mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 18:18:49 -04:00
44755bf3ce
this changes the barometer calculations to floating point. On a MS5611 this is actually about twice as fast as the previous 64 bit calculations, but gains us more accuracy as we are able to take advantage of sub-bit precision when we average over 8 samples.
298 lines
8.1 KiB
C++
298 lines
8.1 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
/*
|
||
APM_MS5611.cpp - Arduino Library for MS5611-01BA01 absolute pressure sensor
|
||
Code by Jose Julio, Pat Hickey and Jordi Muñoz. DIYDrones.com
|
||
|
||
This library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
Sensor is conected to standard SPI port
|
||
Chip Select pin: Analog2 (provisional until Jordi defines the pin)!!
|
||
|
||
Variables:
|
||
Temp : Calculated temperature (in Celsius degrees * 100)
|
||
Press : Calculated pressure (in mbar units * 100)
|
||
|
||
|
||
Methods:
|
||
init() : Initialization and sensor reset
|
||
read() : Read sensor data and _calculate Temperature, Pressure
|
||
This function is optimized so the main host don´t need to wait
|
||
You can call this function in your main loop
|
||
Maximum data output frequency 100Hz - this allows maximum oversampling in the chip ADC
|
||
It returns a 1 if there are new data.
|
||
get_pressure() : return pressure in mbar*100 units
|
||
get_temperature() : return temperature in celsius degrees*100 units
|
||
|
||
Internal functions:
|
||
_calculate() : Calculate Temperature and Pressure (temperature compensated) in real units
|
||
|
||
|
||
*/
|
||
|
||
#include <FastSerial.h>
|
||
#include <SPI.h>
|
||
#include "AP_Baro_MS5611.h"
|
||
|
||
|
||
/* on APM v.24 MS5661_CS is PG1 (Arduino pin 40) */
|
||
#define MS5611_CS 40
|
||
|
||
#define CMD_MS5611_RESET 0x1E
|
||
#define CMD_MS5611_PROM_Setup 0xA0
|
||
#define CMD_MS5611_PROM_C1 0xA2
|
||
#define CMD_MS5611_PROM_C2 0xA4
|
||
#define CMD_MS5611_PROM_C3 0xA6
|
||
#define CMD_MS5611_PROM_C4 0xA8
|
||
#define CMD_MS5611_PROM_C5 0xAA
|
||
#define CMD_MS5611_PROM_C6 0xAC
|
||
#define CMD_MS5611_PROM_CRC 0xAE
|
||
#define CMD_CONVERT_D1_OSR4096 0x48 // Maximum resolution (oversampling)
|
||
#define CMD_CONVERT_D2_OSR4096 0x58 // Maximum resolution (oversampling)
|
||
|
||
uint32_t volatile AP_Baro_MS5611::_s_D1;
|
||
uint32_t volatile AP_Baro_MS5611::_s_D2;
|
||
uint8_t volatile AP_Baro_MS5611::_d1_count;
|
||
uint8_t volatile AP_Baro_MS5611::_d2_count;
|
||
uint8_t AP_Baro_MS5611::_state;
|
||
uint32_t AP_Baro_MS5611::_timer;
|
||
bool AP_Baro_MS5611::_sync_access;
|
||
bool volatile AP_Baro_MS5611::_updated;
|
||
|
||
uint8_t AP_Baro_MS5611::_spi_read(uint8_t reg)
|
||
{
|
||
uint8_t return_value;
|
||
uint8_t addr = reg; // | 0x80; // Set most significant bit
|
||
digitalWrite(MS5611_CS, LOW);
