mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-10 09:58:28 -04:00
5713 lines
350 KiB
C++
5713 lines
350 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
||
#include <AP_HAL/AP_HAL.h>
|
||
|
||
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
||
|
||
#pragma GCC optimize("O3")
|
||
|
||
// #define EKF_DISABLE_INTERRUPTS 1
|
||
|
||
/*
|
||
optionally turn down optimisation for debugging
|
||
*/
|
||
// #pragma GCC optimize("O0")
|
||
|
||
#include "AP_NavEKF.h"
|
||
#include <AP_AHRS/AP_AHRS.h>
|
||
#include <AP_Param/AP_Param.h>
|
||
#include <AP_Vehicle/AP_Vehicle.h>
|
||
|
||
#include <stdio.h>
|
||
|
||
/*
|
||
parameter defaults for different types of vehicle. The
|
||
APM_BUILD_DIRECTORY is taken from the main vehicle directory name
|
||
where the code is built. Note that this trick won't work for arduino
|
||
builds on APM2, but NavEKF doesn't run on APM2, so that's OK
|
||
*/
|
||
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter)
|
||
// copter defaults
|
||
#define VELNE_NOISE_DEFAULT 0.5f
|
||
#define VELD_NOISE_DEFAULT 0.7f
|
||
#define POSNE_NOISE_DEFAULT 0.5f
|
||
#define ALT_NOISE_DEFAULT 1.0f
|
||
#define MAG_NOISE_DEFAULT 0.05f
|
||
#define GYRO_PNOISE_DEFAULT 0.015f
|
||
#define ACC_PNOISE_DEFAULT 0.25f
|
||
#define GBIAS_PNOISE_DEFAULT 1E-06f
|
||
#define ABIAS_PNOISE_DEFAULT 0.00005f
|
||
#define MAGE_PNOISE_DEFAULT 0.0003f
|
||
#define MAGB_PNOISE_DEFAULT 0.0003f
|
||
#define VEL_GATE_DEFAULT 5
|
||
#define POS_GATE_DEFAULT 10
|
||
#define HGT_GATE_DEFAULT 10
|
||
#define MAG_GATE_DEFAULT 3
|
||
#define MAG_CAL_DEFAULT 1
|
||
#define GLITCH_ACCEL_DEFAULT 100
|
||
#define GLITCH_RADIUS_DEFAULT 25
|
||
#define FLOW_MEAS_DELAY 10
|
||
#define FLOW_NOISE_DEFAULT 0.25f
|
||
#define FLOW_GATE_DEFAULT 3
|
||
|
||
#elif APM_BUILD_TYPE(APM_BUILD_APMrover2)
|
||
// rover defaults
|
||
#define VELNE_NOISE_DEFAULT 0.5f
|
||
#define VELD_NOISE_DEFAULT 0.7f
|
||
#define POSNE_NOISE_DEFAULT 0.5f
|
||
#define ALT_NOISE_DEFAULT 1.0f
|
||
#define MAG_NOISE_DEFAULT 0.05f
|
||
#define GYRO_PNOISE_DEFAULT 0.015f
|
||
#define ACC_PNOISE_DEFAULT 0.25f
|
||
#define GBIAS_PNOISE_DEFAULT 8E-06f
|
||
#define ABIAS_PNOISE_DEFAULT 0.00005f
|
||
#define MAGE_PNOISE_DEFAULT 0.0003f
|
||
#define MAGB_PNOISE_DEFAULT 0.0003f
|
||
#define VEL_GATE_DEFAULT 5
|
||
#define POS_GATE_DEFAULT 10
|
||
#define HGT_GATE_DEFAULT 10
|
||
#define MAG_GATE_DEFAULT 3
|
||
#define MAG_CAL_DEFAULT 1
|
||
#define GLITCH_ACCEL_DEFAULT 150
|
||
#define GLITCH_RADIUS_DEFAULT 15
|
||
#define FLOW_MEAS_DELAY 25
|
||
#define FLOW_NOISE_DEFAULT 0.15f
|
||
#define FLOW_GATE_DEFAULT 5
|
||
|
||
#else
|
||
// generic defaults (and for plane)
|
||
#define VELNE_NOISE_DEFAULT 0.5f
|
||
#define VELD_NOISE_DEFAULT 0.7f
|
||
#define POSNE_NOISE_DEFAULT 0.5f
|
||
#define ALT_NOISE_DEFAULT 0.5f
|
||
#define MAG_NOISE_DEFAULT 0.05f
|
||
#define GYRO_PNOISE_DEFAULT 0.015f
|
||
#define ACC_PNOISE_DEFAULT 0.5f
|
||
#define GBIAS_PNOISE_DEFAULT 8E-06f
|
||
#define ABIAS_PNOISE_DEFAULT 0.00005f
|
||
#define MAGE_PNOISE_DEFAULT 0.0003f
|
||
#define MAGB_PNOISE_DEFAULT 0.0003f
|
||
#define VEL_GATE_DEFAULT 6
|
||
#define POS_GATE_DEFAULT 30
|
||
#define HGT_GATE_DEFAULT 20
|
||
#define MAG_GATE_DEFAULT 3
|
||
#define MAG_CAL_DEFAULT 0
|
||
#define GLITCH_ACCEL_DEFAULT 150
|
||
#define GLITCH_RADIUS_DEFAULT 20
|
||
#define FLOW_MEAS_DELAY 25
|
||
#define FLOW_NOISE_DEFAULT 0.3f
|
||
#define FLOW_GATE_DEFAULT 3
|
||
|
||
#endif // APM_BUILD_DIRECTORY
|
||
|
||
|
||
extern const AP_HAL::HAL& hal;
|
||
|
||
#define earthRate 0.000072921f // earth rotation rate (rad/sec)
|
||
|
||
// when the wind estimation first starts with no airspeed sensor,
|
||
// assume 3m/s to start
|
||
#define STARTUP_WIND_SPEED 3.0f
|
||
|
||
// initial imu bias uncertainty (deg/sec)
|
||
#define INIT_ACCEL_BIAS_UNCERTAINTY 0.3f
|
||
|
||
// maximum gyro bias in rad/sec that can be compensated for
|
||
#define MAX_GYRO_BIAS 0.1745f
|
||
|
||
// Define tuning parameters
|
||
const AP_Param::GroupInfo NavEKF::var_info[] PROGMEM = {
|
||
|
||
// @Param: VELNE_NOISE
|
||
// @DisplayName: GPS horizontal velocity measurement noise scaler
|
||
// @Description: This is the scaler that is applied to the speed accuracy reported by the receiver to estimate the horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then a speed acuracy of 1 is assumed. Increasing it reduces the weighting on these measurements.
|
||
// @Range: 0.05 5.0
|
||
// @Increment: 0.05
|
||
// @User: Advanced
|
||
AP_GROUPINFO("VELNE_NOISE", 0, NavEKF, _gpsHorizVelNoise, VELNE_NOISE_DEFAULT),
|
||
|
||
// @Param: VELD_NOISE
|
||
// @DisplayName: GPS vertical velocity measurement noise scaler
|
||
// @Description: This is the scaler that is applied to the speed accuracy reported by the receiver to estimate the vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then a speed acuracy of 1 is assumed. Increasing it reduces the weighting on this measurement.
|
||
// @Range: 0.05 5.0
|
||
// @Increment: 0.05
|
||
// @User: Advanced
|
||
AP_GROUPINFO("VELD_NOISE", 1, NavEKF, _gpsVertVelNoise, VELD_NOISE_DEFAULT),
|
||
|
||
// @Param: POSNE_NOISE
|
||
// @DisplayName: GPS horizontal position measurement noise (m)
|
||
// @Description: This is the RMS value of noise in the GPS horizontal position measurements. Increasing it reduces the weighting on these measurements.
|
||
// @Range: 0.1 10.0
|
||
// @Increment: 0.1
|
||
// @User: Advanced
|
||
// @Units: meters
|
||
AP_GROUPINFO("POSNE_NOISE", 2, NavEKF, _gpsHorizPosNoise, POSNE_NOISE_DEFAULT),
|
||
|
||
// @Param: ALT_NOISE
|
||
// @DisplayName: Altitude measurement noise (m)
|
||
// @Description: This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting on this measurement.
|
||
// @Range: 0.1 10.0
|
||
// @Increment: 0.1
|
||
// @User: Advanced
|
||
// @Units: meters
|
||
AP_GROUPINFO("ALT_NOISE", 3, NavEKF, _baroAltNoise, ALT_NOISE_DEFAULT),
|
||
|
||
// @Param: MAG_NOISE
|
||
// @DisplayName: Magnetometer measurement noise (Gauss)
|
||
// @Description: This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements.
|
||
// @Range: 0.01 0.5
|
||
// @Increment: 0.01
|
||
// @User: Advanced
|
||
AP_GROUPINFO("MAG_NOISE", 4, NavEKF, _magNoise, MAG_NOISE_DEFAULT),
|
||
|
||
// @Param: EAS_NOISE
|
||
// @DisplayName: Equivalent airspeed measurement noise (m/s)
|
||
// @Description: This is the RMS value of noise in equivalent airspeed measurements. Increasing it reduces the weighting on these measurements.
|
||
// @Range: 0.5 5.0
|
||
// @Increment: 0.1
|
||
// @User: Advanced
|
||
// @Units: m/s
|
||
AP_GROUPINFO("EAS_NOISE", 5, NavEKF, _easNoise, 1.4f),
|
||
|
||
// @Param: WIND_PNOISE
|
||
// @DisplayName: Wind velocity process noise (m/s^2)
|
||
// @Description: This noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier.
|
||
// @Range: 0.01 1.0
|
||
// @Increment: 0.1
|
||
// @User: Advanced
|
||
AP_GROUPINFO("WIND_PNOISE", 6, NavEKF, _windVelProcessNoise, 0.1f),
|
||
|
||
// @Param: WIND_PSCALE
|
||
// @DisplayName: Height rate to wind procss noise scaler
|
||
// @Description: Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind speed estimation noiser.
|
||
// @Range: 0.0 1.0
|
||
// @Increment: 0.1
|
||
// @User: Advanced
|
||
AP_GROUPINFO("WIND_PSCALE", 7, NavEKF, _wndVarHgtRateScale, 0.5f),
|
||
|
||
// @Param: GYRO_PNOISE
|
||
// @DisplayName: Rate gyro noise (rad/s)
|
||
// @Description: This noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more.
|
||
// @Range: 0.001 0.05
|
||
// @Increment: 0.001
|
||
// @User: Advanced
|
||
// @Units: rad/s
|
||
AP_GROUPINFO("GYRO_PNOISE", 8, NavEKF, _gyrNoise, GYRO_PNOISE_DEFAULT),
|
||
|
||
// @Param: ACC_PNOISE
|
||
// @DisplayName: Accelerometer noise (m/s^2)
|
||
// @Description: This noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more.
|
||
// @Range: 0.05 1.0
|
||
// @Increment: 0.01
|
||
// @User: Advanced
|
||
// @Units: m/s/s
|
||
AP_GROUPINFO("ACC_PNOISE", 9, NavEKF, _accNoise, ACC_PNOISE_DEFAULT),
|
||
|
||
// @Param: GBIAS_PNOISE
|
||
// @DisplayName: Rate gyro bias process noise (rad/s)
|
||
// @Description: This noise controls the growth of gyro bias state error estimates. Increasing it makes rate gyro bias estimation faster and noisier.
