ardupilot/libraries/AP_HAL_SITL/Storage.cpp
2020-04-14 10:02:51 +10:00

344 lines
8.8 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include "Storage.h"
#include <stdio.h>
using namespace HALSITL;
extern const AP_HAL::HAL& hal;
/*
emulate flash sector sizes
*/
#ifndef HAL_FLASH_SECTOR_SIZE
#if HAL_STORAGE_SIZE <= 16384
#define HAL_FLASH_SECTOR_SIZE (16*1024)
#elif HAL_STORAGE_SIZE <= 32768
#define HAL_FLASH_SECTOR_SIZE (32*1024)
#else
#define HAL_FLASH_SECTOR_SIZE (128*1024)
#endif
#endif
#ifndef HAL_FLASH_MIN_WRITE_SIZE
#define HAL_FLASH_MIN_WRITE_SIZE 1
#endif
#ifndef HAL_FLASH_ALLOW_UPDATE
#define HAL_FLASH_ALLOW_UPDATE 1
#endif
void Storage::_storage_open(void)
{
if (_initialised) {
return;
}
#if STORAGE_USE_POSIX
// if we have failed filesystem init don't try again
if (log_fd == -1) {
return;
}
#endif
_dirty_mask.clearall();
#if STORAGE_USE_FLASH
// load from storage backend
_flash_load();
#elif STORAGE_USE_POSIX
log_fd = open(HAL_STORAGE_FILE, O_RDWR|O_CREAT, 0644);
if (log_fd == -1) {
hal.console->printf("open failed of " HAL_STORAGE_FILE "\n");
return;
}
fcntl(log_fd, F_SETFD, FD_CLOEXEC);
int ret = read(log_fd, _buffer, HAL_STORAGE_SIZE);
if (ret < 0) {
hal.console->printf("read failed for " HAL_STORAGE_FILE "\n");
close(log_fd);
log_fd = -1;
return;
}
// pre-fill to full size
if (lseek(log_fd, ret, SEEK_SET) != ret ||
write(log_fd, &_buffer[ret], HAL_STORAGE_SIZE-ret) != HAL_STORAGE_SIZE-ret) {
hal.console->printf("setup failed for " HAL_STORAGE_FILE "\n");
close(log_fd);
log_fd = -1;
return;
}
using_filesystem = true;
#else
#error "No storage system enabled"
#endif
_initialised = true;
}
/*
mark some lines as dirty. Note that there is no attempt to avoid
the race condition between this code and the _timer_tick() code
below, which both update _dirty_mask. If we lose the race then the
result is that a line is written more than once, but it won't result
in a line not being written.
*/
void Storage::_mark_dirty(uint16_t loc, uint16_t length)
{
if (length == 0) {
return;
}
uint16_t end = loc + length - 1;
for (uint16_t line=loc>>STORAGE_LINE_SHIFT;
line <= end>>STORAGE_LINE_SHIFT;
line++) {
_dirty_mask.set(line);
}
}
void Storage::read_block(void *dst, uint16_t loc, size_t n)
{
if (loc >= sizeof(_buffer)-(n-1)) {
return;
}
_storage_open();
memcpy(dst, &_buffer[loc], n);
}
void Storage::write_block(uint16_t loc, const void *src, size_t n)
{
if (loc >= sizeof(_buffer)-(n-1)) {
return;
}
if (memcmp(src, &_buffer[loc], n) != 0) {
_storage_open();
memcpy(&_buffer[loc], src, n);
_mark_dirty(loc, n);
}
}
void Storage::_timer_tick(void)
{
if (!_initialised) {
return;
}
if (_dirty_mask.empty()) {
_last_empty_ms = AP_HAL::millis();
return;
}
// write out the first dirty line. We don't write more
// than one to keep the latency of this call to a minimum
uint16_t i;
for (i=0; i<STORAGE_NUM_LINES; i++) {
if (_dirty_mask.get(i)) {
break;
}
}
if (i == STORAGE_NUM_LINES) {
// this shouldn't be possible
return;
}
#if STORAGE_USE_POSIX
if (using_filesystem && log_fd != -1) {
const off_t offset = STORAGE_LINE_SIZE*i;
if (lseek(log_fd, offset, SEEK_SET) != offset) {
return;
}
if (write(log_fd, &_buffer[offset], STORAGE_LINE_SIZE) != STORAGE_LINE_SIZE) {
return;
}
_dirty_mask.clear(i);
return;
}
#endif
#if STORAGE_USE_FLASH
// save to storage backend
_flash_write(i);
#endif
}
/*
load all data from flash
*/
void Storage::_flash_load(void)
{
#if STORAGE_USE_FLASH
if (!_flash.init()) {
AP_HAL::panic("unable to init flash storage");
}
#else
AP_HAL::panic("unable to init storage");
#endif
}
/*
write one storage line. This also updates _dirty_mask.
