.h"
#include <AP_HAL/HAL.h>
#include <AP_Logger/AP_Logger.h>
void NavEKF2::Log_Write_NKF1(uint8_t _core, uint64_t time_us) const
{
// Write first EKF packet
Vector3f euler;
Vector2f posNE;
float posD;
Vector3f velNED;
Vector3f gyroBias;
float posDownDeriv;
Location originLLH;
getEulerAngles(_core,euler);
getVelNED(_core,velNED);
getPosNE(_core,posNE);
getPosD(_core,posD);
getGyroBias(_core,gyroBias);
posDownDeriv = getPosDownDerivative(_core);
if (!getOriginLLH(_core,originLLH)) {
originLLH.alt = 0;
}
const struct log_EKF1 pkt{
LOG_PACKET_HEADER_INIT(LOG_NKF1_MSG),
time_us : time_us,
core : _core,
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
velN : (float)(velNED.x), // velocity North (m/s)
velE : (float)(velNED.y), // velocity East (m/s)
velD : (float)(velNED.z), // velocity Down (m/s)
posD_dot : (float)(posDownDeriv), // first derivative of down position
posN : (float)(posNE.x), // metres North
posE : (float)(posNE.y), // metres East
posD : (float)(posD), // metres Down
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
void NavEKF2::Log_Write_NKF2(uint8_t _core, uint64_t time_us) const
{
// Write second EKF packet
float azbias = 0;
Vector3f wind;
Vector3f magNED;
Vector3f magXYZ;
Vector3f gyroScaleFactor;
uint8_t magIndex = getActiveMag(_core);
getAccelZBias(_core,azbias);
getWind(_core,wind);
getMagNED(_core,magNED);
getMagXYZ(_core,magXYZ);
getGyroScaleErrorPercentage(_core,gyroScaleFactor);
const struct log_NKF2 pkt2{
LOG_PACKET_HEADER_INIT(LOG_NKF2_MSG),
time_us : time_us,
core : _core,
AZbias : (int8_t)(100*azbias),
scaleX : (int16_t)(100*gyroScaleFactor.x),
scaleY : (int16_t)(100*gyroScaleFactor.y),
scaleZ : (int16_t)(100*gyroScaleFactor.z),
windN : (int16_t)(100*wind.x),
windE : (int16_t)(100*wind.y),
magN : (int16_t)(magNED.x),
magE : (int16_t)(magNED.y),
magD : (int16_t)(magNED.z),
magX : (int16_t)(magXYZ.x),
magY : (int16_t)(magXYZ.y),
magZ : (int16_t)(magXYZ.z),
index : (uint8_t)(magIndex)
};
AP::logger().WriteBlock(&pkt2, sizeof(pkt2));
}
void NavEKF2::Log_Write_NKF3(uint8_t _core, uint64_t time_us) const
{
// Write third EKF packet
Vector3f velInnov;
Vector3f posInnov;
Vector3f magInnov;
float tasInnov = 0;
float yawInnov = 0;
getInnovations(_core,velInnov, posInnov, magInnov, tasInnov, yawInnov);
const struct log_NKF3 pkt3{
LOG_PACKET_HEADER_INIT(LOG_NKF3_MSG),
time_us : time_us,
core : _core,
innovVN : (int16_t)(100*velInnov.x),
innovVE : (int16_t)(100*velInnov.y),
innovVD : (int16_t)(100*velInnov.z),
innovPN : (int16_t)(100*posInnov.x),
innovPE : (int16_t)(100*posInnov.y),
innovPD : (int16_t)(100*posInnov.z),
innovMX : (int16_t)(magInnov.x),
innovMY : (int16_t)(magInnov.y),
innovMZ : (int16_t)(magInnov.z),
innovYaw : (int16_t)(100*degrees(yawInnov)),
innovVT : (int16_t)(100*tasInnov),
rerr : 0, // TODO : Relative Error based Lane-Switching like EK3
errorScore : 0 // TODO : Relative Error based Lane-Switching like EK3
};
AP::logger().WriteBlock(&pkt3, sizeof(pkt3));
}
void NavEKF2::Log_Write_NKF4(uint8_t _core, uint64_t time_us) const
{
// Write fourth EKF packet
float velVar = 0;
float posVar = 0;
float hgtVar = 0;
Vector3f magVar;
float tasVar = 0;
Vector2f offset;
uint16_t faultStatus=0;
uint8_t timeoutStatus=0;
nav_filter_status solutionStatus {};
nav_gps_status gpsStatus {};
getVariances(_core,velVar, posVar, hgtVar, magVar, tasVar, offset);
float tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z);
getFilterFaults(_core,faultStatus);
getFilterTimeouts(_core,timeoutStatus);
getFilterStatus(_core,solutionStatus);
