ardupilot/ArduCopter/ArduCopter.pde
Jason Short 357a9ba017 Log updates
Added motor logging for different frame types. Switched the PM log to some new debugging values and speed up the writing of the value to the logs.
2011-10-27 22:36:25 -07:00

1382 lines
37 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduCopter V2.0.50 Beta"
/*
ArduCopter Version 2.0 Beta
Authors: Jason Short
Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen
Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier
This firmware is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Special Thanks for Contributors:
Hein Hollander :Octo Support
Dani Saez :V Ocoto Support
Max Levine :Tri Support, Graphics
Jose Julio :Stabilization Control laws
Randy MacKay :Heli Support
Jani Hiriven :Testing feedback
Andrew Tridgell :Mavlink Support
James Goppert :Mavlink Support
Doug Weibel :Libraries
Mike Smith :Libraries, Coding support
HappyKillmore :Mavlink GCS
Michael Oborne :Mavlink GCS
Jack Dunkle :Alpha testing
Christof Schmid :Alpha testing
Oliver :Piezo support
Guntars :Arming safety suggestion
And much more so PLEASE PM me on DIYDRONES to add your contribution to the List
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
// AVR runtime
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <math.h>
// Libraries
#include <FastSerial.h>
#include <AP_Common.h>
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <AP_GPS.h> // ArduPilot GPS library
#include <Wire.h> // Arduino I2C lib
#include <SPI.h> // Arduino SPI lib
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <APM_BMP085.h> // ArduPilot Mega BMP085 Library
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_IMU.h> // ArduPilot Mega IMU Library
#include <AP_DCM.h> // ArduPilot Mega DCM Library
#include <APM_PI.h> // PI library
#include <RC_Channel.h> // RC Channel Library
#include <AP_RangeFinder.h> // Range finder library
#include <AP_OpticalFlow.h> // Optical Flow library
#include <ModeFilter.h>
#include <AP_Relay.h> // APM relay
#include <GCS_MAVLink.h> // MAVLink GCS definitions
#include <memcheck.h>
// Configuration
#include "defines.h"
#include "config.h"
// Local modules
#include "Parameters.h"
#include "GCS.h"
////////////////////////////////////////////////////////////////////////////////
// Serial ports
////////////////////////////////////////////////////////////////////////////////
//
// Note that FastSerial port buffers are allocated at ::begin time,
// so there is not much of a penalty to defining ports that we don't
// use.
//
FastSerialPort0(Serial); // FTDI/console
FastSerialPort1(Serial1); // GPS port
FastSerialPort3(Serial3); // Telemetry port
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
static Parameters g;
////////////////////////////////////////////////////////////////////////////////
// prototypes
static void update_events(void);
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
static GPS *g_gps;
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
#if HIL_MODE == HIL_MODE_DISABLED
// real sensors
AP_ADC_ADS7844 adc;
APM_BMP085_Class barometer;
AP_Compass_HMC5843 compass(Parameters::k_param_compass);
#ifdef OPTFLOW_ENABLED
AP_OpticalFlow_ADNS3080 optflow;
#endif
// real GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
AP_GPS_MTK16 g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver(NULL);
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
#elif HIL_MODE == HIL_MODE_SENSORS
// sensor emulators
AP_ADC_HIL adc;
APM_BMP085_HIL_Class barometer;
AP_Compass_HIL compass;
AP_GPS_HIL g_gps_driver(NULL);
#elif HIL_MODE == HIL_MODE_ATTITUDE
AP_ADC_HIL adc;
AP_DCM_HIL dcm;
AP_GPS_HIL g_gps_driver(NULL);
AP_Compass_HIL compass; // never used
AP_IMU_Shim imu; // never used
#ifdef OPTFLOW_ENABLED
AP_OpticalFlow_ADNS3080 optflow;
#endif
static int32_t gps_base_alt;
#else
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
#if HIL_MODE != HIL_MODE_ATTITUDE
#if HIL_MODE != HIL_MODE_SENSORS
// Normal
AP_IMU_Oilpan imu(&adc, Parameters::k_param_IMU_calibration);
#else
// hil imu
AP_IMU_Shim imu;
#endif
// normal dcm
AP_DCM dcm(&imu, g_gps);
#endif
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
GCS_MAVLINK gcs0(Parameters::k_param_streamrates_port0);
GCS_MAVLINK gcs3(Parameters::k_param_streamrates_port3);
////////////////////////////////////////////////////////////////////////////////
// SONAR selection
////////////////////////////////////////////////////////////////////////////////
//
ModeFilter sonar_mode_filter;
#if SONAR_TYPE == MAX_SONAR_XL
AP_RangeFinder_MaxsonarXL sonar(&adc, &sonar_mode_filter);//(SONAR_PORT, &adc);
#else
#error Unrecognised SONAR_TYPE setting.
