ardupilot/APMrover2/Log.pde

698 lines
19 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if LITE == DISABLED
#if LOGGING_ENABLED == ENABLED
// Code to Write and Read packets from DataFlash log memory
// Code to interact with the user to dump or erase logs
#define HEAD_BYTE1 0xA3 // Decimal 163
#define HEAD_BYTE2 0x95 // Decimal 149
#define END_BYTE 0xBA // Decimal 186
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t dump_log(uint8_t argc, const Menu::arg *argv);
static int8_t erase_logs(uint8_t argc, const Menu::arg *argv);
static int8_t select_logs(uint8_t argc, const Menu::arg *argv);
static int16_t cur_throttle =0;
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
//static int8_t help_log(uint8_t argc, const Menu::arg *argv)
/*{
Serial.printf_P(PSTR("\n"
"Commands:\n"
" dump <n>"
" erase (all logs)\n"
" enable <name> | all\n"
" disable <name> | all\n"
"\n"));
return 0;
}*/
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
static const struct Menu::command log_menu_commands[] PROGMEM = {
{"dump", dump_log},
{"erase", erase_logs},
{"enable", select_logs},
{"disable", select_logs}
};
// A Macro to create the Menu
MENU2(log_menu, "Log", log_menu_commands, print_log_menu);
static bool
print_log_menu(void)
{
int log_start;
int log_end;
int temp;
int last_log_num = DataFlash.find_last_log();
uint16_t num_logs = DataFlash.get_num_logs();
Serial.printf_P(PSTR("logs enabled: "));
if (0 == g.log_bitmask) {
Serial.printf_P(PSTR("none"));
}else{
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// the bit being set and print the name of the log option to suit.
#define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) Serial.printf_P(PSTR(" %S"), PSTR(#_s))
PLOG(ATTITUDE_FAST);
PLOG(ATTITUDE_MED);
PLOG(GPS);
PLOG(PM);
PLOG(CTUN);
PLOG(NTUN);
PLOG(MODE);
PLOG(RAW);
PLOG(CMD);
PLOG(CUR);
#undef PLOG
}
Serial.println();
if (num_logs == 0) {
Serial.printf_P(PSTR("\nNo logs\n\n"));
}else{
Serial.printf_P(PSTR("\n%d logs\n"), num_logs);
for(int i=num_logs;i>=1;i--) {
int last_log_start = log_start, last_log_end = log_end;
temp = last_log_num-i+1;
DataFlash.get_log_boundaries(temp, log_start, log_end);
Serial.printf_P(PSTR("Log %d, start %d, end %d\n"), temp, log_start, log_end);
if (last_log_start == log_start && last_log_end == log_end) {
// we are printing bogus logs
break;
}
}
Serial.println();
}
return(true);
}
static int8_t
dump_log(uint8_t argc, const Menu::arg *argv)
{
int dump_log;
int dump_log_start;
int dump_log_end;
byte last_log_num;
// check that the requested log number can be read
dump_log = argv[1].i;
last_log_num = DataFlash.find_last_log();
if (dump_log == -2) {
for(uint16_t count=1; count<=DataFlash.df_NumPages; count++) {
DataFlash.StartRead(count);
Serial.printf_P(PSTR("DF page, log file #, log page: %d,\t"), count);
Serial.printf_P(PSTR("%d,\t"), DataFlash.GetFileNumber());
Serial.printf_P(PSTR("%d\n"), DataFlash.GetFilePage());
}
return(-1);
} else if (dump_log <= 0) {
Serial.printf_P(PSTR("dumping all\n"));
Log_Read(1, DataFlash.df_NumPages);
return(-1);
} else if ((argc != 2) || (dump_log <= (last_log_num - DataFlash.get_num_logs())) || (dump_log > last_log_num)) {
Serial.printf_P(PSTR("bad log number\n"));
return(-1);
}
DataFlash.get_log_boundaries(dump_log, dump_log_start, dump_log_end);
Serial.printf_P(PSTR("Dumping Log %d, start pg %d, end pg %d\n"),
dump_log,
dump_log_start,
dump_log_end);
Log_Read(dump_log_start, dump_log_end);
Serial.printf_P(PSTR("Done\n"));
return 0;
}
void erase_callback(unsigned long t) {
mavlink_delay(t);
if (DataFlash.GetWritePage() % 128 == 0) {
Serial.printf_P(PSTR("+"));
}
}
static void do_erase_logs(void)
{
Serial.printf_P(PSTR("\nErasing log...\n"));
DataFlash.EraseAll(erase_callback);
Serial.printf_P(PSTR("\nLog erased.\n"));
}
static int8_t
erase_logs(uint8_t argc, const Menu::arg *argv)
{
in_mavlink_delay = true;
do_erase_logs();
in_mavlink_delay = false;
return 0;
}
static int8_t
select_logs(uint8_t argc, const Menu::arg *argv)
{
uint16_t bits;
if (argc != 2) {
Serial.printf_P(PSTR("missing log type\n"));
return(-1);
}
bits = 0;
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// that name as the argument to the command, and set the bit in
// bits accordingly.