*/
void Storage::_flash_write(uint16_t line)
{
#if STORAGE_USE_FLASH
if (_flash.write(line*STORAGE_LINE_SIZE, STORAGE_LINE_SIZE)) {
// mark the line clean
_dirty_mask.clear(line);
}
#endif
}
#if STORAGE_USE_FLASH
/*
emulate writing to flash
*/
static int flash_fd = -1;
static uint32_t sitl_flash_getpageaddr(uint32_t page)
{
return page * HAL_FLASH_SECTOR_SIZE;
}
static void sitl_flash_open(void)
{
if (flash_fd == -1) {
flash_fd = open("flash.dat", O_RDWR, 0644);
if (flash_fd == -1) {
flash_fd = open("flash.dat", O_RDWR|O_CREAT, 0644);
if (flash_fd == -1) {
AP_HAL::panic("Failed to open flash.dat");
}
if (ftruncate(flash_fd, 2*HAL_FLASH_SECTOR_SIZE) != 0) {
AP_HAL::panic("Failed to create flash.dat");
}
uint8_t fill[HAL_FLASH_SECTOR_SIZE*2];
memset(fill, 0xff, sizeof(fill));
pwrite(flash_fd, fill, sizeof(fill), 0);
}
}
}
static bool sitl_flash_write(uint32_t addr, const uint8_t *data, uint32_t length)
{
sitl_flash_open();
uint8_t old[length];
if (pread(flash_fd, old, length, addr) != length) {
AP_HAL::panic("Failed to read flash.dat at %u len=%u", unsigned(addr), unsigned(length));
}
#if defined(HAL_FLASH_MIN_WRITE_SIZE) && HAL_FLASH_MIN_WRITE_SIZE == 32
if ((length % HAL_FLASH_MIN_WRITE_SIZE) != 0 || (addr % HAL_FLASH_MIN_WRITE_SIZE) != 0) {
AP_HAL::panic("Attempt to write flash at %u length %u\n", addr, length);
}
// emulate H7 requirement that writes be to untouched bytes
for (uint32_t i=0; i<length; i+= 32) {
if (memcmp(&old[i], &data[i], 32) == 0) {
continue;
}
for (uint32_t j=0; j<32; j++) {
if (old[i+j] != 0xFF) {
AP_HAL::panic("Attempt to write modified flash at %u length %u\n", addr+i+j, length);
}
}
}
#endif
// check that we are only ever clearing bits (real flash storage can only ever clear bits,
// except for an erase
for (uint32_t i=0; i<length; i++) {
#if HAL_FLASH_ALLOW_UPDATE
// emulating flash that allows setting any bit from 1 to 0
if (data[i] & ~old[i]) {
AP_HAL::panic("Attempt to set flash byte 0x%02x from 0x%02x at %u\n", data[i], old[i], addr+i);
}
#else
// emulating flash that only allows update if whole byte is 0xFF
if (data[i] != old[i] && old[i] != 0xFF) {
AP_HAL::panic("Attempt to set flash byte 0x%02x from 0x%02x at %u\n", data[i], old[i], addr+i);
}
#endif
}
return pwrite(flash_fd, data, length, addr) == length;
}
static bool sitl_flash_read(uint32_t addr, uint8_t *data, uint32_t length)
{
sitl_flash_open();
return pread(flash_fd, data, length, addr) == length;
}
static bool sitl_flash_erasepage(uint32_t page)
{
uint8_t fill[HAL_FLASH_SECTOR_SIZE];
memset(fill, 0xff, sizeof(fill));
sitl_flash_open();
bool ret = pwrite(flash_fd, fill, sizeof(fill), page * HAL_FLASH_SECTOR_SIZE) == sizeof(fill);
printf("erase %u -> %u\n", page, ret);
return ret;
}
/*
callback to write data to flash
*/
bool Storage::_flash_write_data(uint8_t sector, uint32_t offset, const uint8_t *data, uint16_t length)
{
size_t base_address = sitl_flash_getpageaddr(sector);
bool ret = sitl_flash_write(base_address+offset, data, length);
if (!ret && _flash_erase_ok()) {
// we are getting flash write errors while disarmed. Try
// re-writing all of flash
uint32_t now = AP_HAL::millis();
if (now - _last_re_init_ms > 5000) {
_last_re_init_ms = now;
bool ok = _flash.re_initialise();
hal.console->printf("Storage: failed at %u:%u for %u - re-init %u\n",
(unsigned)sector, (unsigned)offset, (unsigned)length, (unsigned)ok);
}
}
return ret;
}
/*
callback to read data from flash
*/
bool Storage::_flash_read_data(uint8_t sector, uint32_t offset, uint8_t *data, uint16_t length)
{
size_t base_address = sitl_flash_getpageaddr(sector);
return sitl_flash_read(base_address+offset, data, length);
}
/*
callback to erase flash sector
*/
bool Storage::_flash_erase_sector(uint8_t sector)
{
return sitl_flash_erasepage(sector);
}
/*
callback to check if erase is allowed
*/
bool Storage::_flash_erase_ok(void)
{
// only allow erase while disarmed
return !hal.util->get_soft_armed();
}
#endif // STORAGE_USE_FLASH
/*
consider storage healthy if we have nothing to write sometime in the
last 2 seconds
*/
bool Storage::healthy(void)
{
return _initialised && AP_HAL::millis() - _last_empty_ms < 2000;
}