|
||
// @Range: 0.0000001 0.00001
|
||
// @User: Advanced
|
||
// @Units: rad/s
|
||
AP_GROUPINFO("GBIAS_PNOISE", 10, NavEKF, _gyroBiasProcessNoise, GBIAS_PNOISE_DEFAULT),
|
||
|
||
// @Param: ABIAS_PNOISE
|
||
// @DisplayName: Accelerometer bias process noise (m/s^2)
|
||
// @Description: This noise controls the growth of the vertical acelerometer bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier.
|
||
// @Range: 0.00001 0.001
|
||
// @User: Advanced
|
||
// @Units: m/s/s
|
||
AP_GROUPINFO("ABIAS_PNOISE", 11, NavEKF, _accelBiasProcessNoise, ABIAS_PNOISE_DEFAULT),
|
||
|
||
// @Param: MAGE_PNOISE
|
||
// @DisplayName: Earth magnetic field process noise (gauss/s)
|
||
// @Description: This noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field bias estimation faster and noisier.
|
||
// @Range: 0.0001 0.01
|
||
// @User: Advanced
|
||
// @Units: gauss/s
|
||
AP_GROUPINFO("MAGE_PNOISE", 12, NavEKF, _magEarthProcessNoise, MAGE_PNOISE_DEFAULT),
|
||
|
||
// @Param: MAGB_PNOISE
|
||
// @DisplayName: Body magnetic field process noise (gauss/s)
|
||
// @Description: This noise controls the growth of body magnetic field state error estimates. Increasing it makes compass offset estimation faster and noisier.
|
||
// @Range: 0.0001 0.01
|
||
// @User: Advanced
|
||
// @Units: gauss/s
|
||
AP_GROUPINFO("MAGB_PNOISE", 13, NavEKF, _magBodyProcessNoise, MAGB_PNOISE_DEFAULT),
|
||
|
||
// @Param: VEL_DELAY
|
||
// @DisplayName: GPS velocity measurement delay (msec)
|
||
// @Description: This is the number of msec that the GPS velocity measurements lag behind the inertial measurements.
|
||
// @Range: 0 500
|
||
// @Increment: 10
|
||
// @User: Advanced
|
||
// @Units: milliseconds
|
||
AP_GROUPINFO("VEL_DELAY", 14, NavEKF, _msecVelDelay, 220),
|
||
|
||
// @Param: POS_DELAY
|
||
// @DisplayName: GPS position measurement delay (msec)
|
||
// @Description: This is the number of msec that the GPS position measurements lag behind the inertial measurements.
|
||
// @Range: 0 500
|
||
// @Increment: 10
|
||
// @User: Advanced
|
||
// @Units: milliseconds
|
||
AP_GROUPINFO("POS_DELAY", 15, NavEKF, _msecPosDelay, 220),
|
||
|
||
// @Param: GPS_TYPE
|
||
// @DisplayName: GPS mode control
|
||
// @Description: This parameter controls use of GPS measurements : 0 = use 3D velocity & 2D position, 1 = use 2D velocity and 2D position, 2 = use 2D position, 3 = use no GPS (optical flow will be used if available)
|
||
// @Values: 0:GPS 3D Vel and 2D Pos, 1:GPS 2D vel and 2D pos, 2:GPS 2D pos, 3:No GPS use optical flow
|
||
// @User: Advanced
|
||
AP_GROUPINFO("GPS_TYPE", 16, NavEKF, _fusionModeGPS, 0),
|
||
|
||
// @Param: VEL_GATE
|
||
// @DisplayName: GPS velocity measurement gate size
|
||
// @Description: This parameter sets the number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements willbe rejected. Increasing it makes it more likely that bad measurements will be accepted.
|
||
// @Range: 1 100
|
||
// @Increment: 1
|
||
// @User: Advanced
|
||
AP_GROUPINFO("VEL_GATE", 17, NavEKF, _gpsVelInnovGate, VEL_GATE_DEFAULT),
|
||
|
||
// @Param: POS_GATE
|
||
// @DisplayName: GPS position measurement gate size
|
||
// @Description: This parameter sets the number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.
|
||
// @Range: 1 100
|
||
// @Increment: 1
|
||
// @User: Advanced
|
||
AP_GROUPINFO("POS_GATE", 18, NavEKF, _gpsPosInnovGate, POS_GATE_DEFAULT),
|
||
|
||
// @Param: HGT_GATE
|
||
// @DisplayName: Height measurement gate size
|
||
// @Description: This parameter sets the number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.
|
||
// @Range: 1 100
|
||
// @Increment: 1
|
||
// @User: Advanced
|
||
AP_GROUPINFO("HGT_GATE", 19, NavEKF, _hgtInnovGate, HGT_GATE_DEFAULT),
|
||
|
||
// @Param: MAG_GATE
|
||
// @DisplayName: Magnetometer measurement gate size
|
||
// @Description: This parameter sets the number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.
|
||
// @Range: 1 100
|
||
// @Increment: 1
|
||
// @User: Advanced
|
||
AP_GROUPINFO("MAG_GATE", 20, NavEKF, _magInnovGate, MAG_GATE_DEFAULT),
|
||
|
||
// @Param: EAS_GATE
|
||
// @DisplayName: Airspeed measurement gate size
|
||
// @Description: This parameter sets the number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.
|
||
// @Range: 1 100
|
||
// @Increment: 1
|
||
// @User: Advanced
|
||
AP_GROUPINFO("EAS_GATE", 21, NavEKF, _tasInnovGate, 10),
|
||
|
||
// @Param: MAG_CAL
|
||
// @DisplayName: Magnetometer calibration mode
|
||
// @Description: EKF_MAG_CAL = 0 enables calibration based on flying speed and altitude and is the default setting for Plane users. EKF_MAG_CAL = 1 enables calibration based on manoeuvre level and is the default setting for Copter and Rover users. EKF_MAG_CAL = 2 prevents magnetometer calibration regardless of flight condition and is recommended if in-flight magnetometer calibration is unreliable.
|
||
// @Values: 0:Speed and Height,1:Acceleration,2:Never,3:Always
|
||
// @User: Advanced
|
||
AP_GROUPINFO("MAG_CAL", 22, NavEKF, _magCal, MAG_CAL_DEFAULT),
|
||
|
||
// @Param: GLITCH_ACCEL
|
||
// @DisplayName: GPS glitch accel gate size (cm/s^2)
|
||
// @Description: This parameter controls the maximum amount of difference in horizontal acceleration between the value predicted by the filter and the value measured by the GPS before the GPS position data is rejected. If this value is set too low, then valid GPS data will be regularly discarded, and the position accuracy will degrade. If this parameter is set too high, then large GPS glitches will cause large rapid changes in position.
|
||
// @Range: 100 500
|
||
// @Increment: 50
|
||
// @User: Advanced
|
||
AP_GROUPINFO("GLITCH_ACCEL", 23, NavEKF, _gpsGlitchAccelMax, GLITCH_ACCEL_DEFAULT),
|
||
|
||
// @Param: GLITCH_RAD
|
||
// @DisplayName: GPS glitch radius gate size (m)
|
||
// @Description: This parameter controls the maximum amount of difference in horizontal position (in m) between the value predicted by the filter and the value measured by the GPS before the long term glitch protection logic is activated and an offset is applied to the GPS measurement to compensate. Position steps smaller than this value will be temporarily ignored, but will then be accepted and the filter will move to the new position. Position steps larger than this value will be ignored initially, but the filter will then apply an offset to the GPS position measurement.
|
||
// @Range: 10 50
|
||
// @Increment: 5
|
||
// @User: Advanced
|
||
// @Units: meters
|
||
AP_GROUPINFO("GLITCH_RAD", 24, NavEKF, _gpsGlitchRadiusMax, GLITCH_RADIUS_DEFAULT),
|
||
|
||
// @Param: GND_GRADIENT
|
||
// @DisplayName: Terrain Gradient % RMS
|
||
// @Description: This parameter sets the RMS terrain gradient percentage assumed by the terrain height estimation. Terrain height can be estimated using optical flow and/or range finder sensor data if fitted. Smaller values cause the terrain height estimate to be slower to respond to changes in measurement. Larger values casue the terrain height estimate to be faster to respond, but also more noisy. Generally this value can be reduced if operating over very flat terrain and increased if operating over uneven terrain.
|
||
// @Range: 1 - 50
|
||
// @Increment: 1
|
||
// @User: Advanced
|
||
AP_GROUPINFO("GND_GRADIENT", 25, NavEKF, _gndGradientSigma, 2),
|
||
|
||
// @Param: FLOW_NOISE
|
||
// @DisplayName: Optical flow measurement noise (rad/s)
|
||
// @Description: This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements.
|
||
// @Range: 0.05 - 1.0
|
||
// @Increment: 0.05
|
||
// @User: Advanced
|
||
// @Units: rad/s
|
||
AP_GROUPINFO("FLOW_NOISE", 26, NavEKF, _flowNoise, FLOW_NOISE_DEFAULT),
|
||
|
||
// @Param: FLOW_GATE
|
||
// @DisplayName: Optical Flow measurement gate size
|
||
// @Description: This parameter sets the number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.
|
||
// @Range: 1 - 100
|
||
// @Increment: 1
|
||
// @User: Advanced
|
||
AP_GROUPINFO("FLOW_GATE", 27, NavEKF, _flowInnovGate, FLOW_GATE_DEFAULT),
|
||
|
||
// @Param: FLOW_DELAY
|
||
// @DisplayName: Optical Flow measurement delay (msec)
|
||
// @Description: This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor.
|
||
// @Range: 0 - 500
|
||
// @Increment: 10
|
||
// @User: Advanced
|
||
// @Units: milliseconds
|
||
AP_GROUPINFO("FLOW_DELAY", 28, NavEKF, _msecFLowDelay, FLOW_MEAS_DELAY),
|
||
|
||
// @Param: RNG_GATE
|
||
// @DisplayName: Range finder measurement gate size
|
||
// @Description: This parameter sets the number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted.
|
||
// @Range: 1 - 100
|
||
// @Increment: 1
|
||
// @User: Advanced
|
||
AP_GROUPINFO("RNG_GATE", 29, NavEKF, _rngInnovGate, 5),
|
||
|
||
// @Param: MAX_FLOW
|
||
// @DisplayName: Maximum valid optical flow rate
|
||
// @Description: This parameter sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter
|
||
// @Range: 1.0 - 4.0
|
||
// @Increment: 0.1
|
||
// @User: Advanced
|
||
AP_GROUPINFO("MAX_FLOW", 30, NavEKF, _maxFlowRate, 2.5f),
|
||
|
||
// @Param: FALLBACK
|
||
// @DisplayName: Fallback strictness
|
||
// @Description: This parameter controls the conditions necessary to trigger a fallback to DCM and INAV. A value of 1 will cause fallbacks to occur on loss of GPS and other conditions. A value of 0 will trust the EKF more.