//
if (!strcasecmp_P(argv[1].str, PSTR("all"))) {
bits = ~0;
} else {
#define TARG(_s) if (!strcasecmp_P(argv[1].str, PSTR(#_s))) bits |= MASK_LOG_ ## _s
TARG(ATTITUDE_FAST);
TARG(ATTITUDE_MED);
TARG(GPS);
TARG(PM);
TARG(CTUN);
TARG(NTUN);
TARG(MODE);
TARG(RAW);
TARG(CMD);
TARG(CUR);
#undef TARG
}
if (!strcasecmp_P(argv[0].str, PSTR("enable"))) {
g.log_bitmask.set_and_save(g.log_bitmask | bits);
}else{
g.log_bitmask.set_and_save(g.log_bitmask & ~bits);
}
return(0);
}
static int8_t
process_logs(uint8_t argc, const Menu::arg *argv)
{
log_menu.run();
return 0;
}
// Write an attitude packet. Total length : 10 bytes
static void Log_Write_Attitude(int16_t log_roll, int16_t log_pitch, uint16_t log_yaw)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_ATTITUDE_MSG);
DataFlash.WriteInt(log_roll);
DataFlash.WriteInt(log_pitch);
DataFlash.WriteInt(log_yaw);
DataFlash.WriteByte(END_BYTE);
}
// Write a performance monitoring packet. Total length : 19 bytes
#if HIL_MODE != HIL_MODE_ATTITUDE
static void Log_Write_Performance()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_PERFORMANCE_MSG);
DataFlash.WriteLong(millis()- perf_mon_timer);
DataFlash.WriteInt((int16_t)mainLoop_count);
DataFlash.WriteInt(G_Dt_max);
DataFlash.WriteByte(0);
DataFlash.WriteByte(imu.adc_constraints);
DataFlash.WriteByte(ahrs.renorm_range_count);
DataFlash.WriteByte(ahrs.renorm_blowup_count);
DataFlash.WriteByte(gps_fix_count);
DataFlash.WriteInt(1);
DataFlash.WriteInt((int)(ahrs.get_gyro_drift().x * 1000));
DataFlash.WriteInt((int)(ahrs.get_gyro_drift().y * 1000));
DataFlash.WriteInt((int)(ahrs.get_gyro_drift().z * 1000));
DataFlash.WriteInt(pmTest1);
DataFlash.WriteByte(END_BYTE);
}
#endif
// Write a command processing packet. Total length : 19 bytes
//void Log_Write_Cmd(byte num, byte id, byte p1, int32_t alt, int32_t lat, int32_t lng)
static void Log_Write_Cmd(byte num, struct Location *wp)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CMD_MSG);
DataFlash.WriteByte(num);
DataFlash.WriteByte(wp->id);
DataFlash.WriteByte(wp->p1);
DataFlash.WriteLong(wp->alt);
DataFlash.WriteLong(wp->lat);
DataFlash.WriteLong(wp->lng);
DataFlash.WriteByte(END_BYTE);
}
static void Log_Write_Startup(byte type)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_STARTUP_MSG);
DataFlash.WriteByte(type);
DataFlash.WriteByte(g.command_total);
DataFlash.WriteByte(END_BYTE);
// create a location struct to hold the temp Waypoints for printing
struct Location cmd = get_cmd_with_index(0);
Log_Write_Cmd(0, &cmd);
for (int i = 1; i <= g.command_total; i++){
cmd = get_cmd_with_index(i);
Log_Write_Cmd(i, &cmd);
}
}
// Write a control tuning packet. Total length : 22 bytes
#if HIL_MODE != HIL_MODE_ATTITUDE
static void Log_Write_Control_Tuning()
{
Vector3f accel = imu.get_accel();
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CONTROL_TUNING_MSG);
DataFlash.WriteInt((int)(g.channel_roll.servo_out));
DataFlash.WriteInt((int)nav_roll);
DataFlash.WriteInt((int)ahrs.roll_sensor);
DataFlash.WriteInt((int)(g.channel_pitch.servo_out));
DataFlash.WriteInt((int)nav_pitch);
DataFlash.WriteInt((int)ahrs.pitch_sensor);