|
||
SPI.transfer(addr); // discarded
|
||
return_value = SPI.transfer(0);
|
||
digitalWrite(MS5611_CS, HIGH);
|
||
return return_value;
|
||
}
|
||
|
||
uint16_t AP_Baro_MS5611::_spi_read_16bits(uint8_t reg)
|
||
{
|
||
uint8_t byteH, byteL;
|
||
uint16_t return_value;
|
||
uint8_t addr = reg; // | 0x80; // Set most significant bit
|
||
digitalWrite(MS5611_CS, LOW);
|
||
SPI.transfer(addr); // discarded
|
||
byteH = SPI.transfer(0);
|
||
byteL = SPI.transfer(0);
|
||
digitalWrite(MS5611_CS, HIGH);
|
||
return_value = ((uint16_t)byteH<<8) | (byteL);
|
||
return return_value;
|
||
}
|
||
|
||
uint32_t AP_Baro_MS5611::_spi_read_adc()
|
||
{
|
||
uint8_t byteH,byteM,byteL;
|
||
uint32_t return_value;
|
||
uint8_t addr = 0x00;
|
||
digitalWrite(MS5611_CS, LOW);
|
||
SPI.transfer(addr); // discarded
|
||
byteH = SPI.transfer(0);
|
||
byteM = SPI.transfer(0);
|
||
byteL = SPI.transfer(0);
|
||
digitalWrite(MS5611_CS, HIGH);
|
||
return_value = (((uint32_t)byteH)<<16) | (((uint32_t)byteM)<<8) | (byteL);
|
||
return return_value;
|
||
}
|
||
|
||
|
||
void AP_Baro_MS5611::_spi_write(uint8_t reg)
|
||
{
|
||
digitalWrite(MS5611_CS, LOW);
|
||
SPI.transfer(reg); // discarded
|
||
digitalWrite(MS5611_CS, HIGH);
|
||
}
|
||
|
||
// Public Methods //////////////////////////////////////////////////////////////
|
||
// SPI should be initialized externally
|
||
bool AP_Baro_MS5611::init( AP_PeriodicProcess *scheduler )
|
||
{
|
||
scheduler->suspend_timer();
|
||
|
||
pinMode(MS5611_CS, OUTPUT); // Chip select Pin
|
||
digitalWrite(MS5611_CS, HIGH);
|
||
delay(1);
|
||
|
||
_spi_write(CMD_MS5611_RESET);
|
||
delay(4);
|
||
|
||
// We read the factory calibration
|
||
// The on-chip CRC is not used
|
||
C1 = _spi_read_16bits(CMD_MS5611_PROM_C1);
|
||
C2 = _spi_read_16bits(CMD_MS5611_PROM_C2);
|
||
C3 = _spi_read_16bits(CMD_MS5611_PROM_C3);
|
||
C4 = _spi_read_16bits(CMD_MS5611_PROM_C4);
|
||
C5 = _spi_read_16bits(CMD_MS5611_PROM_C5);
|
||
C6 = _spi_read_16bits(CMD_MS5611_PROM_C6);
|
||
|
||
|
||
//Send a command to read Temp first
|
||
_spi_write(CMD_CONVERT_D2_OSR4096);
|
||
_timer = micros();
|
||
_state = 0;
|
||
Temp=0;
|
||
Press=0;
|
||
|
||
_s_D1 = 0;
|
||
_s_D2 = 0;
|
||
_d1_count = 0;
|
||
_d2_count = 0;
|
||
|
||
scheduler->resume_timer();
|
||
scheduler->register_process( AP_Baro_MS5611::_update );
|
||
|
||
// wait for at least one value to be read
|
||
while (!_updated) ;
|
||
|
||
healthy = true;
|
||
return true;
|
||
}
|
||
|
||
|
||
// Read the sensor. This is a state machine
|
||
// We read one time Temperature (state=1) and then 4 times Pressure (states 2-5)
|
||
// temperature does not change so quickly...
|
||
void AP_Baro_MS5611::_update(uint32_t tnow)
|
||
{
|
||
if (_sync_access) return;
|
||
|
||
// Throttle read rate to 100hz maximum.