|
||
// @Values: 0:Trust EKF more, 1:Trust DCM more
|
||
// @User: Advanced
|
||
AP_GROUPINFO("FALLBACK", 31, NavEKF, _fallback, 1),
|
||
|
||
// @Param: ALT_SOURCE
|
||
// @DisplayName: Primary height source
|
||
// @Description: This parameter controls which height sensor is used by the EKF during optical flow navigation (when EKF_GPS_TYPE = 3). A value of will 0 cause it to always use baro altitude. A value of 1 will casue it to use range finder if available.
|
||
// @Values: 0:Use Baro, 1:Use Range Finder
|
||
// @User: Advanced
|
||
AP_GROUPINFO("ALT_SOURCE", 32, NavEKF, _altSource, 1),
|
||
|
||
// @Param: GPS_CHECK
|
||
// @DisplayName: GPS preflight check
|
||
// @Description: 1 byte bitmap of GPS preflight checks to perform. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat.
|
||
// @Bitmask: 0:NSats,1:HDoP,2:speed error,3:horiz pos error,4:yaw error,5:pos drift,6:vert speed,7:horiz speed
|
||
// @User: Advanced
|
||
AP_GROUPINFO("GPS_CHECK", 33, NavEKF, _gpsCheck, 31),
|
||
|
||
// @Param: ENABLE
|
||
// @DisplayName: Enable EKF1
|
||
// @Description: This enables EKF1 to be disabled when using alternative algorithms. When disabling it, the alternate EKF2 estimator must be enabled by setting EK2_ENABLED = 1 and flight control algorithms must be set to use the alternative estimator by setting AHRS_EKF_TYPE = 2.
|
||
// @Values: 0:Disabled, 1:Enabled
|
||
// @User: Advanced
|
||
AP_GROUPINFO("ENABLE", 34, NavEKF, _enable, 1),
|
||
|
||
AP_GROUPEND
|
||
};
|
||
|
||
// constructor
|
||
NavEKF::NavEKF(const AP_AHRS *ahrs, AP_Baro &baro, const RangeFinder &rng) :
|
||
_ahrs(ahrs),
|
||
_baro(baro),
|
||
_rng(rng),
|
||
state(*reinterpret_cast<struct state_elements *>(&states)),
|
||
gpsNEVelVarAccScale(0.05f), // Scale factor applied to horizontal velocity measurement variance due to manoeuvre acceleration - used when GPS doesn't report speed error
|
||
gpsDVelVarAccScale(0.07f), // Scale factor applied to vertical velocity measurement variance due to manoeuvre acceleration - used when GPS doesn't report speed error
|
||
gpsPosVarAccScale(0.05f), // Scale factor applied to horizontal position measurement variance due to manoeuvre acceleration
|
||
msecHgtDelay(60), // Height measurement delay (msec)
|
||
msecMagDelay(40), // Magnetometer measurement delay (msec)
|
||
msecTasDelay(240), // Airspeed measurement delay (msec)
|
||
gpsRetryTimeUseTAS(10000), // GPS retry time with airspeed measurements (msec)
|
||
gpsRetryTimeNoTAS(7000), // GPS retry time without airspeed measurements (msec)
|
||
gpsFailTimeWithFlow(5000), // If we have no GPS for longer than this and we have optical flow, then we will switch across to using optical flow (msec)
|
||
hgtRetryTimeMode0(10000), // Height retry time with vertical velocity measurement (msec)
|
||
hgtRetryTimeMode12(5000), // Height retry time without vertical velocity measurement (msec)
|
||
tasRetryTime(5000), // True airspeed timeout and retry interval (msec)
|
||
magFailTimeLimit_ms(10000), // number of msec before a magnetometer failing innovation consistency checks is declared failed (msec)
|
||
magVarRateScale(0.05f), // scale factor applied to magnetometer variance due to angular rate
|
||
gyroBiasNoiseScaler(2.0f), // scale factor applied to imu gyro bias learning before the vehicle is armed
|
||
accelBiasNoiseScaler(1.0f), // scale factor applied to imu accel bias learning before the vehicle is armed
|
||
msecGpsAvg(200), // average number of msec between GPS measurements
|
||
msecHgtAvg(100), // average number of msec between height measurements
|
||
msecMagAvg(100), // average number of msec between magnetometer measurements
|
||
msecBetaAvg(100), // average number of msec between synthetic sideslip measurements
|
||
msecBetaMax(200), // maximum number of msec between synthetic sideslip measurements
|
||
msecFlowAvg(100), // average number of msec between optical flow measurements
|
||
dtVelPos(0.2f), // number of seconds between position and velocity corrections. This should be a multiple of the imu update interval.
|
||
covTimeStepMax(0.07f), // maximum time (sec) between covariance prediction updates
|
||
covDelAngMax(0.05f), // maximum delta angle between covariance prediction updates
|
||
TASmsecMax(200), // maximum allowed interval between airspeed measurement updates
|
||
DCM33FlowMin(0.71f), // If Tbn(3,3) is less than this number, optical flow measurements will not be fused as tilt is too high.
|
||
fScaleFactorPnoise(1e-10f), // Process noise added to focal length scale factor state variance at each time step
|
||
flowTimeDeltaAvg_ms(100), // average interval between optical flow measurements (msec)
|
||
flowIntervalMax_ms(100), // maximum allowable time between flow fusion events
|
||
gndEffectTimeout_ms(1000), // time in msec that baro ground effect compensation will timeout after initiation
|
||
gndEffectBaroScaler(4.0f) // scaler applied to the barometer observation variance when operating in ground effect
|
||
{
|
||
AP_Param::setup_object_defaults(this, var_info);
|
||
}
|
||
|
||
// Check basic filter health metrics and return a consolidated health status
|
||
bool NavEKF::healthy(void) const
|
||
{
|
||
uint8_t faultInt;
|
||
getFilterFaults(faultInt);
|
||
if (faultInt > 0) {
|
||
return false;
|
||
}
|
||
if (_fallback && velTestRatio > 1 && posTestRatio > 1 && hgtTestRatio > 1) {
|
||
// all three metrics being above 1 means the filter is
|
||
// extremely unhealthy.
|
||
return false;
|
||
}
|
||
// Give the filter a second to settle before use
|
||
if ((imuSampleTime_ms - ekfStartTime_ms) < 1000 ) {
|
||
return false;
|
||
}
|
||
// barometer and position innovations must be within limits when on-ground
|
||
float horizErrSq = sq(innovVelPos[3]) + sq(innovVelPos[4]);
|
||
if (!vehicleArmed && (fabsf(innovVelPos[5]) > 1.0f || horizErrSq > 1.0f)) {
|
||
return false;
|
||
}
|
||
|
||
// all OK
|
||
return true;
|
||
}
|
||
|
||
// resets position states to last GPS measurement or to zero if in constant position mode
|
||
void NavEKF::ResetPosition(void)
|
||
{
|
||
if (constPosMode || (PV_AidingMode != AID_ABSOLUTE)) {
|
||
state.position.x = 0;
|
||
state.position.y = 0;
|
||
} else if (!gpsNotAvailable) {
|
||
// write to state vector and compensate for GPS latency
|
||
state.position.x = gpsPosNE.x + gpsPosGlitchOffsetNE.x + 0.001f*velNED.x*float(_msecPosDelay);
|
||
state.position.y = gpsPosNE.y + gpsPosGlitchOffsetNE.y + 0.001f*velNED.y*float(_msecPosDelay);
|
||
// the estimated states at the last GPS measurement are set equal to the GPS measurement to prevent transients on the first fusion
|
||
statesAtPosTime.position.x = gpsPosNE.x;
|
||
statesAtPosTime.position.y = gpsPosNE.y;
|
||
}
|
||
// stored horizontal position states to prevent subsequent GPS measurements from being rejected
|
||
for (uint8_t i=0; i<=49; i++){
|
||
storedStates[i].position.x = state.position.x;
|
||
storedStates[i].position.y = state.position.y;
|
||
}
|
||
}
|
||
|
||
// Reset velocity states to last GPS measurement if available or to zero if in constant position mode or if PV aiding is not absolute
|
||
// Do not reset vertical velocity using GPS as there is baro alt available to constrain drift
|
||
void NavEKF::ResetVelocity(void)
|
||
{
|
||
if (constPosMode || PV_AidingMode != AID_ABSOLUTE) {
|
||
state.velocity.zero();
|
||
state.vel1.zero();
|
||
state.vel2.zero();
|
||
posDownDerivative = 0.0f;
|
||
} else if (!gpsNotAvailable) {
|
||
// reset horizontal velocity states, applying an offset to the GPS velocity to prevent the GPS position being rejected when the GPS position offset is being decayed to zero.
