5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-24 17:48:35 -04:00
ardupilot/ArduCopter/avoidance_adsb.cpp
2021-03-23 22:48:20 +11:00

265 lines
9.0 KiB
C++

#include "Copter.h"
#include <AP_Notify/AP_Notify.h>
#if HAL_ADSB_ENABLED
void Copter::avoidance_adsb_update(void)
{
adsb.update();
avoidance_adsb.update();
}
#include <stdio.h>
MAV_COLLISION_ACTION AP_Avoidance_Copter::handle_avoidance(const AP_Avoidance::Obstacle *obstacle, MAV_COLLISION_ACTION requested_action)
{
MAV_COLLISION_ACTION actual_action = requested_action;
bool failsafe_state_change = false;
// check for changes in failsafe
if (!copter.failsafe.adsb) {
copter.failsafe.adsb = true;
failsafe_state_change = true;
// record flight mode in case it's required for the recovery
prev_control_mode = copter.flightmode->mode_number();
}
// take no action in some flight modes
if (copter.flightmode->mode_number() == Mode::Number::LAND ||
#if MODE_THROW_ENABLED == ENABLED
copter.flightmode->mode_number() == Mode::Number::THROW ||
#endif
copter.flightmode->mode_number() == Mode::Number::FLIP) {
actual_action = MAV_COLLISION_ACTION_NONE;
}
// if landed and we will take some kind of action, just disarm
if ((actual_action > MAV_COLLISION_ACTION_REPORT) && copter.should_disarm_on_failsafe()) {
copter.arming.disarm(AP_Arming::Method::ADSBCOLLISIONACTION);
actual_action = MAV_COLLISION_ACTION_NONE;
} else {
// take action based on requested action
switch (actual_action) {
case MAV_COLLISION_ACTION_RTL:
// attempt to switch to RTL, if this fails (i.e. flying in manual mode with bad position) do nothing
if (failsafe_state_change) {
if (!copter.set_mode(Mode::Number::RTL, ModeReason::AVOIDANCE)) {
actual_action = MAV_COLLISION_ACTION_NONE;
}
}
break;
case MAV_COLLISION_ACTION_HOVER:
// attempt to switch to Loiter, if this fails (i.e. flying in manual mode with bad position) do nothing
if (failsafe_state_change) {
if (!copter.set_mode(Mode::Number::LOITER, ModeReason::AVOIDANCE)) {
actual_action = MAV_COLLISION_ACTION_NONE;
}
}
break;
case MAV_COLLISION_ACTION_ASCEND_OR_DESCEND:
// climb or descend to avoid obstacle
if (!handle_avoidance_vertical(obstacle, failsafe_state_change)) {
actual_action = MAV_COLLISION_ACTION_NONE;
}
break;
case MAV_COLLISION_ACTION_MOVE_HORIZONTALLY:
// move horizontally to avoid obstacle
if (!handle_avoidance_horizontal(obstacle, failsafe_state_change)) {
actual_action = MAV_COLLISION_ACTION_NONE;
}
break;
case MAV_COLLISION_ACTION_MOVE_PERPENDICULAR:
if (!handle_avoidance_perpendicular(obstacle, failsafe_state_change)) {
actual_action = MAV_COLLISION_ACTION_NONE;
}
break;
// unsupported actions and those that require no response
case MAV_COLLISION_ACTION_NONE:
return actual_action;
case MAV_COLLISION_ACTION_REPORT:
default:
break;
}
}
if (failsafe_state_change) {
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_ADSB,
LogErrorCode(actual_action));
}
// return with action taken
return actual_action;
}
void AP_Avoidance_Copter::handle_recovery(RecoveryAction recovery_action)
{
// check we are coming out of failsafe
if (copter.failsafe.adsb) {
copter.failsafe.adsb = false;
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_ADSB,
LogErrorCode::ERROR_RESOLVED);
// restore flight mode if requested and user has not changed mode since
if (copter.control_mode_reason == ModeReason::AVOIDANCE) {
switch (recovery_action) {
case RecoveryAction::REMAIN_IN_AVOID_ADSB:
// do nothing, we'll stay in the AVOID_ADSB mode which is guided which will loiter forever
break;
case RecoveryAction::RESUME_PREVIOUS_FLIGHTMODE:
set_mode_else_try_RTL_else_LAND(prev_control_mode);
break;
case RecoveryAction::RTL:
set_mode_else_try_RTL_else_LAND(Mode::Number::RTL);
break;
case RecoveryAction::RESUME_IF_AUTO_ELSE_LOITER:
if (prev_control_mode == Mode::Number::AUTO) {
set_mode_else_try_RTL_else_LAND(Mode::Number::AUTO);
}
break;
default:
break;
} // switch
}
}
}
void AP_Avoidance_Copter::set_mode_else_try_RTL_else_LAND(Mode::Number mode)
{
if (!copter.set_mode(mode, ModeReason::AVOIDANCE_RECOVERY)) {
// on failure RTL or LAND
if (!copter.set_mode(Mode::Number::RTL, ModeReason::AVOIDANCE_RECOVERY)) {
copter.set_mode(Mode::Number::LAND, ModeReason::AVOIDANCE_RECOVERY);
}
}
}
int16_t AP_Avoidance_Copter::get_altitude_minimum() const
{
#if MODE_RTL_ENABLED == ENABLED
// do not descend if below RTL alt
return copter.g.rtl_altitude;
#else
return 0;
#endif
}
// check flight mode is avoid_adsb
bool AP_Avoidance_Copter::check_flightmode(bool allow_mode_change)
{
// ensure copter is in avoid_adsb mode
if (allow_mode_change && copter.flightmode->mode_number() != Mode::Number::AVOID_ADSB) {
if (!copter.set_mode(Mode::Number::AVOID_ADSB, ModeReason::AVOIDANCE)) {
// failed to set mode so exit immediately
return false;
}
}
// check flight mode
return (copter.flightmode->mode_number() == Mode::Number::AVOID_ADSB);
}
bool AP_Avoidance_Copter::handle_avoidance_vertical(const AP_Avoidance::Obstacle *obstacle, bool allow_mode_change)
{
// ensure copter is in avoid_adsb mode
if (!check_flightmode(allow_mode_change)) {
return false;
}
// decide on whether we should climb or descend
bool should_climb = false;
Location my_loc;
if (AP::ahrs().get_position(my_loc)) {
should_climb = my_loc.alt > obstacle->_location.alt;
}
// get best vector away from obstacle
Vector3f velocity_neu;
if (should_climb) {
velocity_neu.z = copter.wp_nav->get_default_speed_up();
} else {
velocity_neu.z = -copter.wp_nav->get_default_speed_down();
// do not descend if below minimum altitude
if (copter.current_loc.alt < get_altitude_minimum()) {
velocity_neu.z = 0.0f;
}
}
// send target velocity
copter.mode_avoid_adsb.set_velocity(velocity_neu);
return true;
}
bool AP_Avoidance_Copter::handle_avoidance_horizontal(const AP_Avoidance::Obstacle *obstacle, bool allow_mode_change)
{
// ensure copter is in avoid_adsb mode
if (!check_flightmode(allow_mode_change)) {
return false;
}
// get best vector away from obstacle
Vector3f velocity_neu;
if (get_vector_perpendicular(obstacle, velocity_neu)) {
// remove vertical component
velocity_neu.z = 0.0f;
// check for divide by zero
if (is_zero(velocity_neu.x) && is_zero(velocity_neu.y)) {
return false;
}
// re-normalise
velocity_neu.normalize();
// convert horizontal components to velocities
velocity_neu.x *= copter.wp_nav->get_default_speed_xy();
velocity_neu.y *= copter.wp_nav->get_default_speed_xy();
// send target velocity
copter.mode_avoid_adsb.set_velocity(velocity_neu);
return true;
}
// if we got this far we failed to set the new target
return false;
}
bool AP_Avoidance_Copter::handle_avoidance_perpendicular(const AP_Avoidance::Obstacle *obstacle, bool allow_mode_change)
{
// ensure copter is in avoid_adsb mode
if (!check_flightmode(allow_mode_change)) {
return false;
}
// get best vector away from obstacle
Vector3f velocity_neu;
if (get_vector_perpendicular(obstacle, velocity_neu)) {
// convert horizontal components to velocities
velocity_neu.x *= copter.wp_nav->get_default_speed_xy();
velocity_neu.y *= copter.wp_nav->get_default_speed_xy();
// use up and down waypoint speeds
if (velocity_neu.z > 0.0f) {
velocity_neu.z *= copter.wp_nav->get_default_speed_up();
} else {
velocity_neu.z *= copter.wp_nav->get_default_speed_down();
// do not descend if below minimum altitude
if (copter.current_loc.alt < get_altitude_minimum()) {
velocity_neu.z = 0.0f;
}
}
// send target velocity
copter.mode_avoid_adsb.set_velocity(velocity_neu);
return true;
}
// if we got this far we failed to set the new target
return false;
}
#endif