DataFlash.WriteInt((int)(g.channel_throttle.servo_out));
DataFlash.WriteInt((int)(g.channel_rudder.servo_out));
DataFlash.WriteInt((int)(accel.y * 10000));
DataFlash.WriteByte(END_BYTE);
}
#endif
// Write a navigation tuning packet. Total length : 18 bytes
static void Log_Write_Nav_Tuning()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_NAV_TUNING_MSG);
DataFlash.WriteInt((uint16_t)ahrs.yaw_sensor);
DataFlash.WriteInt((int)wp_distance);
DataFlash.WriteInt((uint16_t)target_bearing);
DataFlash.WriteInt((uint16_t)nav_bearing);
DataFlash.WriteInt(altitude_error);
DataFlash.WriteInt((int)airspeed);
DataFlash.WriteInt((int)(nav_gain_scaler*1000));
DataFlash.WriteByte(END_BYTE);
}
// Write a mode packet. Total length : 5 bytes
static void Log_Write_Mode(byte mode)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_MODE_MSG);
DataFlash.WriteByte(mode);
DataFlash.WriteByte(END_BYTE);
}
// Write an GPS packet. Total length : 30 bytes
static void Log_Write_GPS( int32_t log_Time, int32_t log_Lattitude, int32_t log_Longitude, int32_t log_gps_alt, int32_t log_mix_alt,
int32_t log_Ground_Speed, int32_t log_Ground_Course, byte log_Fix, byte log_NumSats)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_GPS_MSG);
DataFlash.WriteLong(log_Time);
DataFlash.WriteByte(log_Fix);
DataFlash.WriteByte(log_NumSats);
DataFlash.WriteLong(log_Lattitude);
DataFlash.WriteLong(log_Longitude);
DataFlash.WriteInt(sonar_dist); // This one is just temporary for testing out sonar in fixed wing
DataFlash.WriteLong(log_mix_alt);
DataFlash.WriteLong(log_gps_alt);
DataFlash.WriteLong(log_Ground_Speed);
DataFlash.WriteLong(log_Ground_Course);
DataFlash.WriteInt(0);
DataFlash.WriteInt(0);
DataFlash.WriteInt((int)airspeed);
DataFlash.WriteByte(END_BYTE);
}
// Write an raw accel/gyro data packet. Total length : 28 bytes
#if HIL_MODE != HIL_MODE_ATTITUDE
static void Log_Write_Raw()
{
Vector3f gyro = imu.get_gyro();
Vector3f accel = imu.get_accel();
gyro *= t7; // Scale up for storage as long integers
accel *= t7;
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_RAW_MSG);
DataFlash.WriteLong((long)gyro.x);
DataFlash.WriteLong((long)gyro.y);
DataFlash.WriteLong((long)gyro.z);
DataFlash.WriteLong((long)accel.x);
DataFlash.WriteLong((long)accel.y);
DataFlash.WriteLong((long)accel.z);
DataFlash.WriteByte(END_BYTE);
}
#endif
static void Log_Write_Current()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CURRENT_MSG);
DataFlash.WriteInt(g.channel_throttle.control_in);
DataFlash.WriteInt((int)(battery_voltage1 * 100.0));
DataFlash.WriteInt((int)(current_amps1 * 100.0));
DataFlash.WriteInt((int)current_total1);
DataFlash.WriteByte(END_BYTE);
}
// Read a Current packet
static void Log_Read_Current()
{
Serial.printf_P(PSTR("CURR: %d, %4.4f, %4.4f, %d\n"),
DataFlash.ReadInt(),
((float)DataFlash.ReadInt() / 100.f),
((float)DataFlash.ReadInt() / 100.f),
DataFlash.ReadInt());
}
// Read an control tuning packet
static void Log_Read_Control_Tuning()
{
float logvar;
Serial.printf_P(PSTR("CTUN: "));
for (int y = 1; y < 10; y++) {
logvar = DataFlash.ReadInt();
if(y == 7) cur_throttle = logvar;