getFilterGpsStatus(_core,gpsStatus);
float tiltError;
getTiltError(_core,tiltError);
int8_t primaryIndex = getPrimaryCoreIndex();
const struct log_NKF4 pkt4{
LOG_PACKET_HEADER_INIT(LOG_NKF4_MSG),
time_us : time_us,
core : _core,
sqrtvarV : (int16_t)(100*velVar),
sqrtvarP : (int16_t)(100*posVar),
sqrtvarH : (int16_t)(100*hgtVar),
sqrtvarM : (int16_t)(100*tempVar),
sqrtvarVT : (int16_t)(100*tasVar),
tiltErr : (float)tiltError,
offsetNorth : (int8_t)(offset.x),
offsetEast : (int8_t)(offset.y),
faults : (uint16_t)(faultStatus),
timeouts : (uint8_t)(timeoutStatus),
solution : (uint32_t)(solutionStatus.value),
gps : (uint16_t)(gpsStatus.value),
primary : (int8_t)primaryIndex
};
AP::logger().WriteBlock(&pkt4, sizeof(pkt4));
}
void NavEKF2::Log_Write_NKF5(uint64_t time_us) const
{
// Write fifth EKF packet - take data from the primary instance
float normInnov=0; // normalised innovation variance ratio for optical flow observations fused by the main nav filter
float gndOffset=0; // estimated vertical position of the terrain relative to the nav filter zero datum
float flowInnovX=0, flowInnovY=0; // optical flow LOS rate vector innovations from the main nav filter
float auxFlowInnov=0; // optical flow LOS rate innovation from terrain offset estimator
float HAGL=0; // height above ground level
float rngInnov=0; // range finder innovations
float range=0; // measured range
float gndOffsetErr=0; // filter ground offset state error
Vector3f predictorErrors; // output predictor angle, velocity and position tracking error
getFlowDebug(-1,normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr);
getOutputTrackingError(-1,predictorErrors);
const struct log_NKF5 pkt5{
LOG_PACKET_HEADER_INIT(LOG_NKF5_MSG),
time_us : time_us,
normInnov : (uint8_t)(MIN(100*normInnov,255)),
FIX : (int16_t)(1000*flowInnovX),
FIY : (int16_t)(1000*flowInnovY),
AFI : (int16_t)(1000*auxFlowInnov),
HAGL : (int16_t)(100*HAGL),
offset : (int16_t)(100*gndOffset),
RI : (int16_t)(100*rngInnov),
meaRng : (uint16_t)(100*range),
errHAGL : (uint16_t)(100*gndOffsetErr),
angErr : (float)predictorErrors.x,
velErr : (float)predictorErrors.y,
posErr : (float)predictorErrors.z
};
AP::logger().WriteBlock(&pkt5, sizeof(pkt5));
}
void NavEKF2::Log_Write_Quaternion(uint8_t _core, uint64_t time_us) const
{
// log quaternion
Quaternion quat;
getQuaternion(_core, quat);
const struct log_Quaternion pktq1{
LOG_PACKET_HEADER_INIT(LOG_NKQ_MSG),
time_us : time_us,
core : _core,
q1 : quat.q1,
q2 : quat.q2,
q3 : quat.q3,
q4 : quat.q4
};
AP::logger().WriteBlock(&pktq1, sizeof(pktq1));
}
void NavEKF2::Log_Write_Beacon(uint64_t time_us) const
{
if (AP::beacon() != nullptr) {
uint8_t ID;
float rng;
float innovVar;
float innov;
float testRatio;
Vector3f beaconPosNED;
float bcnPosOffsetHigh;
float bcnPosOffsetLow;
if (getRangeBeaconDebug(-1, ID, rng, innov, innovVar, testRatio, beaconPosNED, bcnPosOffsetHigh, bcnPosOffsetLow)) {
if (rng > 0.0f) {
struct log_RngBcnDebug pkt10 = {
LOG_PACKET_HEADER_INIT(LOG_NKF10_MSG),
time_us : time_us,
ID : (uint8_t)ID,
rng : (int16_t)(100*rng),
innov : (int16_t)(100*innov),
sqrtInnovVar : (uint16_t)(100*safe_sqrt(innovVar)),
testRatio : (uint16_t)(100*constrain_float(testRatio,0.0f,650.0f)),
beaconPosN : (int16_t)(100*beaconPosNED.x),
beaconPosE : (int16_t)(100*beaconPosNED.y),
beaconPosD : (int16_t)(100*beaconPosNED.z),
offsetHigh : (int16_t)(100*bcnPosOffsetHigh),
offsetLow : (int16_t)(100*bcnPosOffsetLow),
posN : 0,
posE : 0,
posD : 0
};
AP::logger().WriteBlock(&pkt10, sizeof(pkt10));
}
}
}
}
