ardupilot/libraries/AP_GPS/AP_GPS_GSOF.cpp

352 lines
10 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//
// Trimble GPS driver for ArduPilot.
// Code by Michael Oborne
//
#define ALLOW_DOUBLE_MATH_FUNCTIONS
#include "AP_GPS.h"
#include "AP_GPS_GSOF.h"
#include <AP_Logger/AP_Logger.h>
#if AP_GPS_GSOF_ENABLED
extern const AP_HAL::HAL& hal;
#define gsof_DEBUGGING 0
#if gsof_DEBUGGING
# define Debug(fmt, args ...) \
do { \
hal.console->printf("%s:%d: " fmt "\n", \
__FUNCTION__, __LINE__, \
## args); \
hal.scheduler->delay(1); \
} while(0)
#else
# define Debug(fmt, args ...)
#endif
AP_GPS_GSOF::AP_GPS_GSOF(AP_GPS &_gps, AP_GPS::GPS_State &_state,
AP_HAL::UARTDriver *_port) :
AP_GPS_Backend(_gps, _state, _port)
{
gsof_msg.gsof_state = gsof_msg_parser_t::STARTTX;
// baud request for port 0
requestBaud(0);
// baud request for port 3
requestBaud(3);
uint32_t now = AP_HAL::millis();
gsofmsg_time = now + 110;
}
// Process all bytes available from the stream
//
bool
AP_GPS_GSOF::read(void)
{
uint32_t now = AP_HAL::millis();
if (gsofmsgreq_index < (sizeof(gsofmsgreq))) {
if (now > gsofmsg_time) {
requestGSOF(gsofmsgreq[gsofmsgreq_index], 0);
requestGSOF(gsofmsgreq[gsofmsgreq_index], 3);
gsofmsg_time = now + 110;
gsofmsgreq_index++;
}
}
bool ret = false;
while (port->available() > 0) {
uint8_t temp = port->read();
#if AP_GPS_DEBUG_LOGGING_ENABLED
log_data(&temp, 1);
#endif
ret |= parse(temp);
}
return ret;
}
bool
AP_GPS_GSOF::parse(uint8_t temp)
{
switch (gsof_msg.gsof_state)
{
default:
case gsof_msg_parser_t::STARTTX:
if (temp == GSOF_STX)
{
gsof_msg.starttx = temp;
gsof_msg.gsof_state = gsof_msg_parser_t::STATUS;
gsof_msg.read = 0;
gsof_msg.checksumcalc = 0;
}
break;
case gsof_msg_parser_t::STATUS:
gsof_msg.status = temp;
gsof_msg.gsof_state = gsof_msg_parser_t::PACKETTYPE;
gsof_msg.checksumcalc += temp;
break;
case gsof_msg_parser_t::PACKETTYPE:
gsof_msg.packettype = temp;
gsof_msg.gsof_state = gsof_msg_parser_t::LENGTH;
gsof_msg.checksumcalc += temp;
break;
case gsof_msg_parser_t::LENGTH:
gsof_msg.length = temp;
gsof_msg.gsof_state = gsof_msg_parser_t::DATA;
gsof_msg.checksumcalc += temp;
break;
case gsof_msg_parser_t::DATA:
gsof_msg.data[gsof_msg.read] = temp;
gsof_msg.read++;
gsof_msg.checksumcalc += temp;
if (gsof_msg.read >= gsof_msg.length)
{
gsof_msg.gsof_state = gsof_msg_parser_t::CHECKSUM;
}
break;
case gsof_msg_parser_t::CHECKSUM:
gsof_msg.checksum = temp;
gsof_msg.gsof_state = gsof_msg_parser_t::ENDTX;
if (gsof_msg.checksum == gsof_msg.checksumcalc)
{
return process_message();
}
break;
case gsof_msg_parser_t::ENDTX:
gsof_msg.endtx = temp;
gsof_msg.gsof_state = gsof_msg_parser_t::STARTTX;
break;
}
return false;
}
void
AP_GPS_GSOF::requestBaud(uint8_t portindex)
{
uint8_t buffer[19] = {0x02,0x00,0x64,0x0d,0x00,0x00,0x00, // application file record
0x03, 0x00, 0x01, 0x00, // file control information block
0x02, 0x04, portindex, 0x07, 0x00,0x00, // serial port baud format
0x00,0x03
}; // checksum
buffer[4] = packetcount++;
uint8_t checksum = 0;
for (uint8_t a = 1; a < (sizeof(buffer) - 1); a++) {
checksum += buffer[a];
}
buffer[17] = checksum;
port->write((const uint8_t*)buffer, sizeof(buffer));
}
void
AP_GPS_GSOF::requestGSOF(uint8_t messagetype, uint8_t portindex)
{
uint8_t buffer[21] = {0x02,0x00,0x64,0x0f,0x00,0x00,0x00, // application file record
0x03,0x00,0x01,0x00, // file control information block
0x07,0x06,0x0a,portindex,0x01,0x00,0x01,0x00, // output message record
0x00,0x03
}; // checksum
buffer[4] = packetcount++;
buffer[17] = messagetype;
uint8_t checksum = 0;
for (uint8_t a = 1; a < (sizeof(buffer) - 1); a++) {
checksum += buffer[a];
}
buffer[19] = checksum;
port->write((const uint8_t*)buffer, sizeof(buffer));
}
double