#endif
// agmatthews USERHOOKS
////////////////////////////////////////////////////////////////////////////////
// User variables
////////////////////////////////////////////////////////////////////////////////
#ifdef USERHOOK_VARIABLES
#include USERHOOK_VARIABLES
#endif
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
static const char *comma = ",";
static const char* flight_mode_strings[] = {
"STABILIZE",
"ACRO",
"ALT_HOLD",
"AUTO",
"GUIDED",
"LOITER",
"RTL",
"CIRCLE",
"POSITION"};
/* Radio values
Channel assignments
1 Ailerons (rudder if no ailerons)
2 Elevator
3 Throttle
4 Rudder (if we have ailerons)
5 Mode - 3 position switch
6 User assignable
7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
8 TBD
*/
// test
#if ACCEL_ALT_HOLD == 1
Vector3f accels_rot;
static int accels_rot_count;
static float accels_rot_sum;
static float alt_hold_gain = ACCEL_ALT_HOLD_GAIN;
#endif
// temp
static int y_actual_speed;
static int y_rate_error;
// calc the
static int x_actual_speed;
static int x_rate_error;
// Radio
// -----
static byte control_mode = STABILIZE;
static byte old_control_mode = STABILIZE;
static byte oldSwitchPosition; // for remembering the control mode switch
static int motor_out[8];
static bool do_simple = false;
// Heli
// ----
#if FRAME_CONFIG == HELI_FRAME
static float heli_rollFactor[3], heli_pitchFactor[3]; // only required for 3 swashplate servos
static int heli_servo_min[3], heli_servo_max[3]; // same here. for yaw servo we use heli_servo4_min/max parameter directly
static long heli_servo_out[4]; // used for servo averaging for analog servos
static int heli_servo_out_count = 0; // use for servo averaging
#endif
// Failsafe
// --------
static boolean failsafe; // did our throttle dip below the failsafe value?
static boolean ch3_failsafe;
static boolean motor_armed;
static boolean motor_auto_armed; // if true,
// PIDs
// ----
static Vector3f omega;
float tuning_value;
// LED output
// ----------
static boolean motor_light; // status of the Motor safety
static boolean GPS_light; // status of the GPS light
static byte led_mode = NORMAL_LEDS;
// GPS variables
// -------------
static const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage
static float scaleLongUp = 1; // used to reverse longitude scaling
static float scaleLongDown = 1; // used to reverse longitude scaling
static byte ground_start_count = 10; // have we achieved first lock and set Home?