|
||
state.velocity.x = velNED.x + gpsVelGlitchOffset.x; // north velocity from blended accel data
|
||
state.velocity.y = velNED.y + gpsVelGlitchOffset.y; // east velocity from blended accel data
|
||
state.vel1.x = velNED.x + gpsVelGlitchOffset.x; // north velocity from IMU1 accel data
|
||
state.vel1.y = velNED.y + gpsVelGlitchOffset.y; // east velocity from IMU1 accel data
|
||
state.vel2.x = velNED.x + gpsVelGlitchOffset.x; // north velocity from IMU2 accel data
|
||
state.vel2.y = velNED.y + gpsVelGlitchOffset.y; // east velocity from IMU2 accel data
|
||
// over write stored horizontal velocity states to prevent subsequent GPS measurements from being rejected
|
||
for (uint8_t i=0; i<=49; i++){
|
||
storedStates[i].velocity.x = velNED.x + gpsVelGlitchOffset.x;
|
||
storedStates[i].velocity.y = velNED.y + gpsVelGlitchOffset.y;
|
||
}
|
||
}
|
||
}
|
||
|
||
// reset the vertical position state using the last height measurement
|
||
void NavEKF::ResetHeight(void)
|
||
{
|
||
// read the altimeter
|
||
readHgtData();
|
||
// write to the state vector
|
||
state.position.z = -hgtMea; // down position from blended accel data
|
||
state.posD1 = -hgtMea; // down position from IMU1 accel data
|
||
state.posD2 = -hgtMea; // down position from IMU2 accel data
|
||
// reset stored vertical position states to prevent subsequent GPS measurements from being rejected
|
||
for (uint8_t i=0; i<=49; i++){
|
||
storedStates[i].position.z = -hgtMea;
|
||
}
|
||
terrainState = state.position.z + rngOnGnd;
|
||
// reset the height state for the complementary filter used to provide a vertical position dervative
|
||
posDown = state.position.z;
|
||
}
|
||
|
||
// this function is used to initialise the filter whilst moving, using the AHRS DCM solution
|
||
// it should NOT be used to re-initialise after a timeout as DCM will also be corrupted
|
||
bool NavEKF::InitialiseFilterDynamic(void)
|
||
{
|
||
// Don't start if the user has disabled
|
||
if (_enable == 0) {
|
||
return false;
|
||
}
|
||
|
||
// this forces healthy() to be false so that when we ask for ahrs
|
||
// attitude we get the DCM attitude regardless of the state of AHRS_EKF_USE
|
||
statesInitialised = false;
|
||
|
||
// If we are a plane and don't have GPS lock then don't initialise
|
||
if (assume_zero_sideslip() && _ahrs->get_gps().status() < AP_GPS::GPS_OK_FIX_3D) {
|
||
return false;
|
||
}
|
||
|
||
// If the DCM solution has not converged, then don't initialise,
|
||
// unless at least 30s has passed
|
||
if (_ahrs->get_error_rp() > 0.05f && _ahrs->uptime_ms() < 30000U) {
|
||
return false;
|
||
}
|
||
|
||
// Set re-used variables to zero
|
||
InitialiseVariables();
|
||
|
||
// get initial time deltat between IMU measurements (sec)
|
||
dtIMUactual = dtIMUavg = 1.0f/_ahrs->get_ins().get_sample_rate();
|
||
|
||
// set number of updates over which gps and baro measurements are applied to the velocity and position states
|
||
gpsUpdateCountMaxInv = (dtIMUavg * 1000.0f)/float(msecGpsAvg);
|
||
gpsUpdateCountMax = uint8_t(1.0f/gpsUpdateCountMaxInv);
|
||
hgtUpdateCountMaxInv = (dtIMUavg * 1000.0f)/float(msecHgtAvg);
|
||
hgtUpdateCountMax = uint8_t(1.0f/hgtUpdateCountMaxInv);
|
||
magUpdateCountMaxInv = (dtIMUavg * 1000.0f)/float(msecMagAvg);
|
||
magUpdateCountMax = uint8_t(1.0f/magUpdateCountMaxInv);
|
||
flowUpdateCountMaxInv = (dtIMUavg * 1000.0f)/float(msecFlowAvg);
|
||
flowUpdateCountMax = uint8_t(1.0f/flowUpdateCountMaxInv);
|
||
|
||
// calculate initial orientation and earth magnetic field states
|
||
state.quat = calcQuatAndFieldStates(_ahrs->roll, _ahrs->pitch);
|
||
|
||
// write to state vector
|
||
state.gyro_bias.zero();
|
||
state.accel_zbias1 = 0;
|
||
state.accel_zbias2 = 0;
|
||
state.wind_vel.zero();
|
||
|
||
// read the GPS and set the position and velocity states
|
||
readGpsData();
|
||
ResetVelocity();
|
||
ResetPosition();
|
||
|
||
// read the barometer and set the height state
|
||
readHgtData();
|
||
ResetHeight();
|
||
|
||
// set stored states to current state
|
||
StoreStatesReset();
|
||
|
||
// set to true now that states have be initialised
|
||
statesInitialised = true;
|
||
|
||
// define Earth rotation vector in the NED navigation frame
|
||
calcEarthRateNED(earthRateNED, _ahrs->get_home().lat);
|
||
|
||
// initialise IMU pre-processing states
|
||
readIMUData();
|
||
|
||
// initialise the covariance matrix
|
||
CovarianceInit();
|
||
|
||
return true;
|
||
}
|
||
|
||
// Initialise the states from accelerometer and magnetometer data (if present)
|
||
// This method can only be used when the vehicle is static
|
||
bool NavEKF::InitialiseFilterBootstrap(void)
|
||
{
|
||
// If we are a plane and don't have GPS lock then don't initialise
|
||
if (assume_zero_sideslip() && _ahrs->get_gps().status() < AP_GPS::GPS_OK_FIX_3D) {
|
||
statesInitialised = false;
|
||
return false;
|
||
}
|
||
|
||
// set re-used variables to zero
|
||
InitialiseVariables();
|
||
|
||
// get initial time deltat between IMU measurements (sec)
|
||
dtIMUactual = dtIMUavg = 1.0f/_ahrs->get_ins().get_sample_rate();
|
||
|
||
// set number of updates over which gps and baro measurements are applied to the velocity and position states
|
||
gpsUpdateCountMaxInv = (dtIMUavg * 1000.0f)/float(msecGpsAvg);
|
||
gpsUpdateCountMax = uint8_t(1.0f/gpsUpdateCountMaxInv);
|
||
hgtUpdateCountMaxInv = (dtIMUavg * 1000.0f)/float(msecHgtAvg);
|
||
hgtUpdateCountMax = uint8_t(1.0f/hgtUpdateCountMaxInv);
|
||
magUpdateCountMaxInv = (dtIMUavg * 1000.0f)/float(msecMagAvg);
|
||
magUpdateCountMax = uint8_t(1.0f/magUpdateCountMaxInv);
|
||
|
||
// acceleration vector in XYZ body axes measured by the IMU (m/s^2)
|
||
Vector3f initAccVec;
|
||
|
||
// TODO we should average accel readings over several cycles
|
||
initAccVec = _ahrs->get_ins().get_accel();
|
||
|
||
// read the magnetometer data
|
||
readMagData();
|
||
|
||
// normalise the acceleration vector
|
||
float pitch=0, roll=0;
|
||
if (initAccVec.length() > 0.001f) {
|
||
initAccVec.normalize();
|
||
|
||
// calculate initial pitch angle
|
||
pitch = asinf(initAccVec.x);
|
||
|
||
// calculate initial roll angle
|
||
roll = -asinf(initAccVec.y / cosf(pitch));
|
||
}
|
||
|
||
// calculate initial orientation and earth magnetic field states
|
||
Quaternion initQuat;
|
||
initQuat = calcQuatAndFieldStates(roll, pitch);
|
||
|
||
// check on ground status
|
||
SetFlightAndFusionModes();
|
||
|
||
// write to state vector
|
||
state.quat = initQuat;
|
||
state.gyro_bias.zero();
|
||
state.accel_zbias1 = 0;
|
||
state.accel_zbias2 = 0;
|
||
state.wind_vel.zero();
|
||
state.body_magfield.zero();
|
||
|
||
// read the GPS and set the position and velocity states
|
||
readGpsData();
|
||
ResetVelocity();
|
||
ResetPosition();
|
||
|
||
// read the barometer and set the height state
|
||
readHgtData();
|
||
ResetHeight();
|
||
|
||
// set stored states to current state
|
||
StoreStatesReset();
|
||
|
||
// set to true now we have intialised the states
|
||
statesInitialised = true;
|
||
|
||
// define Earth rotation vector in the NED navigation frame
|
||
calcEarthRateNED(earthRateNED, _ahrs->get_home().lat);
|
||
|
||
// initialise IMU pre-processing states
|
||
readIMUData();
|
||
|
||
// initialise the covariance matrix
|
||
CovarianceInit();
|
||
|
||
return true;
|
||
}
|
||
|
||
// Update Filter States - this should be called whenever new IMU data is available
|
||
void NavEKF::UpdateFilter()
|
||
{
|
||
// zero the delta quaternion used by the strapdown navigation because it is published
|
||
// and we need to return a zero rotation of the INS fails to update it
|
||
correctedDelAngQuat.initialise();
|
||
|
||
// don't run filter updates if states have not been initialised
|
||
if (!statesInitialised) {
|
||
return;
|
||
}
|
||
|
||
// start the timer used for load measurement
|
||
#if EKF_DISABLE_INTERRUPTS
|
||
irqstate_t istate = irqsave();
|
||
#endif
|
||
hal.util->perf_begin(_perf_UpdateFilter);
|
||
|
||
//get starting time for update step
|
||
imuSampleTime_ms = hal.scheduler->millis();
|
||
|
||
// read IMU data and convert to delta angles and velocities
|
||
readIMUData();
|
||
|
||
static bool prev_armed = false;
|
||
bool armed = getVehicleArmStatus();
|
||
|
||
// the vehicle was previously disarmed and time has slipped
|
||
// gyro auto-zero has likely just been done - skip this timestep
|
||
if (!prev_armed && dtIMUactual > dtIMUavg*5.0f) {
|
||
// stop the timer used for load measurement
|
||
prev_armed = armed;
|
||
goto end;
|
||
}
|
||
prev_armed = armed;
|
||
|
||
// detect if the filter update has been delayed for too long
|
||
if (dtIMUactual > 0.2f) {
|
||
// we have stalled for too long - reset states
|
||
ResetVelocity();
|
||
ResetPosition();
|
||
ResetHeight();
|
||
StoreStatesReset();
|
||
//Initialise IMU pre-processing states
|
||
readIMUData();
|
||
// stop the timer used for load measurement
|
||
goto end;
|
||
}
|
||
|
||
// check if on ground
|
||
SetFlightAndFusionModes();
|
||
|
||
// Check arm status and perform required checks and mode changes
|
||
performArmingChecks();
|
||
|
||
// run the strapdown INS equations every IMU update
|
||
UpdateStrapdownEquationsNED();
|
||
|
||
// store the predicted states for subsequent use by measurement fusion
|
||
StoreStates();
|
||
|
||
// sum delta angles and time used by covariance prediction
|
||
summedDelAng = summedDelAng + correctedDelAng;
|
||
summedDelVel = summedDelVel + correctedDelVel12;
|
||
dt += dtIMUactual;
|
||
|
||
// perform a covariance prediction if the total delta angle has exceeded the limit
|
||
// or the time limit will be exceeded at the next IMU update
|
||
if (((dt >= (covTimeStepMax - dtIMUactual)) || (summedDelAng.length() > covDelAngMax))) {
|
||
CovariancePrediction();
|
||
} else {
|
||
covPredStep = false;
|
||
}
|
||
|
||
// Read range finder data which is used by both position and optical flow fusion
|
||
readRangeFinder();
|
||
|
||
// Update states using GPS, altimeter, compass, airspeed and synthetic sideslip observations
|
||
SelectVelPosFusion();
|
||
SelectMagFusion();
|
||
SelectFlowFusion();
|
||
SelectTasFusion();
|
||
SelectBetaFusion();
|
||
|
||
end:
|
||
// stop the timer used for load measurement
|
||
hal.util->perf_end(_perf_UpdateFilter);
|
||
#if EKF_DISABLE_INTERRUPTS
|
||
irqrestore(istate);
|
||
#endif
|
||
}
|
||
|
||
// select fusion of velocity, position and height measurements
|
||
void NavEKF::SelectVelPosFusion()
|
||
{
|
||
// check for and read new height data
|
||
readHgtData();
|
||
|
||
// If we haven't received height data for a while, then declare the height data as being timed out
|
||
// set timeout period based on whether we have vertical GPS velocity available to constrain drift
|
||
hgtRetryTime = (useGpsVertVel && !velTimeout) ? hgtRetryTimeMode0 : hgtRetryTimeMode12;
|
||
if (imuSampleTime_ms - lastHgtMeasTime > hgtRetryTime) {
|
||
hgtTimeout = true;
|
||
}
|
||
|
||
// command fusion of height data
|
||
if (newDataHgt)
|
||
{
|
||
// reset data arrived flag
|
||
newDataHgt = false;
|
||
// reset state updates and counter used to spread fusion updates across several frames to reduce 10Hz pulsing
|
||
memset(&hgtIncrStateDelta[0], 0, sizeof(hgtIncrStateDelta));
|
||
hgtUpdateCount = 0;
|
||
// enable fusion
|
||
fuseHgtData = true;
|
||
} else {
|
||
fuseHgtData = false;
|
||
}
|
||
|
||
// check for and read new GPS data
|
||
readGpsData();
|
||
|
||
// Specify which measurements should be used and check data for freshness
|
||
if (PV_AidingMode == AID_ABSOLUTE) {
|
||
|
||
// check if we can use opticalflow as a backup
|
||
bool optFlowBackup = (flowDataValid && !hgtTimeout);
|
||
|
||
// Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift
|
||
uint16_t gpsRetryTimeout = useAirspeed() ? gpsRetryTimeUseTAS : gpsRetryTimeNoTAS;
|
||
|
||
// Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode
|
||
uint16_t gpsFailTimeout = optFlowBackup ? gpsFailTimeWithFlow : gpsRetryTimeout;
|
||
|
||
// If we haven't received GPS data for a while, then declare the position and velocity data as being timed out
|
||
if (imuSampleTime_ms - lastFixTime_ms > gpsFailTimeout) {
|
||
posTimeout = true;
|
||
velTimeout = true;
|
||
// If this happens in flight and we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode.
