mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
411 lines
15 KiB
C++
411 lines
15 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Initial Code by Jon Challinger
|
|
// Modified by Paul Riseborough
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AP_PitchController.h"
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
const AP_Param::GroupInfo AP_PitchController::var_info[] = {
|
|
|
|
// @Param: 2SRV_TCONST
|
|
// @DisplayName: Pitch Time Constant
|
|
// @Description: Time constant in seconds from demanded to achieved pitch angle. Most models respond well to 0.5. May be reduced for faster responses, but setting lower than a model can achieve will not help.
|
|
// @Range: 0.4 1.0
|
|
// @Units: s
|
|
// @Increment: 0.1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("2SRV_TCONST", 0, AP_PitchController, gains.tau, 0.5f),
|
|
|
|
// index 1 to 3 reserved for old PID values
|
|
|
|
// @Param: 2SRV_RMAX_UP
|
|
// @DisplayName: Pitch up max rate
|
|
// @Description: Maximum pitch up rate that the pitch controller demands (degrees/sec) in ACRO mode.
|
|
// @Range: 0 100
|
|
// @Units: deg/s
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("2SRV_RMAX_UP", 4, AP_PitchController, gains.rmax_pos, 0.0f),
|
|
|
|
// @Param: 2SRV_RMAX_DN
|
|
// @DisplayName: Pitch down max rate
|
|
// @Description: This sets the maximum nose down pitch rate that the controller will demand (degrees/sec). Setting it to zero disables the limit.
|
|
// @Range: 0 100
|
|
// @Units: deg/s
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("2SRV_RMAX_DN", 5, AP_PitchController, gains.rmax_neg, 0.0f),
|
|
|
|
// @Param: 2SRV_RLL
|
|
// @DisplayName: Roll compensation
|
|
// @Description: Gain added to pitch to keep aircraft from descending or ascending in turns. Increase in increments of 0.05 to reduce altitude loss. Decrease for altitude gain.
|
|
// @Range: 0.7 1.5
|
|
// @Increment: 0.05
|
|
// @User: Standard
|
|
AP_GROUPINFO("2SRV_RLL", 6, AP_PitchController, _roll_ff, 1.0f),
|
|
|
|
// index 7, 8 reserved for old IMAX, FF
|
|
|
|
// @Param: _RATE_P
|
|
// @DisplayName: Pitch axis rate controller P gain
|
|
// @Description: Pitch axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output
|
|
// @Range: 0.08 0.35
|
|
// @Increment: 0.005
|
|
// @User: Standard
|
|
|
|
// @Param: _RATE_I
|
|
// @DisplayName: Pitch axis rate controller I gain
|
|
// @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate
|
|
// @Range: 0.01 0.6
|
|
// @Increment: 0.01
|
|
// @User: Standard
|
|
|
|
// @Param: _RATE_IMAX
|
|
// @DisplayName: Pitch axis rate controller I gain maximum
|
|
// @Description: Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output
|
|
// @Range: 0 1
|
|
// @Increment: 0.01
|
|
// @User: Standard
|
|
|
|
// @Param: _RATE_D
|
|
// @DisplayName: Pitch axis rate controller D gain
|
|
// @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate
|
|
// @Range: 0.001 0.03
|
|
// @Increment: 0.001
|
|
// @User: Standard
|
|
|
|
// @Param: _RATE_FF
|
|
// @DisplayName: Pitch axis rate controller feed forward
|
|
// @Description: Pitch axis rate controller feed forward
|
|
// @Range: 0 3.0
|
|
// @Increment: 0.001
|
|
// @User: Standard
|
|
|
|
// @Param: _RATE_FLTT
|
|
// @DisplayName: Pitch axis rate controller target frequency in Hz
|
|
// @Description: Pitch axis rate controller target frequency in Hz
|
|
// @Range: 2 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: _RATE_FLTE
|
|
// @DisplayName: Pitch axis rate controller error frequency in Hz
|
|
// @Description: Pitch axis rate controller error frequency in Hz
|
|
// @Range: 2 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: _RATE_FLTD
|
|
// @DisplayName: Pitch axis rate controller derivative frequency in Hz
|
|
// @Description: Pitch axis rate controller derivative frequency in Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: _RATE_SMAX