static bool did_ground_start = false; // have we ground started after first arming
// Location & Navigation
// ---------------------
static const float radius_of_earth = 6378100; // meters
static const float gravity = 9.81; // meters/ sec^2
static long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target
static int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate
static byte wp_control; // used to control - navgation or loiter
static byte command_must_index; // current command memory location
static byte command_may_index; // current command memory location
static byte command_must_ID; // current command ID
static byte command_may_ID; // current command ID
static byte wp_verify_byte; // used for tracking state of navigating waypoints
static float cos_roll_x = 1;
static float cos_pitch_x = 1;
static float cos_yaw_x = 1;
static float sin_pitch_y, sin_yaw_y, sin_roll_y;
static long initial_simple_bearing; // used for Simple mode
static float simple_sin_y, simple_cos_x;
static byte jump = -10; // used to track loops in jump command
static int waypoint_speed_gov;
// Acro
#if CH7_OPTION == CH7_FLIP
static bool do_flip = false;
#endif
// Airspeed
// --------
static int airspeed; // m/s * 100
// Location Errors
// ---------------
static long altitude_error; // meters * 100 we are off in altitude
static long old_altitude;
static long yaw_error; // how off are we pointed
static long long_error, lat_error; // temp for debugging
// Battery Sensors
// ---------------
static float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter
static float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter
static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter
static float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter
static float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
static float current_amps;
static float current_total;
static bool low_batt = false;
// Barometer Sensor variables
// --------------------------
static long abs_pressure;
static long ground_pressure;
static int ground_temperature;
// Altitude Sensor variables
// ----------------------
static int sonar_alt;
static int baro_alt;
static byte altitude_sensor = BARO; // used to know which sensor is active, BARO or SONAR
static int altitude_rate;
// flight mode specific
// --------------------
static byte yaw_mode;
static byte roll_pitch_mode;
static byte throttle_mode;
static boolean takeoff_complete; // Flag for using take-off controls
static boolean land_complete;
static long old_alt; // used for managing altitude rates
static int velocity_land;
static byte yaw_tracking = MAV_ROI_WPNEXT; // no tracking, point at next wp, or at a target
// Loiter management
// -----------------
static long original_target_bearing; // deg * 100, used to check we are not passing the WP
static long old_target_bearing; // used to track difference in angle
static int loiter_total; // deg : how many times to loiter * 360
static int loiter_sum; // deg : how far we have turned around a waypoint
static unsigned long loiter_time; // millis : when we started LOITER mode
static unsigned loiter_time_max; // millis : how long to stay in LOITER mode
// these are the values for navigation control functions
// ----------------------------------------------------
static long nav_roll; // deg * 100 : target roll angle
static long nav_pitch; // deg * 100 : target pitch angle
static long nav_yaw; // deg * 100 : target yaw angle
static long auto_yaw; // deg * 100 : target yaw angle
static long nav_lat; // for error calcs
static long nav_lon; // for error calcs
static int nav_throttle; // 0-1000 for throttle control
static unsigned long throttle_integrator; // used to integrate throttle output to predict battery life
static bool invalid_throttle; // used to control when we calculate nav_throttle
//static bool set_throttle_cruise_flag = false; // used to track the throttle crouse value
static long command_yaw_start; // what angle were we to begin with
static unsigned long command_yaw_start_time; // when did we start turning
static unsigned int command_yaw_time; // how long we are turning
static long command_yaw_end; // what angle are we trying to be
static long command_yaw_delta; // how many degrees will we turn
static int command_yaw_speed; // how fast to turn
static byte command_yaw_dir;
static byte command_yaw_relative;
static int auto_level_counter;
// Waypoints
// ---------
static long wp_distance; // meters - distance between plane and next waypoint
static long wp_totalDistance; // meters - distance between old and next waypoint
//static byte next_wp_index; // Current active command index
// repeating event control
// -----------------------
static byte event_id; // what to do - see defines
static unsigned long event_timer; // when the event was asked for in ms
static unsigned int event_delay; // how long to delay the next firing of event in millis
static int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice
static int event_value; // per command value, such as PWM for servos
static int event_undo_value; // the value used to undo commands
//static byte repeat_forever;
//static byte undo_event; // counter for timing the undo
// delay command
// --------------
static long condition_value; // used in condition commands (eg delay, change alt, etc.)
static long condition_start;
//static int condition_rate;
// land command
// ------------
static long land_start; // when we intiated command in millis()
static long original_alt; // altitide reference for start of command
// 3D Location vectors
// -------------------
static struct Location home; // home location
static struct Location prev_WP; // last waypoint
static struct Location current_loc; // current location
static struct Location next_WP; // next waypoint
static struct Location target_WP; // where do we want to you towards?