|
||
// Stay in that mode until the vehicle is re-armed.
|
||
// If we can do optical flow nav (valid flow data and hieght above ground estimate, then go into flow nav mode.
|
||
// Stay in that mode until the vehicle is dis-armed.
|
||
if (vehicleArmed && !useAirspeed() && !assume_zero_sideslip()) {
|
||
if (optFlowBackup) {
|
||
// we can do optical flow only nav
|
||
_fusionModeGPS = 3;
|
||
PV_AidingMode = AID_RELATIVE;
|
||
constVelMode = false;
|
||
constPosMode = false;
|
||
} else {
|
||
constVelMode = false; // always clear constant velocity mode if constant velocity mode is active
|
||
constPosMode = true;
|
||
PV_AidingMode = AID_NONE;
|
||
posTimeout = true;
|
||
velTimeout = true;
|
||
// reset the velocity
|
||
ResetVelocity();
|
||
// store the current position to be used to keep reporting the last known position
|
||
lastKnownPositionNE.x = state.position.x;
|
||
lastKnownPositionNE.y = state.position.y;
|
||
// reset the position
|
||
ResetPosition();
|
||
}
|
||
// set the position and velocity timeouts to indicate we are not using GPS data
|
||
posTimeout = true;
|
||
velTimeout = true;
|
||
}
|
||
}
|
||
|
||
// command fusion of GPS data and reset states as required
|
||
if (newDataGps && (PV_AidingMode == AID_ABSOLUTE)) {
|
||
// reset data arrived flag
|
||
newDataGps = false;
|
||
// reset state updates and counter used to spread fusion updates across several frames to reduce 10Hz pulsing
|
||
memset(&gpsIncrStateDelta[0], 0, sizeof(gpsIncrStateDelta));
|
||
gpsUpdateCount = 0;
|
||
// use both if GPS use is enabled
|
||
fuseVelData = true;
|
||
fusePosData = true;
|
||
// If a long time since last GPS update, then reset position and velocity and reset stored state history
|
||
if (imuSampleTime_ms - secondLastFixTime_ms > gpsRetryTimeout) {
|
||
// Apply an offset to the GPS position so that the position can be corrected gradually
|
||
gpsPosGlitchOffsetNE.x = statesAtPosTime.position.x - gpsPosNE.x;
|
||
gpsPosGlitchOffsetNE.y = statesAtPosTime.position.y - gpsPosNE.y;
|
||
// limit the radius of the offset to 100m and decay the offset to zero radially
|
||
decayGpsOffset();
|
||
ResetPosition();
|
||
ResetVelocity();
|
||
// record the fail time
|
||
lastPosFailTime = imuSampleTime_ms;
|
||
// Reset the normalised innovation to avoid false failing the bad position fusion test
|
||
posTestRatio = 0.0f;
|
||
}
|
||
} else {
|
||
fuseVelData = false;
|
||
fusePosData = false;
|
||
}
|
||
} else if (constPosMode && (fuseHgtData || ((imuSampleTime_ms - lastConstPosFuseTime_ms) > 200))) {
|
||
// In constant position mode use synthetic position and velocity measurements set to zero whenever we are fusing a height measurement
|
||
// If no height has been received for 200 msec, then fuse anyway so we have a guaranteed minimum aiding rate equivalent to GPS
|
||
// only fuse synthetic measurements when rate of change of velocity is less than 0.5g to reduce attitude errors due to launch acceleration
|
||
// do not use velocity fusion to reduce the effect of movement on attitude
|
||
if (accNavMag < 4.9f) {
|
||
fusePosData = true;
|
||
} else {
|
||
fusePosData = false;
|
||
}
|
||
fuseVelData = false;
|
||
// record the fusion time - used to control fusion rate when there is no baro data
|
||
lastConstPosFuseTime_ms = imuSampleTime_ms;
|
||
} else if (constVelMode && (fuseHgtData || ((imuSampleTime_ms - lastConstPosFuseTime_ms) > 200))) {
|
||
// In constant velocity mode we fuse the last valid velocity vector
|
||
// Reset the stored velocity vector when we enter the mode
|
||
if (constVelMode && !lastConstVelMode) {
|
||
heldVelNE.x = state.velocity.x;
|
||
heldVelNE.y = state.velocity.y;
|
||
}
|
||
lastConstVelMode = constVelMode;
|
||
// We do not fuse when manoeuvring to avoid corrupting the attitude
|
||
if (accNavMag < 4.9f) {
|
||
fuseVelData = true;
|
||
} else {
|
||
fuseVelData = false;
|
||
}
|
||
fusePosData = false;
|
||
// record the fusion time - used to control fusion rate when there is no baro data
|
||
lastConstPosFuseTime_ms = imuSampleTime_ms;
|
||
} else {
|
||
fuseVelData = false;
|
||
fusePosData = false;
|
||
}
|
||
|
||
// perform fusion
|
||
if (fuseVelData || fusePosData || fuseHgtData) {
|
||
// ensure that the covariance prediction is up to date before fusing data
|
||
if (!covPredStep) CovariancePrediction();
|
||
FuseVelPosNED();
|
||
}
|
||
|
||
// Fuse corrections to quaternion, position and velocity states across several time steps to reduce 5 and 10Hz pulsing in the output
|
||
if (gpsUpdateCount < gpsUpdateCountMax) {
|
||
gpsUpdateCount ++;
|
||
for (uint8_t i = 0; i <= 9; i++) {
|
||
states[i] += gpsIncrStateDelta[i];
|
||
}
|
||
}
|
||
if (hgtUpdateCount < hgtUpdateCountMax) {
|
||
hgtUpdateCount ++;
|
||
for (uint8_t i = 0; i <= 9; i++) {
|
||
states[i] += hgtIncrStateDelta[i];
|
||
}
|
||
}
|
||
|
||
// Detect and declare bad GPS aiding status for minimum 10 seconds if a GPS rejection occurs after
|
||
// rejection of GPS and reset to GPS position. This addresses failure case where errors cause ongoing rejection
|
||
// of GPS and severe loss of position accuracy.
|
||
uint32_t gpsRetryTime;
|
||
if (useAirspeed()) {
|
||
gpsRetryTime = gpsRetryTimeUseTAS;
|
||
} else {
|
||
gpsRetryTime = gpsRetryTimeNoTAS;
|
||
}
|
||
if ((posTestRatio > 2.0f) && ((imuSampleTime_ms - lastPosFailTime) < gpsRetryTime) && ((imuSampleTime_ms - lastPosFailTime) > gpsRetryTime/2) && fusePosData) {
|
||
lastGpsAidBadTime_ms = imuSampleTime_ms;
|
||
gpsAidingBad = true;
|
||
}
|
||
gpsAidingBad = gpsAidingBad && ((imuSampleTime_ms - lastGpsAidBadTime_ms) < 10000);
|
||
}
|
||
|
||
// select fusion of magnetometer data
|
||
void NavEKF::SelectMagFusion()
|
||
{
|
||
// start performance timer
|
||
hal.util->perf_begin(_perf_FuseMagnetometer);
|
||
|
||
// check for and read new magnetometer measurements
|
||
readMagData();
|
||
|
||
// If we are using the compass and the magnetometer has been unhealthy for too long we declare a timeout
|
||
if (magHealth) {
|
||
magTimeout = false;
|
||
lastHealthyMagTime_ms = imuSampleTime_ms;
|
||
} else if ((imuSampleTime_ms - lastHealthyMagTime_ms) > magFailTimeLimit_ms && use_compass()) {
|
||
magTimeout = true;
|
||
}
|
||
|
||
// determine if conditions are right to start a new fusion cycle
|
||
bool dataReady = statesInitialised && use_compass() && newDataMag;
|
||
if (dataReady) {
|
||
// reset state updates and counter used to spread fusion updates across several frames to reduce 10Hz pulsing
|
||
memset(&magIncrStateDelta[0], 0, sizeof(magIncrStateDelta));
|
||
magUpdateCount = 0;
|
||
// ensure that the covariance prediction is up to date before fusing data
|
||
if (!covPredStep) CovariancePrediction();
|
||
// fuse the three magnetometer componenents sequentially
|
||
for (mag_state.obsIndex = 0; mag_state.obsIndex <= 2; mag_state.obsIndex++) FuseMagnetometer();
|
||
}
|
||
|
||
// Fuse corrections to quaternion, position and velocity states across several time steps to reduce 10Hz pulsing in the output
|
||
if (magUpdateCount < magUpdateCountMax) {
|
||
magUpdateCount ++;
|
||
for (uint8_t i = 0; i <= 9; i++) {
|
||
states[i] += magIncrStateDelta[i];
|
||
}
|
||
}
|
||
|
||
// stop performance timer
|
||
hal.util->perf_end(_perf_FuseMagnetometer);
|
||
}
|
||
|
||
// select fusion of optical flow measurements
|
||
void NavEKF::SelectFlowFusion()
|
||
{
|
||
// start performance timer
|
||
hal.util->perf_begin(_perf_FuseOptFlow);
|
||
// Perform Data Checks
|
||
// Check if the optical flow data is still valid
|
||
flowDataValid = ((imuSampleTime_ms - flowValidMeaTime_ms) < 1000);
|
||
// Check if the optical flow sensor has timed out
|
||
bool flowSensorTimeout = ((imuSampleTime_ms - flowValidMeaTime_ms) > 5000);
|
||
// Check if the fusion has timed out (flow measurements have been rejected for too long)
|
||
bool flowFusionTimeout = ((imuSampleTime_ms - prevFlowFuseTime_ms) > 5000);
|
||
// check is the terrain offset estimate is still valid
|
||
gndOffsetValid = ((imuSampleTime_ms - gndHgtValidTime_ms) < 5000);
|
||
// Perform tilt check
|
||
bool tiltOK = (Tnb_flow.c.z > DCM33FlowMin);
|
||
// Constrain measurements to zero if we are using optical flow and are on the ground
|
||
if (_fusionModeGPS == 3 && !takeOffDetected && vehicleArmed) {
|
||
flowRadXYcomp[0] = 0.0f;
|
||
flowRadXYcomp[1] = 0.0f;
|
||
flowRadXY[0] = 0.0f;
|
||
flowRadXY[1] = 0.0f;
|
||
omegaAcrossFlowTime.zero();
|
||
flowDataValid = true;
|
||
}
|
||
// If the flow measurements have been rejected for too long and we are relying on them, then revert to constant position mode
|
||
if ((flowSensorTimeout || flowFusionTimeout) && PV_AidingMode == AID_RELATIVE) {
|
||
constVelMode = false; // always clear constant velocity mode if constant velocity mode is active
|
||
constPosMode = true;
|
||
PV_AidingMode = AID_NONE;
|
||
// reset the velocity
|
||
ResetVelocity();
|
||
// store the current position to be used to keep reporting the last known position
|
||
lastKnownPositionNE.x = state.position.x;
|
||
lastKnownPositionNE.y = state.position.y;
|
||
// reset the position
|
||
ResetPosition();
|
||
}
|
||
// if we do have valid flow measurements, fuse data into a 1-state EKF to estimate terrain height
|
||
// we don't do terrain height estimation in optical flow only mode as the ground becomes our zero height reference
|
||
if ((newDataFlow || newDataRng) && tiltOK) {
|
||
// fuse range data into the terrain estimator if available
|
||
fuseRngData = newDataRng;
|
||
// fuse optical flow data into the terrain estimator if available and if there is no range data (range data is better)
|
||
fuseOptFlowData = (newDataFlow && !fuseRngData);
|
||
// Estimate the terrain offset (runs a one state EKF)
|
||
EstimateTerrainOffset();
|
||
// Indicate we have used the range data
|
||
newDataRng = false;
|
||
// we don't do subsequent fusion of optical flow data into the main filter if GPS is good and terrain offset data is invalid
|
||
// because an invalid height above ground estimate will cause the optical flow measurements to fight the GPS
|
||
if (!gpsNotAvailable && !gndOffsetValid) {
|
||
// turn off fusion permissions
|
||
// reset the flags to indicate that no new range finder or flow data is available for fusion
|
||
newDataFlow = false;
|
||
}
|
||
}
|
||
|
||
// Fuse optical flow data into the main filter
|
||
// if the filter is initialised, we have data to fuse and the vehicle is not excessively tilted, then perform optical flow fusion
|
||
if (flowDataValid && newDataFlow && tiltOK && !constPosMode)
|
||
{
|
||
// reset state updates and counter used to spread fusion updates across several frames to reduce 10Hz pulsing
|
||
memset(&flowIncrStateDelta[0], 0, sizeof(flowIncrStateDelta));
|
||
flowUpdateCount = 0;
|
||
// Set the flow noise used by the fusion processes
|
||
R_LOS = sq(max(_flowNoise, 0.05f));
|
||
// ensure that the covariance prediction is up to date before fusing data
|
||
if (!covPredStep) CovariancePrediction();
|
||
// Fuse the optical flow X and Y axis data into the main filter sequentially
|
||
for (flow_state.obsIndex = 0; flow_state.obsIndex <= 1; flow_state.obsIndex++) FuseOptFlow();
|
||
// reset flag to indicate that no new flow data is available for fusion
|
||
newDataFlow = false;
|
||
// indicate that flow fusion has been performed. This is used for load spreading.