AP_GPS_GSOF::SwapDouble(uint8_t* src, uint32_t pos)
{
union {
double d;
char bytes[sizeof(double)];
} doubleu;
doubleu.bytes[0] = src[pos + 7];
doubleu.bytes[1] = src[pos + 6];
doubleu.bytes[2] = src[pos + 5];
doubleu.bytes[3] = src[pos + 4];
doubleu.bytes[4] = src[pos + 3];
doubleu.bytes[5] = src[pos + 2];
doubleu.bytes[6] = src[pos + 1];
doubleu.bytes[7] = src[pos + 0];
return doubleu.d;
}
float
AP_GPS_GSOF::SwapFloat(uint8_t* src, uint32_t pos)
{
union {
float f;
char bytes[sizeof(float)];
} floatu;
floatu.bytes[0] = src[pos + 3];
floatu.bytes[1] = src[pos + 2];
floatu.bytes[2] = src[pos + 1];
floatu.bytes[3] = src[pos + 0];
return floatu.f;
}
uint32_t
AP_GPS_GSOF::SwapUint32(uint8_t* src, uint32_t pos)
{
union {
uint32_t u;
char bytes[sizeof(uint32_t)];
} uint32u;
uint32u.bytes[0] = src[pos + 3];
uint32u.bytes[1] = src[pos + 2];
uint32u.bytes[2] = src[pos + 1];
uint32u.bytes[3] = src[pos + 0];
return uint32u.u;
}
uint16_t
AP_GPS_GSOF::SwapUint16(uint8_t* src, uint32_t pos)
{
union {
uint16_t u;
char bytes[sizeof(uint16_t)];
} uint16u;
uint16u.bytes[0] = src[pos + 1];
uint16u.bytes[1] = src[pos + 0];
return uint16u.u;
}
bool
AP_GPS_GSOF::process_message(void)
{
//http://www.trimble.com/OEM_ReceiverHelp/V4.81/en/default.html#welcome.html
if (gsof_msg.packettype == 0x40) { // GSOF
#if gsof_DEBUGGING
uint8_t trans_number = gsof_msg.data[0];
uint8_t pageidx = gsof_msg.data[1];
uint8_t maxpageidx = gsof_msg.data[2];
Debug("GSOF page: %u of %u (trans_number=%u)",
pageidx, maxpageidx, trans_number);
#endif
int valid = 0;
// want 1 2 8 9 12
for (uint32_t a = 3; a < gsof_msg.length; a++)
{
uint8_t output_type = gsof_msg.data[a];
a++;
uint8_t output_length = gsof_msg.data[a];
a++;
//Debug("GSOF type: " + output_type + " len: " + output_length);
if (output_type == 1) // pos time
{
state.time_week_ms = SwapUint32(gsof_msg.data, a);
state.time_week = SwapUint16(gsof_msg.data, a + 4);
state.num_sats = gsof_msg.data[a + 6];
uint8_t posf1 = gsof_msg.data[a + 7];
uint8_t posf2 = gsof_msg.data[a + 8];
//Debug("POSTIME: " + posf1 + " " + posf2);
if ((posf1 & 1)) { // New position
state.status = AP_GPS::GPS_OK_FIX_3D;
if ((posf2 & 1)) { // Differential position
state.status = AP_GPS::GPS_OK_FIX_3D_DGPS;
if (posf2 & 2) { // Differential position method
if (posf2 & 4) {// Differential position method
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED;
} else {
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT;
}
}
}
} else {
state.status = AP_GPS::NO_FIX;
}
valid++;
}
else if (output_type == 2) // position
{
state.location.lat = (int32_t)(RAD_TO_DEG_DOUBLE * (SwapDouble(gsof_msg.data, a)) * (double)1e7);
state.location.lng = (int32_t)(RAD_TO_DEG_DOUBLE * (SwapDouble(gsof_msg.data, a + 8)) * (double)1e7);
state.location.alt = (int32_t)(SwapDouble(gsof_msg.data, a + 16) * 100);
state.last_gps_time_ms = AP_HAL::millis();
valid++;
}
else if (output_type == 8) // velocity
{
uint8_t vflag = gsof_msg.data[a];
if ((vflag & 1) == 1)
{
state.ground_speed = SwapFloat(gsof_msg.data, a + 1);
state.ground_course = degrees(SwapFloat(gsof_msg.data, a + 5));
fill_3d_velocity();
state.velocity.z = -SwapFloat(gsof_msg.data, a + 9);
state.have_vertical_velocity = true;
}
valid++;
}
else if (output_type == 9) //dop
{
state.hdop = (uint16_t)(SwapFloat(gsof_msg.data, a + 4) * 100);
valid++;
}
else if (output_type == 12) // position sigma
{
state.horizontal_accuracy = (SwapFloat(gsof_msg.data, a + 4) + SwapFloat(gsof_msg.data, a + 8)) / 2;
state.vertical_accuracy = SwapFloat(gsof_msg.data, a + 16);
state.have_horizontal_accuracy = true;
state.have_vertical_accuracy = true;
valid++;
}
a += output_length-1u;
}
if (valid == 5) {
return true;
} else {
state.status = AP_GPS::NO_FIX;
}
}
return false;
}
#endif