static struct Location next_command; // command preloaded
static struct Location guided_WP; // guided mode waypoint
static long target_altitude; // used for
static boolean home_is_set; // Flag for if we have g_gps lock and have set the home location
// IMU variables
// -------------
static float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm)
// Performance monitoring
// ----------------------
static long perf_mon_timer;
//static float imu_health; // Metric based on accel gain deweighting
static int gps_fix_count;
static byte gps_watchdog;
// System Timers
// --------------
static unsigned long fast_loopTimer; // Time in miliseconds of main control loop
static byte medium_loopCounter; // Counters for branching from main control loop to slower loops
static unsigned long fiftyhz_loopTimer;
static byte slow_loopCounter;
static int superslow_loopCounter;
static byte simple_timer; // for limiting the execution of flight mode thingys
static float dTnav; // Delta Time in milliseconds for navigation computations
static unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav
static byte counter_one_herz;
static bool GPS_enabled = false;
static bool new_radio_frame;
AP_Relay relay;
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
void setup() {
memcheck_init();
init_ardupilot();
}
void loop()
{
long timer = micros();
// We want this to execute fast
// ----------------------------
if ((timer - fast_loopTimer) >= 4000) {
//PORTK |= B00010000;
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops
fast_loopTimer = timer;
// Execute the fast loop
// ---------------------
fast_loop();
}
//PORTK &= B11101111;
if ((timer - fiftyhz_loopTimer) >= 20000) {
fiftyhz_loopTimer = timer;
//PORTK |= B01000000;
// reads all of the necessary trig functions for cameras, throttle, etc.
update_trig();
// perform 10hz tasks
medium_loop();
// Stuff to run at full 50hz, but after the loops
fifty_hz_loop();
counter_one_herz++;
if(counter_one_herz == 50){
super_slow_loop();
counter_one_herz = 0;
}
if (millis() - perf_mon_timer > 1200 /*20000*/) {
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
gps_fix_count = 0;
perf_mon_timer = millis();
}
//PORTK &= B10111111;
}
}
// PORTK |= B01000000;
// PORTK &= B10111111;
// Main loop
static void fast_loop()
{
// try to send any deferred messages if the serial port now has
// some space available
gcs_send_message(MSG_RETRY_DEFERRED);
// Read radio
// ----------
read_radio();
// IMU DCM Algorithm
read_AHRS();
// custom code/exceptions for flight modes
// ---------------------------------------
update_yaw_mode();
update_roll_pitch_mode();
// write out the servo PWM values
// ------------------------------
set_servos_4();
//if(motor_armed)
//Log_Write_Attitude();
// agmatthews - USERHOOKS
#ifdef USERHOOK_FASTLOOP
USERHOOK_FASTLOOP
#endif
}
static void medium_loop()
{
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case deals with the GPS and Compass
//-----------------------------------------
case 0:
medium_loopCounter++;
#ifdef OPTFLOW_ENABLED
if(g.optflow_enabled){
optflow.read();
optflow.update_position(dcm.roll, dcm.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow
// write to log
if (g.log_bitmask & MASK_LOG_OPTFLOW){
Log_Write_Optflow();
}
}
#endif
if(GPS_enabled){
update_GPS();
}
//readCommands();
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.compass_enabled){
compass.read(); // Read magnetometer
compass.calculate(dcm.get_dcm_matrix()); // Calculate heading
compass.null_offsets(dcm.get_dcm_matrix());
}
#endif
// auto_trim, uses an auto_level algorithm
auto_trim();
// record throttle output
// ------------------------------
throttle_integrator += g.rc_3.servo_out;
break;
// This case performs some navigation computations
//------------------------------------------------