|
||
flowFusePerformed = true;
|
||
}
|
||
|
||
// Apply corrections to quaternion, position and velocity states across several time steps to reduce 10Hz pulsing in the output
|
||
if (flowUpdateCount < flowUpdateCountMax) {
|
||
flowUpdateCount ++;
|
||
for (uint8_t i = 0; i <= 9; i++) {
|
||
states[i] += flowIncrStateDelta[i];
|
||
}
|
||
}
|
||
// stop the performance timer
|
||
hal.util->perf_end(_perf_FuseOptFlow);
|
||
}
|
||
|
||
// select fusion of true airspeed measurements
|
||
void NavEKF::SelectTasFusion()
|
||
{
|
||
// get true airspeed measurement
|
||
readAirSpdData();
|
||
|
||
// If we haven't received airspeed data for a while, then declare the airspeed data as being timed out
|
||
if (imuSampleTime_ms - lastAirspeedUpdate > tasRetryTime) {
|
||
tasTimeout = true;
|
||
}
|
||
|
||
// if the filter is initialised, wind states are not inhibited and we have data to fuse, then perform TAS fusion
|
||
tasDataWaiting = (statesInitialised && !inhibitWindStates && newDataTas);
|
||
if (tasDataWaiting)
|
||
{
|
||
// ensure that the covariance prediction is up to date before fusing data
|
||
if (!covPredStep) CovariancePrediction();
|
||
FuseAirspeed();
|
||
TASmsecPrev = imuSampleTime_ms;
|
||
tasDataWaiting = false;
|
||
newDataTas = false;
|
||
}
|
||
}
|
||
|
||
// select fusion of synthetic sideslip measurements
|
||
// synthetic sidelip fusion only works for fixed wing aircraft and relies on the average sideslip being close to zero
|
||
// it requires a stable wind for best results and should not be used for aerobatic flight with manoeuvres that induce large sidslip angles (eg knife-edge, spins, etc)
|
||
void NavEKF::SelectBetaFusion()
|
||
{
|
||
// set true when the fusion time interval has triggered
|
||
bool f_timeTrigger = ((imuSampleTime_ms - BETAmsecPrev) >= msecBetaAvg);
|
||
// set true when use of synthetic sideslip fusion is necessary because we have limited sensor data or are dead reckoning position
|
||
bool f_required = !(use_compass() && useAirspeed() && posHealth);
|
||
// set true when sideslip fusion is feasible (requires zero sideslip assumption to be valid and use of wind states)
|
||
bool f_feasible = (assume_zero_sideslip() && !inhibitWindStates);
|
||
// use synthetic sideslip fusion if feasible, required and enough time has lapsed since the last fusion
|
||
if (f_feasible && f_required && f_timeTrigger) {
|
||
// ensure that the covariance prediction is up to date before fusing data
|
||
if (!covPredStep) CovariancePrediction();
|
||
FuseSideslip();
|
||
BETAmsecPrev = imuSampleTime_ms;
|
||
}
|
||
}
|
||
|
||
// update the quaternion, velocity and position states using IMU measurements
|
||
void NavEKF::UpdateStrapdownEquationsNED()
|
||
{
|
||
Vector3f delVelNav; // delta velocity vector calculated using a blend of IMU1 and IMU2 data
|
||
Vector3f delVelNav1; // delta velocity vector calculated using IMU1 data
|
||
Vector3f delVelNav2; // delta velocity vector calculated using IMU2 data
|
||
|
||
// remove sensor bias errors
|
||
correctedDelAng = dAngIMU - state.gyro_bias;
|
||
correctedDelVel1 = dVelIMU1;
|
||
correctedDelVel2 = dVelIMU2;
|
||
correctedDelVel1.z -= state.accel_zbias1;
|
||
correctedDelVel2.z -= state.accel_zbias2;
|
||
|
||
// use weighted average of both IMU units for delta velocities
|
||
// Over-ride accelerometer blend weighting using a hard switch based on the IMU consistency and vibration monitoring checks
|
||
if (lastImuSwitchState == IMUSWITCH_IMU0) {
|
||
IMU1_weighting = 1.0f;
|
||
} else if (lastImuSwitchState == IMUSWITCH_IMU1) {
|
||
IMU1_weighting = 0.0f;
|
||
}
|
||
correctedDelVel12 = correctedDelVel1 * IMU1_weighting + correctedDelVel2 * (1.0f - IMU1_weighting);
|
||
|
||
// apply correction for earths rotation rate
|
||
// % * - and + operators have been overloaded
|
||
correctedDelAng = correctedDelAng - prevTnb * earthRateNED*dtIMUactual;
|
||
|
||
// convert the rotation vector to its equivalent quaternion
|
||
correctedDelAngQuat.from_axis_angle(correctedDelAng);
|
||
|
||
// update the quaternion states by rotating from the previous attitude through
|
||
// the delta angle rotation quaternion and normalise
|
||
state.quat *= correctedDelAngQuat;
|
||
state.quat.normalize();
|
||
|
||
// calculate the body to nav cosine matrix
|
||
Matrix3f Tbn_temp;
|
||
state.quat.rotation_matrix(Tbn_temp);
|
||
prevTnb = Tbn_temp.transposed();
|
||
|
||
// calculate earth frame delta velocity due to gravity
|
||
float delVelGravity1_z = GRAVITY_MSS*dtDelVel1;
|
||
float delVelGravity2_z = GRAVITY_MSS*dtDelVel2;
|
||
float delVelGravity_z = delVelGravity1_z * IMU1_weighting + delVelGravity2_z * (1.0f - IMU1_weighting);
|
||
|
||
// transform body delta velocities to delta velocities in the nav frame
|
||
// * and + operators have been overloaded
|
||
|
||
// blended IMU calc
|
||
delVelNav = Tbn_temp*correctedDelVel12;
|
||
delVelNav.z += delVelGravity_z;
|
||
|
||
// single IMU calcs
|
||
delVelNav1 = Tbn_temp*correctedDelVel1;
|
||
delVelNav1.z += delVelGravity1_z;
|
||
|
||
delVelNav2 = Tbn_temp*correctedDelVel2;
|
||
delVelNav2.z += delVelGravity2_z;
|
||
|
||
// calculate the rate of change of velocity (used for launch detect and other functions)
|
||
velDotNED = delVelNav / dtIMUactual;
|
||
|
||
// apply a first order lowpass filter
|
||
velDotNEDfilt = velDotNED * 0.05f + velDotNEDfilt * 0.95f;
|
||
|
||
// calculate a magnitude of the filtered nav acceleration (required for GPS
|
||
// variance estimation)
|
||
accNavMag = velDotNEDfilt.length();
|
||
accNavMagHoriz = pythagorous2(velDotNEDfilt.x , velDotNEDfilt.y);
|
||
|
||
// save velocity for use in trapezoidal intergration for position calcuation
|
||
Vector3f lastVelocity = state.velocity;
|
||
Vector3f lastVel1 = state.vel1;
|
||
Vector3f lastVel2 = state.vel2;
|
||
|
||
// sum delta velocities to get velocity
|
||
state.velocity += delVelNav;
|
||
state.vel1 += delVelNav1;
|
||
state.vel2 += delVelNav2;
|
||
|
||
// apply a trapezoidal integration to velocities to calculate position
|
||
state.position += (state.velocity + lastVelocity) * (dtIMUactual*0.5f);
|
||
state.posD1 += (state.vel1.z + lastVel1.z) * (dtIMUactual*0.5f);
|
||
state.posD2 += (state.vel2.z + lastVel2.z) * (dtIMUactual*0.5f);
|
||
|
||
// capture current angular rate to augmented state vector for use by optical flow fusion
|
||
state.omega = correctedDelAng / dtIMUactual;
|
||
|
||
// LPF the yaw rate using a 1 second time constant yaw rate and determine if we are doing continual
|
||
// fast rotations that can cause problems due to gyro scale factor errors.