|
|
// @DisplayName: Pitch slew rate limit
|
|
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
|
|
// @Range: 0 200
|
|
// @Increment: 0.5
|
|
// @User: Advanced
|
|
|
|
AP_SUBGROUPINFO(rate_pid, "_RATE_", 11, AP_PitchController, AC_PID),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
AP_PitchController::AP_PitchController(const AP_Vehicle::FixedWing &parms)
|
|
: aparm(parms)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
rate_pid.set_slew_limit_scale(45);
|
|
}
|
|
|
|
/*
|
|
AC_PID based rate controller
|
|
*/
|
|
float AP_PitchController::_get_rate_out(float desired_rate, float scaler, bool disable_integrator, float aspeed, bool ground_mode)
|
|
{
|
|
const float dt = AP::scheduler().get_loop_period_s();
|
|
|
|
const AP_AHRS &_ahrs = AP::ahrs();
|
|
|
|
const float eas2tas = _ahrs.get_EAS2TAS();
|
|
bool limit_I = fabsf(_last_out) >= 45;
|
|
float rate_y = _ahrs.get_gyro().y;
|
|
float old_I = rate_pid.get_i();
|
|
|
|
rate_pid.set_dt(dt);
|
|
|
|
bool underspeed = aspeed <= 0.5*float(aparm.airspeed_min);
|
|
if (underspeed) {
|
|
limit_I = true;
|
|
}
|
|
|
|
// the P and I elements are scaled by sq(scaler). To use an
|
|
// unmodified AC_PID object we scale the inputs and calculate FF separately
|
|
//
|
|
// note that we run AC_PID in radians so that the normal scaling
|
|
// range for IMAX in AC_PID applies (usually an IMAX value less than 1.0)
|
|
rate_pid.update_all(radians(desired_rate) * scaler * scaler, rate_y * scaler * scaler, limit_I);
|
|
|
|
if (underspeed) {
|
|
// when underspeed we lock the integrator
|
|
rate_pid.set_integrator(old_I);
|
|
}
|
|
|
|
// FF should be scaled by scaler/eas2tas, but since we have scaled
|
|
// the AC_PID target above by scaler*scaler we need to instead
|
|
// divide by scaler*eas2tas to get the right scaling
|
|
const float ff = degrees(rate_pid.get_ff() / (scaler * eas2tas));
|
|
|
|
if (disable_integrator) {
|
|
rate_pid.reset_I();
|
|
}
|
|
|
|
// convert AC_PID info object to same scale as old controller
|
|
_pid_info = rate_pid.get_pid_info();
|
|
auto &pinfo = _pid_info;
|
|
|
|
const float deg_scale = degrees(1);
|
|
pinfo.FF = ff;
|
|
pinfo.P *= deg_scale;
|
|
pinfo.I *= deg_scale;
|
|
pinfo.D *= deg_scale;
|
|
|
|
// fix the logged target and actual values to not have the scalers applied
|
|
pinfo.target = desired_rate;
|
|
pinfo.actual = degrees(rate_y);
|
|
|
|
// sum components
|
|
float out = pinfo.FF + pinfo.P + pinfo.I + pinfo.D;
|
|
if (ground_mode) {
|
|
// when on ground suppress D and half P term to prevent oscillations
|
|
out -= pinfo.D + 0.5*pinfo.P;
|
|
}
|
|
|
|
// remember the last output to trigger the I limit
|
|
_last_out = out;
|
|
|
|
if (autotune != nullptr && autotune->running && aspeed > aparm.airspeed_min) {
|
|
// let autotune have a go at the values
|
|
autotune->update(pinfo, scaler, angle_err_deg);
|
|
}
|
|
|
|
// output is scaled to notional centidegrees of deflection
|
|
return constrain_float(out * 100, -4500, 4500);
|
|
}
|
|
|
|
/*
|
|
Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500
|
|
A positive demand is up
|
|
Inputs are:
|
|
1) demanded pitch rate in degrees/second
|
|
2) control gain scaler = scaling_speed / aspeed
|
|
3) boolean which is true when stabilise mode is active
|
|
4) minimum FBW airspeed (metres/sec)
|
|
5) maximum FBW airspeed (metres/sec)
|
|
*/
|
|
float AP_PitchController::get_rate_out(float desired_rate, float scaler)
|
|
{
|
|
float aspeed;
|
|
if (!AP::ahrs().airspeed_estimate(aspeed)) {
|
|
// If no airspeed available use average of min and max
|
|
aspeed = 0.5f*(float(aparm.airspeed_min) + float(aparm.airspeed_max));
|
|
}
|
|
return _get_rate_out(desired_rate, scaler, false, aspeed, false);
|
|
}
|
|
|
|
/*
|
|
get the rate offset in degrees/second needed for pitch in body frame
|
|
to maintain height in a coordinated turn.