if(y < 8) logvar = logvar/100.f;
if(y == 9) logvar = logvar/10000.f;
Serial.print(logvar);
Serial.print(comma);
Serial.print(" ");
}
Serial.println("");
}
// Read a nav tuning packet
static void Log_Read_Nav_Tuning()
{
int16_t d[7];
for (int8_t i=0; i<7; i++) {
d[i] = DataFlash.ReadInt();
}
Serial.printf_P(PSTR("NTUN: %4.4f, %d, %4.4f, %4.4f, %4.4f, %4.4f, %4.4f,\n"), // \n
d[0]/100.0,
d[1],
((uint16_t)d[2])/100.0,
((uint16_t)d[3])/100.0,
d[4]/100.0,
d[5]/100.0,
d[5]/1000.0);
}
// Read a performance packet
static void Log_Read_Performance()
{
int32_t pm_time;
int logvar;
Serial.printf_P(PSTR("PM: "));
pm_time = DataFlash.ReadLong();
Serial.print(pm_time);
Serial.print(comma);
for (int y = 1; y <= 12; y++) {
if(y < 3 || y > 7){
logvar = DataFlash.ReadInt();
}else{
logvar = DataFlash.ReadByte();
}
Serial.print(logvar);
Serial.print(comma);
Serial.print(" ");
}
Serial.println("");
}
// Read a command processing packet
static void Log_Read_Cmd()
{
byte logvarb;
int32_t logvarl;
Serial.printf_P(PSTR("CMD: "));
for(int i = 1; i < 4; i++) {
logvarb = DataFlash.ReadByte();
Serial.print(logvarb, DEC);
Serial.print(comma);
Serial.print(" ");
}
for(int i = 1; i < 4; i++) {
logvarl = DataFlash.ReadLong();
Serial.print(logvarl, DEC);
Serial.print(comma);
Serial.print(" ");
}
Serial.println("");
}
static void Log_Read_Startup()
{
byte logbyte = DataFlash.ReadByte();
if (logbyte == TYPE_AIRSTART_MSG)
Serial.printf_P(PSTR("AIR START - "));
else if (logbyte == TYPE_GROUNDSTART_MSG)
Serial.printf_P(PSTR("GROUND START - "));
else
Serial.printf_P(PSTR("UNKNOWN STARTUP - "));
Serial.printf_P(PSTR(" %d commands in memory\n"),(int)DataFlash.ReadByte());
}
// Read an attitude packet
static void Log_Read_Attitude()
{
int16_t d[3];
d[0] = DataFlash.ReadInt();
d[1] = DataFlash.ReadInt();
d[2] = DataFlash.ReadInt();
Serial.printf_P(PSTR("ATT: %d, %d, %u\n"),
d[0], d[1],
(uint16_t)d[2]);
}
// Read a mode packet
static void Log_Read_Mode()
{
Serial.printf_P(PSTR("MOD: "));
Serial.println(flight_mode_strings[DataFlash.ReadByte()]);
}
// Read a GPS packet
static void Log_Read_GPS()
{
int32_t l[7];
byte b[2];
int16_t i,j,k,m;
l[0] = DataFlash.ReadLong();
b[0] = DataFlash.ReadByte();
b[1] = DataFlash.ReadByte();
l[1] = DataFlash.ReadLong();
l[2] = DataFlash.ReadLong();
i = DataFlash.ReadInt();
l[3] = DataFlash.ReadLong();
l[4] = DataFlash.ReadLong();
l[5] = DataFlash.ReadLong();
l[6] = DataFlash.ReadLong();
j = DataFlash.ReadInt();
k = DataFlash.ReadInt();
m = DataFlash.ReadInt();
/*
Serial.printf_P(PSTR("GPS: %ld, %d, %d, %4.7f, %4.7f, %d, %4.4f, %4.4f, %4.4f, %4.4f\n"),
(long)l[0], (int)b[0], (int)b[1],
l[1]/t7, l[2]/t7,
(int)i,
l[3]/100.0, l[4]/100.0, l[5]/100.0, l[6]/100.0); */
Serial.printf_P(PSTR("GPS: %ld, %d, %d, %4.7f, %4.7f, %4.4f, %4.4f, %4.4f, %4.4f\n"),
(long)l[0], (int)b[0], (int)b[1],
l[1]/t7, l[2]/t7,
l[4]/100.0, l[3]/100.0, l[5]/100.0, l[6]/100.0);
Serial.printf_P(PSTR("THP: %4.7f, %4.7f, %4.4f, %2.1f, %2.1f, %2.1f, %d\n"),
l[1]/t7, l[2]/t7, l[3]/100.0,
(float)j/100.0, (float)k/100.0, (float)m/100.0, cur_throttle);
}
// Read a raw accel/gyro packet
static void Log_Read_Raw()