|
||
float alphaLPF = constrain_float(dtIMUactual, 0.0f, 1.0f);
|
||
yawRateFilt += (state.omega.z - yawRateFilt)*alphaLPF;
|
||
if (fabsf(yawRateFilt) > 1.0f) {
|
||
highYawRate = true;
|
||
} else {
|
||
highYawRate = false;
|
||
}
|
||
|
||
// limit states to protect against divergence
|
||
ConstrainStates();
|
||
|
||
// update vertical velocity and position states used to provide a vertical position derivative output
|
||
// using a simple complementary filter
|
||
float lastPosDownDerivative = posDownDerivative;
|
||
posDownDerivative = 2.0f * (state.position.z - posDown);
|
||
posDown += (posDownDerivative + lastPosDownDerivative + 2.0f*delVelNav.z) * (dtIMUactual*0.5f);
|
||
}
|
||
|
||
// calculate the predicted state covariance matrix
|
||
void NavEKF::CovariancePrediction()
|
||
{
|
||
hal.util->perf_begin(_perf_CovariancePrediction);
|
||
float windVelSigma; // wind velocity 1-sigma process noise - m/s
|
||
float dAngBiasSigma;// delta angle bias 1-sigma process noise - rad/s
|
||
float dVelBiasSigma;// delta velocity bias 1-sigma process noise - m/s
|
||
float magEarthSigma;// earth magnetic field 1-sigma process noise
|
||
float magBodySigma; // body magnetic field 1-sigma process noise
|
||
float daxCov; // X axis delta angle variance rad^2
|
||
float dayCov; // Y axis delta angle variance rad^2
|
||
float dazCov; // Z axis delta angle variance rad^2
|
||
float dvxCov; // X axis delta velocity variance (m/s)^2
|
||
float dvyCov; // Y axis delta velocity variance (m/s)^2
|
||
float dvzCov; // Z axis delta velocity variance (m/s)^2
|
||
float dvx; // X axis delta velocity (m/s)
|
||
float dvy; // Y axis delta velocity (m/s)
|
||
float dvz; // Z axis delta velocity (m/s)
|
||
float dax; // X axis delta angle (rad)
|
||
float day; // Y axis delta angle (rad)
|
||
float daz; // Z axis delta angle (rad)
|
||
float q0; // attitude quaternion
|
||
float q1; // attitude quaternion
|
||
float q2; // attitude quaternion
|
||
float q3; // attitude quaternion
|
||
float dax_b; // X axis delta angle measurement bias (rad)
|
||
float day_b; // Y axis delta angle measurement bias (rad)
|
||
float daz_b; // Z axis delta angle measurement bias (rad)
|
||
float dvz_b; // Z axis delta velocity measurement bias (rad)
|
||
|
||
// calculate covariance prediction process noise
|
||
// use filtered height rate to increase wind process noise when climbing or descending
|
||
// this allows for wind gradient effects.
|
||
// filter height rate using a 10 second time constant filter
|
||
float alpha = 0.1f * dt;
|
||
hgtRate = hgtRate * (1.0f - alpha) - state.velocity.z * alpha;
|
||
|
||
// use filtered height rate to increase wind process noise when climbing or descending
|
||
// this allows for wind gradient effects.
|
||
if (!inhibitWindStates) {
|
||
windVelSigma = dt * constrain_float(_windVelProcessNoise, 0.01f, 1.0f) * (1.0f + constrain_float(_wndVarHgtRateScale, 0.0f, 1.0f) * fabsf(hgtRate));
|
||
} else {
|
||
windVelSigma = 0.0f;
|
||
}
|
||
dAngBiasSigma = dt * constrain_float(_gyroBiasProcessNoise, 1e-7f, 1e-5f);
|
||
dVelBiasSigma = dt * constrain_float(_accelBiasProcessNoise, 1e-5f, 1e-3f);
|
||
if (!inhibitMagStates) {
|
||
magEarthSigma = dt * constrain_float(_magEarthProcessNoise, 1e-4f, 1e-2f);
|
||
magBodySigma = dt * constrain_float(_magBodyProcessNoise, 1e-4f, 1e-2f);
|
||
} else {
|
||
magEarthSigma = 0.0f;
|
||
magBodySigma = 0.0f;
|
||
}
|
||
for (uint8_t i= 0; i<=9; i++) processNoise[i] = 1.0e-9f;
|
||
for (uint8_t i=10; i<=12; i++) processNoise[i] = dAngBiasSigma;
|
||
// scale gyro bias noise when disarmed to allow for faster bias estimation
|
||
for (uint8_t i=10; i<=12; i++) {
|
||
processNoise[i] = dAngBiasSigma;
|
||
if (!vehicleArmed) {
|
||
processNoise[i] *= gyroBiasNoiseScaler;
|
||
}
|
||
}
|
||
// if we are yawing rapidly, inhibit yaw gyro bias learning to prevent gyro scale factor errors from corrupting the bias estimate
|
||
if (highYawRate) {
|
||
processNoise[12] = 0.0f;
|
||
P[12][12] = 0.0f;
|
||
}
|
||
// scale accel bias noise when disarmed to allow for faster bias estimation
|
||
// inhibit bias estimation during takeoff with ground effect to prevent bad bias learning
|
||
if (expectGndEffectTakeoff) {
|
||
processNoise[13] = 0.0f;
|
||
} else if (!vehicleArmed) {
|
||
processNoise[13] = dVelBiasSigma * accelBiasNoiseScaler;
|
||
} else {
|
||
processNoise[13] = dVelBiasSigma;
|
||
}
|
||
for (uint8_t i=14; i<=15; i++) processNoise[i] = windVelSigma;
|
||
for (uint8_t i=16; i<=18; i++) processNoise[i] = magEarthSigma;
|
||
for (uint8_t i=19; i<=21; i++) processNoise[i] = magBodySigma;
|
||
for (uint8_t i= 0; i<=21; i++) processNoise[i] = sq(processNoise[i]);
|
||
|
||
// set variables used to calculate covariance growth
|
||
dvx = summedDelVel.x;
|
||
dvy = summedDelVel.y;
|
||
dvz = summedDelVel.z;
|
||
dax = summedDelAng.x;
|
||
day = summedDelAng.y;
|
||
daz = summedDelAng.z;
|
||
q0 = state.quat[0];
|
||
q1 = state.quat[1];
|
||
q2 = state.quat[2];
|
||
q3 = state.quat[3];
|
||
dax_b = state.gyro_bias.x;
|
||
day_b = state.gyro_bias.y;
|
||
daz_b = state.gyro_bias.z;
|
||
dvz_b = IMU1_weighting * state.accel_zbias1 + (1.0f - IMU1_weighting) * state.accel_zbias2;
|
||
_gyrNoise = constrain_float(_gyrNoise, 1e-3f, 5e-2f);
|
||
daxCov = sq(dt*_gyrNoise);
|
||
dayCov = sq(dt*_gyrNoise);
|
||
// Account for 3% scale factor error on Z angular rate. This reduces chance of continuous fast rotations causing loss of yaw reference.
|
||
dazCov = sq(dt*_gyrNoise) + sq(dt*0.03f*yawRateFilt);
|
||
_accNoise = constrain_float(_accNoise, 5e-2f, 1.0f);
|
||
dvxCov = sq(dt*_accNoise);
|
||
dvyCov = sq(dt*_accNoise);
|
||
dvzCov = sq(dt*_accNoise);
|
||
|
||
// calculate the predicted covariance due to inertial sensor error propagation
|
||
SF[0] = dvz - dvz_b;
|
||
SF[1] = 2*q3*SF[0] + 2*dvx*q1 + 2*dvy*q2;
|
||
SF[2] = 2*dvx*q3 - 2*q1*SF[0] + 2*dvy*q0;
|
||
SF[3] = 2*q2*SF[0] + 2*dvx*q0 - 2*dvy*q3;
|
||
SF[4] = day/2 - day_b/2;
|
||
SF[5] = daz/2 - daz_b/2;
|
||
SF[6] = dax/2 - dax_b/2;
|
||
SF[7] = dax_b/2 - dax/2;
|
||
SF[8] = daz_b/2 - daz/2;
|
||
SF[9] = day_b/2 - day/2;
|
||
SF[10] = 2*q0*SF[0];
|
||
SF[11] = q1/2;
|
||
SF[12] = q2/2;
|
||
SF[13] = q3/2;
|
||
SF[14] = 2*dvy*q1;
|
||
|
||
SG[0] = q0/2;
|
||
SG[1] = sq(q3);
|
||
SG[2] = sq(q2);
|
||
SG[3] = sq(q1);
|
||
SG[4] = sq(q0);
|
||
SG[5] = 2*q2*q3;
|
||
SG[6] = 2*q1*q3;
|
||
SG[7] = 2*q1*q2;
|
||
|
||
SQ[0] = dvzCov*(SG[5] - 2*q0*q1)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvyCov*(SG[5] + 2*q0*q1)*(SG[1] - SG[2] + SG[3] - SG[4]) + dvxCov*(SG[6] - 2*q0*q2)*(SG[7] + 2*q0*q3);
|
||
SQ[1] = dvzCov*(SG[6] + 2*q0*q2)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvxCov*(SG[6] - 2*q0*q2)*(SG[1] + SG[2] - SG[3] - SG[4]) + dvyCov*(SG[5] + 2*q0*q1)*(SG[7] - 2*q0*q3);
|
||
SQ[2] = dvzCov*(SG[5] - 2*q0*q1)*(SG[6] + 2*q0*q2) - dvyCov*(SG[7] - 2*q0*q3)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvxCov*(SG[7] + 2*q0*q3)*(SG[1] + SG[2] - SG[3] - SG[4]);
|
||
SQ[3] = (dayCov*q1*SG[0])/2 - (dazCov*q1*SG[0])/2 - (daxCov*q2*q3)/4;