case 1:
medium_loopCounter++;
// Auto control modes:
if(g_gps->new_data && g_gps->fix){
// invalidate GPS data
g_gps->new_data = false;
// we are not tracking I term on navigation, so this isn't needed
dTnav = (float)(millis() - nav_loopTimer)/ 1000.0;
nav_loopTimer = millis();
// prevent runup from bad GPS
dTnav = min(dTnav, 1.0);
// calculate the copter's desired bearing and WP distance
// ------------------------------------------------------
if(navigate()){
// control mode specific updates
// -----------------------------
update_navigation();
if (g.log_bitmask & MASK_LOG_NTUN)
Log_Write_Nav_Tuning();
}
}else{
g_gps->new_data = false;
}
break;
// command processing
//-------------------
case 2:
medium_loopCounter++;
// Read altitude from sensors
// --------------------------
update_altitude();
// invalidate the throttle hold value
// ----------------------------------
invalid_throttle = true;
break;
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
medium_loopCounter++;
// perform next command
// --------------------
if(control_mode == AUTO){
update_commands();
}
#if HIL_MODE != HIL_MODE_ATTITUDE
if(motor_armed){
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED)
Log_Write_Attitude();
if (g.log_bitmask & MASK_LOG_CTUN)
Log_Write_Control_Tuning();
}
#endif
// send all requested output streams with rates requested
// between 5 and 45 Hz
gcs_data_stream_send(5,45);
if (g.log_bitmask & MASK_LOG_MOTORS)
Log_Write_Motors();
break;
// This case controls the slow loop
//---------------------------------
case 4:
medium_loopCounter = 0;
if (g.battery_monitoring != 0){
read_battery();
}
// Accel trims = hold > 2 seconds
// Throttle cruise = switch less than 1 second
// --------------------------------------------
read_trim_switch();
// Check for engine arming
// -----------------------
arm_motors();
slow_loop();
break;
default:
// this is just a catch all
// ------------------------
medium_loopCounter = 0;
break;
}
// agmatthews - USERHOOKS
#ifdef USERHOOK_MEDIUMLOOP
USERHOOK_MEDIUMLOOP
#endif
}
// stuff that happens at 50 hz
// ---------------------------
static void fifty_hz_loop()
{
// moved to slower loop
// --------------------
update_throttle_mode();
// Read Sonar
// ----------
if(g.sonar_enabled){
sonar_alt = sonar.read();
}
// agmatthews - USERHOOKS
#ifdef USERHOOK_50HZLOOP
USERHOOK_50HZLOOP
#endif
#if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME
// HIL for a copter needs very fast update of the servo values
gcs_send_message(MSG_RADIO_OUT);
#endif
camera_stabilization();
# if HIL_MODE == HIL_MODE_DISABLED
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
Log_Write_Attitude();
if (g.log_bitmask & MASK_LOG_RAW)
Log_Write_Raw();
#endif
// kick the GCS to process uplink data
gcs_update();
gcs_data_stream_send(45,1000);
#if FRAME_CONFIG == TRI_FRAME
// servo Yaw
g.rc_4.calc_pwm();
APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
#endif
}
static void slow_loop()
{
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter){
case 0:
slow_loopCounter++;
superslow_loopCounter++;
if(superslow_loopCounter > 1200){
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled){
compass.save_offsets();
superslow_loopCounter = 0;
}
#endif
}
break;
case 1:
slow_loopCounter++;
// Read 3-position switch on radio
// -------------------------------
read_control_switch();
// Read main battery voltage if hooked up - does not read the 5v from radio
// ------------------------------------------------------------------------
//#if BATTERY_EVENT == 1
// read_battery();
//#endif
#if AUTO_RESET_LOITER == 1
if(control_mode == LOITER){
//if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 1500){
// reset LOITER to current position
//next_WP = current_loc;
//}
}
#endif
break;
case 2:
slow_loopCounter = 0;