|
|
|
|
Also returns the inverted flag and the estimated airspeed in m/s for
|
|
use by the rest of the pitch controller
|
|
*/
|
|
float AP_PitchController::_get_coordination_rate_offset(float &aspeed, bool &inverted) const
|
|
{
|
|
float rate_offset;
|
|
float bank_angle = AP::ahrs().roll;
|
|
|
|
// limit bank angle between +- 80 deg if right way up
|
|
if (fabsf(bank_angle) < radians(90)) {
|
|
bank_angle = constrain_float(bank_angle,-radians(80),radians(80));
|
|
inverted = false;
|
|
} else {
|
|
inverted = true;
|
|
if (bank_angle > 0.0f) {
|
|
bank_angle = constrain_float(bank_angle,radians(100),radians(180));
|
|
} else {
|
|
bank_angle = constrain_float(bank_angle,-radians(180),-radians(100));
|
|
}
|
|
}
|
|
const AP_AHRS &_ahrs = AP::ahrs();
|
|
if (!_ahrs.airspeed_estimate(aspeed)) {
|
|
// If no airspeed available use average of min and max
|
|
aspeed = 0.5f*(float(aparm.airspeed_min) + float(aparm.airspeed_max));
|
|
}
|
|
if (abs(_ahrs.pitch_sensor) > 7000) {
|
|
// don't do turn coordination handling when at very high pitch angles
|
|
rate_offset = 0;
|
|
} else {
|
|
rate_offset = cosf(_ahrs.pitch)*fabsf(ToDeg((GRAVITY_MSS / MAX((aspeed * _ahrs.get_EAS2TAS()), MAX(aparm.airspeed_min, 1))) * tanf(bank_angle) * sinf(bank_angle))) * _roll_ff;
|
|
}
|
|
if (inverted) {
|
|
rate_offset = -rate_offset;
|
|
}
|
|
return rate_offset;
|
|
}
|
|
|
|
// Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500
|
|
// A positive demand is up
|
|
// Inputs are:
|
|
// 1) demanded pitch angle in centi-degrees
|
|
// 2) control gain scaler = scaling_speed / aspeed
|
|
// 3) boolean which is true when stabilise mode is active
|
|
// 4) minimum FBW airspeed (metres/sec)
|
|
// 5) maximum FBW airspeed (metres/sec)
|
|
//
|
|
float AP_PitchController::get_servo_out(int32_t angle_err, float scaler, bool disable_integrator, bool ground_mode)
|
|
{
|
|
// Calculate offset to pitch rate demand required to maintain pitch angle whilst banking
|
|
// Calculate ideal turn rate from bank angle and airspeed assuming a level coordinated turn
|
|
// Pitch rate offset is the component of turn rate about the pitch axis
|
|
float aspeed;
|
|
float rate_offset;
|
|
bool inverted;
|
|
|
|
if (gains.tau < 0.05f) {
|
|
gains.tau.set(0.05f);
|
|
}
|
|
|
|
rate_offset = _get_coordination_rate_offset(aspeed, inverted);
|
|
|
|
// Calculate the desired pitch rate (deg/sec) from the angle error
|
|
angle_err_deg = angle_err * 0.01;
|
|
float desired_rate = angle_err_deg / gains.tau;
|
|
|
|
// limit the maximum pitch rate demand. Don't apply when inverted
|
|
// as the rates will be tuned when upright, and it is common that
|
|
// much higher rates are needed inverted
|
|
if (!inverted) {
|
|
desired_rate += rate_offset;
|
|
if (gains.rmax_neg && desired_rate < -gains.rmax_neg) {
|
|
desired_rate = -gains.rmax_neg;
|
|
} else if (gains.rmax_pos && desired_rate > gains.rmax_pos) {
|
|
desired_rate = gains.rmax_pos;
|
|
}
|
|
} else {
|
|
// Make sure not to invert the turn coordination offset