void NavEKF2::Log_Write()
{
// only log if enabled
if (activeCores() <= 0) {
return;
}
const uint64_t time_us = AP_HAL::micros64();
Log_Write_NKF5(time_us);
for (uint8_t i=0; i<activeCores(); i++) {
Log_Write_NKF1(i, time_us);
Log_Write_NKF2(i, time_us);
Log_Write_NKF3(i, time_us);
Log_Write_NKF4(i, time_us);
Log_Write_Quaternion(i, time_us);
Log_Write_GSF(i, time_us);
}
// write range beacon fusion debug packet if the range value is non-zero
Log_Write_Beacon(time_us);
// log EKF timing statistics every 5s
static uint32_t lastTimingLogTime_ms = 0;
if (AP_HAL::millis() - lastTimingLogTime_ms > 5000) {
lastTimingLogTime_ms = AP_HAL::millis();
struct ekf_timing timing;
for (uint8_t i=0; i<activeCores(); i++) {
getTimingStatistics(i, timing);
Log_EKF_Timing("NKT", i, time_us, timing);
}
}
}
void NavEKF2::Log_Write_GSF(uint8_t _core, uint64_t time_us) const
{
float yaw_composite;
float yaw_composite_variance;
float yaw[N_MODELS_EKFGSF];
float ivn[N_MODELS_EKFGSF];
float ive[N_MODELS_EKFGSF];
float wgt[N_MODELS_EKFGSF];
// @LoggerMessage: NKY0
// @Description: EKF2 Yaw Estimator States
// @Field: TimeUS: Time since system startup
// @Field: C: EKF2 core this data is for
// @Field: YC: GSF yaw estimate (rad)
// @Field: YCS: GSF yaw estimate 1-Sigma uncertainty (rad)
// @Field: Y0: Yaw estimate from individual EKF filter 0 (rad)
// @Field: Y1: Yaw estimate from individual EKF filter 1 (rad)
// @Field: Y2: Yaw estimate from individual EKF filter 2 (rad)
// @Field: Y3: Yaw estimate from individual EKF filter 3 (rad)
// @Field: Y4: Yaw estimate from individual EKF filter 4 (rad)
// @Field: W0: Weighting applied to yaw estimate from individual EKF filter 0
// @Field: W1: Weighting applied to yaw estimate from individual EKF filter 1
// @Field: W2: Weighting applied to yaw estimate from individual EKF filter 2
// @Field: W3: Weighting applied to yaw estimate from individual EKF filter 3
// @Field: W4: Weighting applied to yaw estimate from individual EKF filter 4
if (getDataEKFGSF(_core, yaw_composite, yaw_composite_variance, yaw, ivn, ive, wgt)) {
AP::logger().Write("NKY0",
"TimeUS,C,YC,YCS,Y0,Y1,Y2,Y3,Y4,W0,W1,W2,W3,W4",
"s#rrrrrrr-----",
"F-000000000000",
"QBffffffffffff",
time_us,
_core,
yaw_composite,
sqrtf(MAX(yaw_composite_variance, 0.0f)),
yaw[0],
yaw[1],
yaw[2],
yaw[3],
yaw[4],
wgt[0],
wgt[1],
wgt[2],
wgt[3],
wgt[4]);
// @LoggerMessage: NKY1
// @Description: EKF2 Yaw Estimator Innovations
// @Field: TimeUS: Time since system startup
// @Field: C: EKF2 core this data is for
// @Field: IVN0: North velocity innovation from individual EKF filter 0 (m/s)
// @Field: IVN1: North velocity innovation from individual EKF filter 1 (m/s)
// @Field: IVN2: North velocity innovation from individual EKF filter 2 (m/s)
// @Field: IVN3: North velocity innovation from individual EKF filter 3 (m/s)
// @Field: IVN4: North velocity innovation from individual EKF filter 4 (m/s)
// @Field: IVE0: East velocity innovation from individual EKF filter 0 (m/s)
// @Field: IVE1: East velocity innovation from individual EKF filter 1 (m/s)
// @Field: IVE2: East velocity innovation from individual EKF filter 2 (m/s)
// @Field: IVE3: East velocity innovation from individual EKF filter 3 (m/s)
// @Field: IVE4: East velocity innovation from individual EKF filter 4 (m/s)
AP::logger().Write("NKY1",
"TimeUS,C,IVN0,IVN1,IVN2,IVN3,IVN4,IVE0,IVE1,IVE2,IVE3,IVE4",
"s#nnnnnnnnnn",
"F-0000000000",
"QBffffffffff",
time_us,
_core,
ivn[0],
ivn[1],
ivn[2],
ivn[3],
ivn[4],
ive[0],
ive[1],
ive[2],
ive[3],
ive[4]);
}
}