update_events();
// blink if we are armed
update_lights();
// send all requested output streams with rates requested
// between 1 and 5 Hz
gcs_data_stream_send(1,5);
if(g.radio_tuning > 0)
tuning();
#if MOTOR_LEDS == 1
update_motor_leds();
#endif
break;
default:
slow_loopCounter = 0;
break;
}
// agmatthews - USERHOOKS
#ifdef USERHOOK_SLOWLOOP
USERHOOK_SLOWLOOP
#endif
}
// 1Hz loop
static void super_slow_loop()
{
if (g.log_bitmask & MASK_LOG_CUR)
Log_Write_Current();
gcs_send_message(MSG_HEARTBEAT);
// agmatthews - USERHOOKS
#ifdef USERHOOK_SUPERSLOWLOOP
USERHOOK_SUPERSLOWLOOP
#endif
}
static void update_GPS(void)
{
g_gps->update();
update_GPS_light();
//current_loc.lng = 377697000; // Lon * 10 * *7
//current_loc.lat = -1224318000; // Lat * 10 * *7
//current_loc.alt = 100; // alt * 10 * *7
//return;
if(gps_watchdog < 12){
gps_watchdog++;
}else{
// we have lost GPS signal for a moment. Reduce our error to avoid flyaways
// commented temporarily
//nav_roll >>= 1;
//nav_pitch >>= 1;
}
if (g_gps->new_data && g_gps->fix) {
gps_watchdog = 0;
// for performance
// ---------------
gps_fix_count++;
if(ground_start_count > 1){
ground_start_count--;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
ground_start_count = 5;
}else{
init_home();
ground_start_count = 0;
}
}
current_loc.lng = g_gps->longitude; // Lon * 10 * *7
current_loc.lat = g_gps->latitude; // Lat * 10 * *7
if (g.log_bitmask & MASK_LOG_GPS){
Log_Write_GPS();
}
}
}
void update_yaw_mode(void)
{
switch(yaw_mode){
case YAW_ACRO:
g.rc_4.servo_out = get_rate_yaw(g.rc_4.control_in);
return;
break;
case YAW_HOLD:
// calcualte new nav_yaw offset
if (control_mode <= STABILIZE){
nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, g.rc_3.control_in);
}else{
nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, 1);
}
break;
case YAW_LOOK_AT_HOME:
//nav_yaw updated in update_navigation()
break;
case YAW_AUTO:
nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -20, 20);
nav_yaw = wrap_360(nav_yaw);
break;
}
// Yaw control
g.rc_4.servo_out = get_stabilize_yaw(nav_yaw);
//Serial.printf("4: %d\n",g.rc_4.servo_out);
}
void update_roll_pitch_mode(void)
{
#if CH7_OPTION == CH7_FLIP
if (do_flip){
roll_flip();
return;
}
#endif
int control_roll = 0, control_pitch = 0;
//read_radio();
if(do_simple && new_radio_frame){
new_radio_frame = false;
simple_timer++;
int delta = wrap_360(dcm.yaw_sensor - initial_simple_bearing)/100;
if (simple_timer == 1){
// roll
simple_cos_x = sin(radians(90 - delta));
}else if (simple_timer > 2){
// pitch
simple_sin_y = cos(radians(90 - delta));
simple_timer = 0;
}
// Rotate input by the initial bearing
control_roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y;
control_pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x);
g.rc_1.control_in = control_roll;
g.rc_2.control_in = control_pitch;
}
switch(roll_pitch_mode){
case ROLL_PITCH_ACRO:
g.rc_1.servo_out = get_rate_roll(g.rc_1.control_in);
g.rc_2.servo_out = get_rate_pitch(g.rc_2.control_in);
break;
case ROLL_PITCH_STABLE:
g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in);
g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in);
break;
case ROLL_PITCH_AUTO:
// mix in user control with Nav control
control_roll = g.rc_1.control_mix(nav_roll);
control_pitch = g.rc_2.control_mix(nav_pitch);
g.rc_1.servo_out = get_stabilize_roll(control_roll);
g.rc_2.servo_out = get_stabilize_pitch(control_pitch);
break;
}
}
// 50 hz update rate, not 250
void update_throttle_mode(void)
{
switch(throttle_mode){
case THROTTLE_MANUAL:
if (g.rc_3.control_in > 0){
g.rc_3.servo_out = g.rc_3.control_in + get_angle_boost(g.rc_3.control_in);
}else{
g.pi_stabilize_roll.reset_I();
g.pi_stabilize_pitch.reset_I();
g.pi_rate_roll.reset_I();
g.pi_rate_pitch.reset_I();
g.rc_3.servo_out = 0;
}
break;
case THROTTLE_HOLD:
// allow interactive changing of atitude
adjust_altitude();
// fall through
case THROTTLE_AUTO:
// 10hz, don't run up i term
if(invalid_throttle && motor_auto_armed == true){
// how far off are we
altitude_error = get_altitude_error();
// get the AP throttle
nav_throttle = get_nav_throttle(altitude_error);//, 250); //150 = target speed of 1.5m/s
//Serial.printf("in:%d, cr:%d, NT:%d, I:%1.4f\n", g.rc_3.control_in,altitude_error, nav_throttle, g.pi_throttle.get_integrator());
// clear the new data flag
invalid_throttle = false;
}
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + get_angle_boost(g.throttle_cruise);
break;
}
}
// called after a GPS read
static void update_navigation()
{
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
// ------------------------------------------------------------------------
switch(control_mode){
case AUTO:
verify_commands();
// note: wp_control is handled by commands_logic
// calculates desired Yaw
update_auto_yaw();
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case GUIDED:
wp_control = WP_MODE;
// check if we are close to point > loiter
wp_verify_byte = 0;
verify_nav_wp();
if (wp_control == WP_MODE) {
update_auto_yaw();
} else {
set_mode(LOITER);
}
update_nav_wp();
break;
case RTL:
if((wp_distance <= g.waypoint_radius) || check_missed_wp()){
// lets just jump to Loiter Mode after RTL
set_mode(LOITER);
}else{
// calculates desired Yaw
// XXX this is an experiment
#if FRAME_CONFIG == HELI_FRAME
update_auto_yaw();
#endif
wp_control = WP_MODE;
}
// calculates the desired Roll and Pitch
update_nav_wp();
break;
// switch passthrough to LOITER
case LOITER:
case POSITION:
wp_control = LOITER_MODE;
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case CIRCLE:
yaw_tracking = MAV_ROI_WPNEXT;
wp_control = CIRCLE_MODE;
// calculates desired Yaw
update_auto_yaw();
update_nav_wp();
break;
}
if(yaw_mode == YAW_LOOK_AT_HOME){
if(home_is_set){
//nav_yaw = point_at_home_yaw();
nav_yaw = get_bearing(&current_loc, &home);
} else {
nav_yaw = 0;
}
}
}
static void read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
#if HIL_MODE == HIL_MODE_SENSORS
// update hil before dcm update
gcs_update();
#endif
dcm.update_DCM_fast();
omega = dcm.get_gyro();
}
static void update_trig(void){
Vector2f yawvector;
Matrix3f temp = dcm.get_dcm_matrix();
yawvector.x = temp.a.x; // sin
yawvector.y = temp.b.x; // cos
yawvector.normalize();
sin_pitch_y = -temp.c.x;
cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x));
cos_roll_x = temp.c.z / cos_pitch_x;
sin_roll_y = temp.c.y / cos_pitch_x;
cos_yaw_x = yawvector.y; // 0 x = north
sin_yaw_y = yawvector.x; // 1 y
//flat:
// 0 ° = cos_yaw: 0.00, sin_yaw: 1.00,
// 90° = cos_yaw: 1.00, sin_yaw: 0.00,
// 180 = cos_yaw: 0.00, sin_yaw: -1.00,
// 270 = cos_yaw: -1.00, sin_yaw: 0.00,
}
// updated at 10hz
static void update_altitude()
{
altitude_sensor = BARO;
#if HIL_MODE == HIL_MODE_ATTITUDE
current_loc.alt = g_gps->altitude - gps_base_alt;
return;
#else
if(g.sonar_enabled){
// filter out offset
float scale;
// read barometer
baro_alt = read_barometer();
if(baro_alt < 1000){
#if SONAR_TILT_CORRECTION == 1
// correct alt for angle of the sonar
float temp = cos_pitch_x * cos_roll_x;
temp = max(temp, 0.707);
sonar_alt = (float)sonar_alt * temp;
#endif
scale = (sonar_alt - 400) / 200;
scale = constrain(scale, 0, 1);
current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale) + home.alt;
}else{
current_loc.alt = baro_alt + home.alt;
}
}else{
baro_alt = read_barometer();
// no sonar altitude
current_loc.alt = baro_alt + home.alt;
}
altitude_rate = (current_loc.alt - old_altitude) * 10; // 10 hz timer
old_altitude = current_loc.alt;
#endif
}
static void
adjust_altitude()
{
if(g.rc_3.control_in <= 200){
next_WP.alt -= 1; // 1 meter per second