{
float logvar;
Serial.printf_P(PSTR("RAW: "));
for (int y = 0; y < 6; y++) {
logvar = (float)DataFlash.ReadLong() / t7;
Serial.print(logvar);
Serial.print(comma);
Serial.print(" ");
}
Serial.println("");
}
// Read the DataFlash log memory : Packet Parser
static void Log_Read(int16_t start_page, int16_t end_page)
{
int packet_count = 0;
#ifdef AIRFRAME_NAME
Serial.printf_P(PSTR((AIRFRAME_NAME)
#endif
Serial.printf_P(PSTR("\n" THISFIRMWARE
"\nFree RAM: %u\n"),
memcheck_available_memory());
if(start_page > end_page)
{
packet_count = Log_Read_Process(start_page, DataFlash.df_NumPages);
packet_count += Log_Read_Process(1, end_page);
} else {
packet_count = Log_Read_Process(start_page, end_page);
}
Serial.printf_P(PSTR("Number of packets read: %d\n"), packet_count);
}
// Read the DataFlash log memory : Packet Parser
static int Log_Read_Process(int16_t start_page, int16_t end_page)
{
byte data;
byte log_step = 0;
int page = start_page;
int packet_count = 0;
DataFlash.StartRead(start_page);
while (page < end_page && page != -1){
data = DataFlash.ReadByte();
switch(log_step) // This is a state machine to read the packets
{
case 0:
if(data == HEAD_BYTE1) // Head byte 1
log_step++;
break;
case 1:
if(data == HEAD_BYTE2) // Head byte 2
log_step++;
else
log_step = 0;
break;
case 2:
if(data == LOG_ATTITUDE_MSG){
Log_Read_Attitude();
log_step++;
}else if(data == LOG_MODE_MSG){
Log_Read_Mode();
log_step++;
}else if(data == LOG_CONTROL_TUNING_MSG){
Log_Read_Control_Tuning();
log_step++;
}else if(data == LOG_NAV_TUNING_MSG){
Log_Read_Nav_Tuning();
log_step++;
}else if(data == LOG_PERFORMANCE_MSG){
Log_Read_Performance();
log_step++;
}else if(data == LOG_RAW_MSG){
Log_Read_Raw();
log_step++;
}else if(data == LOG_CMD_MSG){
Log_Read_Cmd();
log_step++;
}else if(data == LOG_CURRENT_MSG){
Log_Read_Current();
log_step++;
}else if(data == LOG_STARTUP_MSG){
Log_Read_Startup();
log_step++;
}else {
if(data == LOG_GPS_MSG){
Log_Read_GPS();
log_step++;
}else{
Serial.printf_P(PSTR("Error Reading Packet: %d\n"),packet_count);
log_step = 0; // Restart, we have a problem...
}
}
break;
case 3:
if(data == END_BYTE){
packet_count++;
}else{
Serial.printf_P(PSTR("Error Reading END_BYTE: %d\n"),data);
}
log_step = 0; // Restart sequence: new packet...
break;
}
page = DataFlash.GetPage();
}
return packet_count;
}
#else // LOGGING_ENABLED
// dummy functions
static void Log_Write_Mode(byte mode) {}
static void Log_Write_Startup(byte type) {}
static void Log_Write_Cmd(byte num, struct Location *wp) {}
static void Log_Write_Current() {}
static void Log_Write_Nav_Tuning() {}
static void Log_Write_GPS( int32_t log_Time, int32_t log_Lattitude, int32_t log_Longitude, int32_t log_gps_alt, int32_t log_mix_alt,
int32_t log_Ground_Speed, int32_t log_Ground_Course, byte log_Fix, byte log_NumSats) {}
static void Log_Write_Performance() {}
static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { return 0; }
static void Log_Write_Attitude(int16_t log_roll, int16_t log_pitch, uint16_t log_yaw) {}
static void Log_Write_Control_Tuning() {}
static void Log_Write_Raw() {}
#endif // LOGGING_ENABLED
#endif