|
||
// note we use 9500us here not 10000us
|
||
// the read rate will end up at exactly 100hz because the Periodic Timer fires at 1khz
|
||
if (tnow - _timer < 9500) {
|
||
return;
|
||
}
|
||
|
||
_timer = tnow;
|
||
|
||
if (_state == 0) {
|
||
_s_D2 += _spi_read_adc(); // On state 0 we read temp
|
||
_d2_count++;
|
||
if (_d2_count == 32) {
|
||
// we have summed 32 values. This only happens
|
||
// when we stop reading the barometer for a long time
|
||
// (more than 1.2 seconds)
|
||
_s_D2 >>= 1;
|
||
_d2_count = 16;
|
||
}
|
||
_state++;
|
||
_spi_write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
|
||
} else {
|
||
_s_D1 += _spi_read_adc();
|
||
_d1_count++;
|
||
if (_d1_count == 128) {
|
||
// we have summed 128 values. This only happens
|
||
// when we stop reading the barometer for a long time
|
||
// (more than 1.2 seconds)
|
||
_s_D1 >>= 1;
|
||
_d1_count = 64;
|
||
}
|
||
_state++;
|
||
_updated = true; // New pressure reading
|
||
if (_state == 5) {
|
||
_spi_write(CMD_CONVERT_D2_OSR4096); // Command to read temperature
|
||
_state = 0;
|
||
} else {
|
||
_spi_write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
|
||
}
|
||
}
|
||
}
|
||
|
||
uint8_t AP_Baro_MS5611::read()
|
||
{
|
||
_sync_access = true;
|
||
bool updated = _updated;
|
||
if (updated) {
|
||
uint32_t sD1, sD2;
|
||
uint8_t d1count, d2count;
|
||
// we need to disable interrupts to access
|
||
// _s_D1 and _s_D2 as they are not atomic
|
||
cli();
|
||
sD1 = _s_D1; _s_D1 = 0;
|
||
sD2 = _s_D2; _s_D2 = 0;
|
||
d1count = _d1_count; _d1_count = 0;
|
||
d2count = _d2_count; _d2_count = 0;
|
||
_updated = false;
|
||
sei();
|
||
if (d1count != 0) {
|
||
D1 = ((float)sD1) / d1count;
|
||
}
|
||
if (d2count != 0) {
|
||
D2 = ((float)sD2) / d2count;
|
||
}
|
||
_pressure_samples = d1count;
|
||
_raw_press = D1;
|
||
_raw_temp = D2;
|
||
}
|
||
_sync_access = false;
|
||
_calculate();
|
||
if (updated) {
|
||
_last_update = millis();
|
||
}
|
||
return updated ? 1 : 0;
|
||
}
|
||
|
||
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
|
||
void AP_Baro_MS5611::_calculate()
|
||
{
|
||
float dT;
|
||
float TEMP;
|
||
float OFF;
|
||
float SENS;
|
||
float P;
|
||
|
||
// Formulas from manufacturer datasheet
|
||
// sub -20c temperature compensation is not included
|
||
|
||
// we do the calculations using floating point
|
||
// as this is much faster on an AVR2560, and also allows
|
||
// us to take advantage of the averaging of D1 and D1 over
|
||
// multiple samples, giving us more precision
|
||
dT = D2-(((uint32_t)C5)<<8);
|
||
TEMP = (dT * C6)/8388608;
|
||
OFF = C2 * 65536.0 + (C4 * dT) / 128;
|
||
SENS = C1 * 32768.0 + (C3 * dT) / 256;
|
||
|
||
if (TEMP < 0) {
|
||
// second order temperature compensation when under 20 degrees C
|
||
float T2 = (dT*dT) / 0x80000000;
|
||
float Aux = TEMP*TEMP;
|
||
float OFF2 = 2.5*Aux;
|
||
float SENS2 = 1.25*Aux;
|
||
TEMP = TEMP - T2;
|
||
OFF = OFF - OFF2;
|
||
SENS = SENS - SENS2;
|
||
}
|
||
|
||
P = (D1*SENS/2097152 - OFF)/32768;
|
||
Temp = TEMP + 2000;
|
||
Press = P;
|
||
}
|
||
|
||
float AP_Baro_MS5611::get_pressure()
|
||
{
|
||
return Press;
|
||
}
|
||
|
||
float AP_Baro_MS5611::get_temperature()
|
||
{
|
||
// callers want the temperature in 0.1C units
|
||
return Temp/10;
|
||
}
|
||
|
||
int32_t AP_Baro_MS5611::get_raw_pressure() {
|
||
return _raw_press;
|
||
}
|
||
|
||
int32_t AP_Baro_MS5611::get_raw_temp() {
|
||
return _raw_temp;
|
||
}
|
||
|
||
|