ardupilot/libraries/AP_HAL_ESP32/RCOutput.cpp
radityankn 4cab322356 Update RCOutput.cpp
erasing additional curly brackets
2024-05-29 17:02:48 +10:00

349 lines
8.7 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Charles "Silvanosky" Villard and David "Buzz" Bussenschutt
*
*/
#include "RCOutput.h"
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include "driver/rtc_io.h"
#include <stdio.h>
extern const AP_HAL::HAL& hal;
using namespace ESP32;
#ifdef HAL_ESP32_RCOUT
gpio_num_t outputs_pins[] = HAL_ESP32_RCOUT;
//If the RTC source is not required, then GPIO32/Pin12/32K_XP and GPIO33/Pin13/32K_XN can be used as digital GPIOs.
#else
gpio_num_t outputs_pins[] = {};
#endif
#define MAX_CHANNELS ARRAY_SIZE(outputs_pins)
struct RCOutput::pwm_out RCOutput::pwm_group_list[MAX_CHANNELS];
void RCOutput::init()
{
_max_channels = MAX_CHANNELS;
//32 and 33 are special as they dont default to gpio, but can be if u disable their rtc setup:
rtc_gpio_deinit(GPIO_NUM_32);
rtc_gpio_deinit(GPIO_NUM_33);
printf("oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\n");
printf("RCOutput::init() - channels available: %d \n",(int)MAX_CHANNELS);
printf("oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\n");
static const mcpwm_io_signals_t signals[] = {
MCPWM0A,
MCPWM0B,
MCPWM1A,
MCPWM1B,
MCPWM2A,
MCPWM2B
};
static const mcpwm_timer_t timers[] = {
MCPWM_TIMER_0,
MCPWM_TIMER_1,
MCPWM_TIMER_2
};
static const mcpwm_unit_t units[] = {
MCPWM_UNIT_0,
MCPWM_UNIT_1
};
static const mcpwm_operator_t operators[] = {
MCPWM_OPR_A,
MCPWM_OPR_B
};
for (uint8_t i = 0; i < MAX_CHANNELS; ++i) {
auto unit = units[i/6];
auto signal = signals[i % 6];
auto timer = timers[i/2];
//Save struct infos
pwm_out &out = pwm_group_list[i];
out.gpio_num = outputs_pins[i];
out.unit_num = unit;
out.timer_num = timer;
out.io_signal = signal;
out.op = operators[i%2];
out.chan = i;
//Setup gpio
mcpwm_gpio_init(unit, signal, outputs_pins[i]);
//Setup MCPWM module
mcpwm_config_t pwm_config;
pwm_config.frequency = 50; //frequency = 50Hz, i.e. for every servo motor time period should be 20ms
pwm_config.cmpr_a = 0; //duty cycle of PWMxA = 0
pwm_config.cmpr_b = 0; //duty cycle of PWMxb = 0
pwm_config.counter_mode = MCPWM_UP_COUNTER;
pwm_config.duty_mode = MCPWM_DUTY_MODE_0;
mcpwm_init(unit, timer, &pwm_config);
mcpwm_start(unit, timer);
}
_initialized = true;
}
void RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz)
{
if (!_initialized) {
return;
}
for (uint8_t i = 0; i < MAX_CHANNELS; i++) {
if (chmask & 1 << i) {
pwm_out &out = pwm_group_list[i];
mcpwm_set_frequency(out.unit_num, out.timer_num, freq_hz);
}
}
}
void RCOutput::set_default_rate(uint16_t freq_hz)
{
if (!_initialized) {
return;
}
set_freq(0xFFFFFFFF, freq_hz);
}
uint16_t RCOutput::get_freq(uint8_t chan)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return 50;
}
pwm_out &out = pwm_group_list[chan];
return mcpwm_get_frequency(out.unit_num, out.timer_num);
}
void RCOutput::enable_ch(uint8_t chan)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return;
}
pwm_out &out = pwm_group_list[chan];
mcpwm_start(out.unit_num, out.timer_num);
}
void RCOutput::disable_ch(uint8_t chan)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return;
}
write(chan, 0);
pwm_out &out = pwm_group_list[chan];
mcpwm_stop(out.unit_num, out.timer_num);
}
void RCOutput::write(uint8_t chan, uint16_t period_us)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return;
}
if (_corked) {
_pending[chan] = period_us;
_pending_mask |= (1U<<chan);
} else {
write_int(chan, period_us);
}
}
uint16_t RCOutput::read(uint8_t chan)
{
if (chan >= MAX_CHANNELS || !_initialized) {