|
|
desired_rate = -desired_rate + rate_offset;
|
|
}
|
|
|
|
/*
|
|
when we are past the users defined roll limit for the aircraft
|
|
our priority should be to bring the aircraft back within the
|
|
roll limit. Using elevator for pitch control at large roll
|
|
angles is ineffective, and can be counter productive as it
|
|
induces earth-frame yaw which can reduce the ability to roll. We
|
|
linearly reduce pitch demanded rate when beyond the configured
|
|
roll limit, reducing to zero at 90 degrees
|
|
*/
|
|
const AP_AHRS &_ahrs = AP::ahrs();
|
|
float roll_wrapped = labs(_ahrs.roll_sensor);
|
|
if (roll_wrapped > 9000) {
|
|
roll_wrapped = 18000 - roll_wrapped;
|
|
}
|
|
const float roll_limit_margin = MIN(aparm.roll_limit_cd + 500.0, 8500.0);
|
|
if (roll_wrapped > roll_limit_margin && labs(_ahrs.pitch_sensor) < 7000) {
|
|
float roll_prop = (roll_wrapped - roll_limit_margin) / (float)(9000 - roll_limit_margin);
|
|
desired_rate *= (1 - roll_prop);
|
|
}
|
|
|
|
return _get_rate_out(desired_rate, scaler, disable_integrator, aspeed, ground_mode);
|
|
}
|
|
|
|
void AP_PitchController::reset_I()
|
|
{
|
|
_pid_info.I = 0;
|
|
rate_pid.reset_I();
|
|
}
|
|
|
|
/*
|
|
convert from old to new PIDs
|
|
this is a temporary conversion function during development
|
|
*/
|
|
void AP_PitchController::convert_pid()
|
|
{
|
|
AP_Float &ff = rate_pid.ff();
|
|
if (ff.configured_in_storage()) {
|
|
return;
|
|
}
|
|
|
|
float old_ff=0, old_p=1.0, old_i=0.3, old_d=0.08;
|
|
int16_t old_imax = 3000;
|
|
bool have_old = AP_Param::get_param_by_index(this, 1, AP_PARAM_FLOAT, &old_p);
|
|
have_old |= AP_Param::get_param_by_index(this, 3, AP_PARAM_FLOAT, &old_i);
|
|
have_old |= AP_Param::get_param_by_index(this, 2, AP_PARAM_FLOAT, &old_d);
|
|
have_old |= AP_Param::get_param_by_index(this, 8, AP_PARAM_FLOAT, &old_ff);
|
|
have_old |= AP_Param::get_param_by_index(this, 7, AP_PARAM_FLOAT, &old_imax);
|
|
if (!have_old) {
|
|
// none of the old gains were set
|
|
return;
|
|
}
|
|
|
|
const float kp_ff = MAX((old_p - old_i * gains.tau) * gains.tau - old_d, 0);
|
|
rate_pid.ff().set_and_save(old_ff + kp_ff);
|
|
rate_pid.kI().set_and_save_ifchanged(old_i * gains.tau);
|
|
rate_pid.kP().set_and_save_ifchanged(old_d);
|
|
rate_pid.kD().set_and_save_ifchanged(0);
|
|
rate_pid.kIMAX().set_and_save_ifchanged(old_imax/4500.0);
|
|
}
|
|
|
|
/*
|
|
start an autotune
|
|
*/
|
|
void AP_PitchController::autotune_start(void)
|
|
{
|
|
if (autotune == nullptr) {
|
|
autotune = new AP_AutoTune(gains, AP_AutoTune::AUTOTUNE_PITCH, aparm, rate_pid);
|
|
if (autotune == nullptr) {
|
|
if (!failed_autotune_alloc) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "AutoTune: failed pitch allocation");
|
|
}
|
|
failed_autotune_alloc = true;
|
|
}
|
|
}
|
|
if (autotune != nullptr) {
|
|
autotune->start();
|
|
}
|
|
}
|
|
|
|
/*
|
|
restore autotune gains
|
|
*/
|
|
void AP_PitchController::autotune_restore(void)
|
|
{
|
|
if (autotune != nullptr) {
|
|
autotune->stop();
|
|
}
|
|
}
|