next_WP.alt = max(next_WP.alt, (current_loc.alt - 500)); // don't go less than 4 meters below current location
next_WP.alt = max(next_WP.alt, 100); // don't go less than 1 meter
}else if (g.rc_3.control_in > 700){
next_WP.alt += 1; // 1 meter per second
next_WP.alt = min(next_WP.alt, (current_loc.alt + 500)); // don't go more than 4 meters below current location
}
}
static void tuning(){
tuning_value = (float)g.rc_6.control_in / 1000.0;
switch(g.radio_tuning){
/*case CH6_STABILIZE_KP:
g.rc_6.set_range(0,2000); // 0 to 8
tuning_value = (float)g.rc_6.control_in / 100.0;
alt_hold_gain = tuning_value;
break;*/
case CH6_STABILIZE_KP:
g.rc_6.set_range(0,8000); // 0 to 8
g.pi_stabilize_roll.kP(tuning_value);
g.pi_stabilize_pitch.kP(tuning_value);
break;
case CH6_STABILIZE_KI:
g.rc_6.set_range(0,300); // 0 to .3
tuning_value = (float)g.rc_6.control_in / 1000.0;
g.pi_stabilize_roll.kI(tuning_value);
g.pi_stabilize_pitch.kI(tuning_value);
break;
case CH6_RATE_KP:
g.rc_6.set_range(0,300); // 0 to .3
g.pi_rate_roll.kP(tuning_value);
g.pi_rate_pitch.kP(tuning_value);
break;
case CH6_RATE_KI:
g.rc_6.set_range(0,300); // 0 to .3
g.pi_rate_roll.kI(tuning_value);
g.pi_rate_pitch.kI(tuning_value);
break;
case CH6_YAW_KP:
g.rc_6.set_range(0,1000);
g.pi_stabilize_yaw.kP(tuning_value);
break;
case CH6_YAW_RATE_KP:
g.rc_6.set_range(0,1000);
g.pi_rate_yaw.kP(tuning_value);
break;
case CH6_THROTTLE_KP:
g.rc_6.set_range(0,1000);
g.pi_throttle.kP(tuning_value);
break;
case CH6_TOP_BOTTOM_RATIO:
g.rc_6.set_range(800,1000); // .8 to 1
g.top_bottom_ratio = tuning_value;
break;
case CH6_RELAY:
g.rc_6.set_range(0,1000);
if (g.rc_6.control_in > 525) relay.on();
if (g.rc_6.control_in < 475) relay.off();
break;
case CH6_TRAVERSE_SPEED:
g.rc_6.set_range(0,1000);
g.waypoint_speed_max = g.rc_6.control_in;
break;
case CH6_LOITER_P:
g.rc_6.set_range(0,1000);
g.pi_loiter_lat.kP(tuning_value);
g.pi_loiter_lon.kP(tuning_value);
break;
case CH6_NAV_P:
g.rc_6.set_range(0,6000);
g.pi_nav_lat.kP(tuning_value);
g.pi_nav_lon.kP(tuning_value);
break;
}
}
static void update_nav_wp()
{
if(wp_control == LOITER_MODE){
// calc a pitch to the target
calc_location_error(&next_WP);
// use error as the desired rate towards the target
calc_loiter(long_error, lat_error);
// rotate pitch and roll to the copter frame of reference
calc_loiter_pitch_roll();
}else if(wp_control == CIRCLE_MODE){
// check if we have missed the WP
int loiter_delta = (target_bearing - old_target_bearing)/100;
// reset the old value
old_target_bearing = target_bearing;
// wrap values
if (loiter_delta > 180) loiter_delta -= 360;
if (loiter_delta < -180) loiter_delta += 360;
// sum the angle around the WP
loiter_sum += loiter_delta;
// create a virtual waypoint that circles the next_WP
// Count the degrees we have circulated the WP
int circle_angle = wrap_360(target_bearing + 3000 + 18000) / 100;
target_WP.lng = next_WP.lng + (g.loiter_radius * cos(radians(90 - circle_angle)));
target_WP.lat = next_WP.lat + (g.loiter_radius * sin(radians(90 - circle_angle)));
// calc the lat and long error to the target
calc_location_error(&target_WP);
// use error as the desired rate towards the target
// nav_lon, nav_lat is calculated
calc_loiter(long_error, lat_error);
// rotate pitch and roll to the copter frame of reference
calc_loiter_pitch_roll();
} else {
// use error as the desired rate towards the target
calc_nav_rate(g.waypoint_speed_max);
// rotate pitch and roll to the copter frame of reference
calc_nav_pitch_roll();
}
}
static void update_auto_yaw()
{
// this tracks a location so the copter is always pointing towards it.
if(yaw_tracking == MAV_ROI_LOCATION){
auto_yaw = get_bearing(&current_loc, &target_WP);
}else if(yaw_tracking == MAV_ROI_WPNEXT){
auto_yaw = target_bearing;
}
// MAV_ROI_NONE = basic Yaw hold
}