return 0;
}
pwm_out &out = pwm_group_list[chan];
double freq = mcpwm_get_frequency(out.unit_num, out.timer_num);
double dprc = mcpwm_get_duty(out.unit_num, out.timer_num, out.op);
return (1000000.0 * (dprc / 100.)) / freq;
}
void RCOutput::read(uint16_t *period_us, uint8_t len)
{
for (int i = 0; i < MIN(len, _max_channels); i++) {
period_us[i] = read(i);
}
}
void RCOutput::cork()
{
_corked = true;
}
void RCOutput::push()
{
if (!_corked) {
return;
}
bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED;
for (uint8_t i = 0; i < MAX_CHANNELS; i++) {
if ((1U<<i) & _pending_mask) {
uint32_t period_us = _pending[i];
// If safety is on and safety mask not bypassing
if (safety_on && !(safety_mask & (1U<<(i)))) {
// safety is on, overwride pwm
period_us = safe_pwm[i];
}
write_int(i, period_us);
}
}
_corked = false;
}
void RCOutput::timer_tick(void)
{
safety_update();
}
void RCOutput::write_int(uint8_t chan, uint16_t period_us)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return;
}
bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED;
if (safety_on && !(safety_mask & (1U<<(chan)))) {
// safety is on, overwride pwm
period_us = safe_pwm[chan];
}
pwm_out &out = pwm_group_list[chan];
mcpwm_set_duty_in_us(out.unit_num, out.timer_num, out.op, period_us);
}
/*
get safety switch state for Util.cpp
*/
AP_HAL::Util::safety_state RCOutput::_safety_switch_state(void)
{
if (!hal.util->was_watchdog_reset()) {
hal.util->persistent_data.safety_state = safety_state;
}
return safety_state;
}
/*
force the safety switch on, disabling PWM output from the IO board
*/
bool RCOutput::force_safety_on(void)
{
safety_state = AP_HAL::Util::SAFETY_DISARMED;
return true;
}
/*
force the safety switch off, enabling PWM output from the IO board
*/
void RCOutput::force_safety_off(void)
{
safety_state = AP_HAL::Util::SAFETY_ARMED;
}
/*
set PWM to send to a set of channels when the safety switch is
in the safe state
*/
void RCOutput::set_safety_pwm(uint32_t chmask, uint16_t period_us)
{
for (uint8_t i=0; i<16; i++) {
if (chmask & (1U<<i)) {
safe_pwm[i] = period_us;
}
}
}
/*
update safety state
*/
void RCOutput::safety_update(void)
{
uint32_t now = AP_HAL::millis();
if (now - safety_update_ms < 100) {
// update safety at 10Hz
return;
}
safety_update_ms = now;
AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton();
if (boardconfig) {
// remember mask of channels to allow with safety on
safety_mask = boardconfig->get_safety_mask();
}
#ifdef HAL_GPIO_PIN_SAFETY_IN
gpio_set_direction((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN, GPIO_MODE_INPUT);
gpio_set_pull_mode((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN, GPIO_PULLDOWN_ONLY);
bool safety_pressed = gpio_get_level((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN);
if (safety_pressed) {
AP_BoardConfig *brdconfig = AP_BoardConfig::get_singleton();
if (safety_press_count < 255) {
safety_press_count++;
}
if (brdconfig && brdconfig->safety_button_handle_pressed(safety_press_count)) {
if (safety_state ==AP_HAL::Util::SAFETY_ARMED) {
safety_state = AP_HAL::Util::SAFETY_DISARMED;
} else {
safety_state = AP_HAL::Util::SAFETY_ARMED;
}
}
} else {
safety_press_count = 0;
}
#endif
#ifdef HAL_GPIO_PIN_LED_SAFETY
led_counter = (led_counter+1) % 16;
const uint16_t led_pattern = safety_state==AP_HAL::Util::SAFETY_DISARMED?0x5500:0xFFFF;
gpio_set_level((gpio_num_t)HAL_GPIO_PIN_LED_SAFETY, (led_pattern & (1U << led_counter))?0:1);
#endif
}
/*
set PWM to send to a set of channels if the FMU firmware dies
*/
void RCOutput::set_failsafe_pwm(uint32_t chmask, uint16_t period_us)
{
//RIP (not the pointer)
}