|
||
SQ[4] = (dazCov*q2*SG[0])/2 - (daxCov*q2*SG[0])/2 - (dayCov*q1*q3)/4;
|
||
SQ[5] = (daxCov*q3*SG[0])/2 - (dayCov*q3*SG[0])/2 - (dazCov*q1*q2)/4;
|
||
SQ[6] = (daxCov*q1*q2)/4 - (dazCov*q3*SG[0])/2 - (dayCov*q1*q2)/4;
|
||
SQ[7] = (dazCov*q1*q3)/4 - (daxCov*q1*q3)/4 - (dayCov*q2*SG[0])/2;
|
||
SQ[8] = (dayCov*q2*q3)/4 - (daxCov*q1*SG[0])/2 - (dazCov*q2*q3)/4;
|
||
SQ[9] = sq(SG[0]);
|
||
SQ[10] = sq(q1);
|
||
|
||
SPP[0] = SF[10] + SF[14] - 2*dvx*q2;
|
||
SPP[1] = 2*q2*SF[0] + 2*dvx*q0 - 2*dvy*q3;
|
||
SPP[2] = 2*dvx*q3 - 2*q1*SF[0] + 2*dvy*q0;
|
||
SPP[3] = 2*q0*q1 - 2*q2*q3;
|
||
SPP[4] = 2*q0*q2 + 2*q1*q3;
|
||
SPP[5] = sq(q0) - sq(q1) - sq(q2) + sq(q3);
|
||
SPP[6] = SF[13];
|
||
SPP[7] = SF[12];
|
||
|
||
nextP[0][0] = P[0][0] + P[1][0]*SF[7] + P[2][0]*SF[9] + P[3][0]*SF[8] + P[10][0]*SF[11] + P[11][0]*SPP[7] + P[12][0]*SPP[6] + (daxCov*SQ[10])/4 + SF[7]*(P[0][1] + P[1][1]*SF[7] + P[2][1]*SF[9] + P[3][1]*SF[8] + P[10][1]*SF[11] + P[11][1]*SPP[7] + P[12][1]*SPP[6]) + SF[9]*(P[0][2] + P[1][2]*SF[7] + P[2][2]*SF[9] + P[3][2]*SF[8] + P[10][2]*SF[11] + P[11][2]*SPP[7] + P[12][2]*SPP[6]) + SF[8]*(P[0][3] + P[1][3]*SF[7] + P[2][3]*SF[9] + P[3][3]*SF[8] + P[10][3]*SF[11] + P[11][3]*SPP[7] + P[12][3]*SPP[6]) + SF[11]*(P[0][10] + P[1][10]*SF[7] + P[2][10]*SF[9] + P[3][10]*SF[8] + P[10][10]*SF[11] + P[11][10]*SPP[7] + P[12][10]*SPP[6]) + SPP[7]*(P[0][11] + P[1][11]*SF[7] + P[2][11]*SF[9] + P[3][11]*SF[8] + P[10][11]*SF[11] + P[11][11]*SPP[7] + P[12][11]*SPP[6]) + SPP[6]*(P[0][12] + P[1][12]*SF[7] + P[2][12]*SF[9] + P[3][12]*SF[8] + P[10][12]*SF[11] + P[11][12]*SPP[7] + P[12][12]*SPP[6]) + (dayCov*sq(q2))/4 + (dazCov*sq(q3))/4;
|
||
nextP[0][1] = P[0][1] + SQ[8] + P[1][1]*SF[7] + P[2][1]*SF[9] + P[3][1]*SF[8] + P[10][1]*SF[11] + P[11][1]*SPP[7] + P[12][1]*SPP[6] + SF[6]*(P[0][0] + P[1][0]*SF[7] + P[2][0]*SF[9] + P[3][0]*SF[8] + P[10][0]*SF[11] + P[11][0]*SPP[7] + P[12][0]*SPP[6]) + SF[5]*(P[0][2] + P[1][2]*SF[7] + P[2][2]*SF[9] + P[3][2]*SF[8] + P[10][2]*SF[11] + P[11][2]*SPP[7] + P[12][2]*SPP[6]) + SF[9]*(P[0][3] + P[1][3]*SF[7] + P[2][3]*SF[9] + P[3][3]*SF[8] + P[10][3]*SF[11] + P[11][3]*SPP[7] + P[12][3]*SPP[6]) + SPP[6]*(P[0][11] + P[1][11]*SF[7] + P[2][11]*SF[9] + P[3][11]*SF[8] + P[10][11]*SF[11] + P[11][11]*SPP[7] + P[12][11]*SPP[6]) - SPP[7]*(P[0][12] + P[1][12]*SF[7] + P[2][12]*SF[9] + P[3][12]*SF[8] + P[10][12]*SF[11] + P[11][12]*SPP[7] + P[12][12]*SPP[6]) - (q0*(P[0][10] + P[1][10]*SF[7] + P[2][10]*SF[9] + P[3][10]*SF[8] + P[10][10]*SF[11] + P[11][10]*SPP[7] + P[12][10]*SPP[6]))/2;
|
||
nextP[0][2] = P[0][2] + SQ[7] + P[1][2]*SF[7] + P[2][2]*SF[9] + P[3][2]*SF[8] + P[10][2]*SF[11] + P[11][2]*SPP[7] + P[12][2]*SPP[6] + SF[4]*(P[0][0] + P[1][0]*SF[7] + P[2][0]*SF[9] + P[3][0]*SF[8] + P[10][0]*SF[11] + P[11][0]*SPP[7] + P[12][0]*SPP[6]) + SF[8]*(P[0][1] + P[1][1]*SF[7] + P[2][1]*SF[9] + P[3][1]*SF[8] + P[10][1]*SF[11] + P[11][1]*SPP[7] + P[12][1]*SPP[6]) + SF[6]*(P[0][3] + P[1][3]*SF[7] + P[2][3]*SF[9] + P[3][3]*SF[8] + P[10][3]*SF[11] + P[11][3]*SPP[7] + P[12][3]*SPP[6]) + SF[11]*(P[0][12] + P[1][12]*SF[7] + P[2][12]*SF[9] + P[3][12]*SF[8] + P[10][12]*SF[11] + P[11][12]*SPP[7] + P[12][12]*SPP[6]) - SPP[6]*(P[0][10] + P[1][10]*SF[7] + P[2][10]*SF[9] + P[3][10]*SF[8] + P[10][10]*SF[11] + P[11][10]*SPP[7] + P[12][10]*SPP[6]) - (q0*(P[0][11] + P[1][11]*SF[7] + P[2][11]*SF[9] + P[3][11]*SF[8] + P[10][11]*SF[11] + P[11][11]*SPP[7] + P[12][11]*SPP[6]))/2;
|
||
nextP[0][3] = P[0][3] + SQ[6] + P[1][3]*SF[7] + P[2][3]*SF[9] + P[3][3]*SF[8] + P[10][3]*SF[11] + P[11][3]*SPP[7] + P[12][3]*SPP[6] + SF[5]*(P[0][0] + P[1][0]*SF[7] + P[2][0]*SF[9] + P[3][0]*SF[8] + P[10][0]*SF[11] + P[11][0]*SPP[7] + P[12][0]*SPP[6]) + SF[4]*(P[0][1] + P[1][1]*SF[7] + P[2][1]*SF[9] + P[3][1]*SF[8] + P[10][1]*SF[11] + P[11][1]*SPP[7] + P[12][1]*SPP[6]) + SF[7]*(P[0][2] + P[1][2]*SF[7] + P[2][2]*SF[9] + P[3][2]*SF[8] + P[10][2]*SF[11] + P[11][2]*SPP[7] + P[12][2]*SPP[6]) - SF[11]*(P[0][11] + P[1][11]*SF[7] + P[2][11]*SF[9] + P[3][11]*SF[8] + P[10][11]*SF[11] + P[11][11]*SPP[7] + P[12][11]*SPP[6]) + SPP[7]*(P[0][10] + P[1][10]*SF[7] + P[2][10]*SF[9] + P[3][10]*SF[8] + P[10][10]*SF[11] + P[11][10]*SPP[7] + P[12][10]*SPP[6]) - (q0*(P[0][12] + P[1][12]*SF[7] + P[2][12]*SF[9] + P[3][12]*SF[8] + P[10][12]*SF[11] + P[11][12]*SPP[7] + P[12][12]*SPP[6]))/2;
|
||
nextP[0][4] = P[0][4] + P[1][4]*SF[7] + P[2][4]*SF[9] + P[3][4]*SF[8] + P[10][4]*SF[11] + P[11][4]*SPP[7] + P[12][4]*SPP[6] + SF[3]*(P[0][0] + P[1][0]*SF[7] + P[2][0]*SF[9] + P[3][0]*SF[8] + P[10][0]*SF[11] + P[11][0]*SPP[7] + P[12][0]*SPP[6]) + SF[1]*(P[0][1] + P[1][1]*SF[7] + P[2][1]*SF[9] + P[3][1]*SF[8] + P[10][1]*SF[11] + P[11][1]*SPP[7] + P[12][1]*SPP[6]) + SPP[0]*(P[0][2] + P[1][2]*SF[7] + P[2][2]*SF[9] + P[3][2]*SF[8] + P[10][2]*SF[11] + P[11][2]*SPP[7] + P[12][2]*SPP[6]) - SPP[2]*(P[0][3] + P[1][3]*SF[7] + P[2][3]*SF[9] + P[3][3]*SF[8] + P[10][3]*SF[11] + P[11][3]*SPP[7] + P[12][3]*SPP[6]) - SPP[4]*(P[0][13] + P[1][13]*SF[7] + P[2][13]*SF[9] + P[3][13]*SF[8] + P[10][13]*SF[11] + P[11][13]*SPP[7] + P[12][13]*SPP[6]);
|
||
nextP[0][5] = P[0][5] + P[1][5]*SF[7] + P[2][5]*SF[9] + P[3][5]*SF[8] + P[10][5]*SF[11] + P[11][5]*SPP[7] + P[12][5]*SPP[6] + SF[2]*(P[0][0] + P[1][0]*SF[7] + P[2][0]*SF[9] + P[3][0]*SF[8] + P[10][0]*SF[11] + P[11][0]*SPP[7] + P[12][0]*SPP[6]) + SF[1]*(P[0][2] + P[1][2]*SF[7] + P[2][2]*SF[9] + P[3][2]*SF[8] + P[10][2]*SF[11] + P[11][2]*SPP[7] + P[12][2]*SPP[6]) + SF[3]*(P[0][3] + P[1][3]*SF[7] + P[2][3]*SF[9] + P[3][3]*SF[8] + P[10][3]*SF[11] + P[11][3]*SPP[7] + P[12][3]*SPP[6]) - SPP[0]*(P[0][1] + P[1][1]*SF[7] + P[2][1]*SF[9] + P[3][1]*SF[8] + P[10][1]*SF[11] + P[11][1]*SPP[7] + P[12][1]*SPP[6]) + SPP[3]*(P[0][13] + P[1][13]*SF[7] + P[2][13]*SF[9] + P[3][13]*SF[8] + P[10][13]*SF[11] + P[11][13]*SPP[7] + P[12][13]*SPP[6]);
|
||
nextP[0][6] = P[0][6] + P[1][6]*SF[7] + P[2][6]*SF[9] + P[3][6]*SF[8] + P[10][6]*SF[11] + P[11][6]*SPP[7] + P[12][6]*SPP[6] + SF[2]*(P[0][1] + P[1][1]*SF[7] + P[2][1]*SF[9] + P[3][1]*SF[8] + P[10][1]*SF[11] + P[11][1]*SPP[7] + P[12][1]*SPP[6]) + SF[1]*(P[0][3] + P[1][3]*SF[7] + P[2][3]*SF[9] + P[3][3]*SF[8] + P[10][3]*SF[11] + P[11][3]*SPP[7] + P[12][3]*SPP[6]) + SPP[0]*(P[0][0] + P[1][0]*SF[7] + P[2][0]*SF[9] + P[3][0]*SF[8] + P[10][0]*SF[11] + P[11][0]*SPP[7] + P[12][0]*SPP[6]) - SPP[1]*(P[0][2] + P[1][2]*SF[7] + P[2][2]*SF[9] + P[3][2]*SF[8] + P[10][2]*SF[11] + P[11][2]*SPP[7] + P[12][2]*SPP[6]) - (sq(q0) - sq(q1) - sq(q2) + sq(q3))*(P[0][13] + P[1][13]*SF[7] + P[2][13]*SF[9] + P[3][13]*SF[8] + P[10][13]*SF[11] + P[11][13]*SPP[7] + P[12][13]*SPP[6]);
|
||
nextP[0][7] = P[0][7] + P[1][7]*SF[7] + P[2][7]*SF[9] + P[3][7]*SF[8] + P[10][7]*SF[11] + P[11][7]*SPP[7] + P[12][7]*SPP[6] + dt*(P[0][4] + P[1][4]*SF[7] + P[2][4]*SF[9] + P[3][4]*SF[8] + P[10][4]*SF[11] + P[11][4]*SPP[7] + P[12][4]*SPP[6]);
|
||
nextP[0][8] = P[0][8] + P[1][8]*SF[7] + P[2][8]*SF[9] + P[3][8]*SF[8] + P[10][8]*SF[11] + P[11][8]*SPP[7] + P[12][8]*SPP[6] + dt*(P[0][5] + P[1][5]*SF[7] + P[2][5]*SF[9] + P[3][5]*SF[8] + P[10][5]*SF[11] + P[11][5]*SPP[7] + P[12][5]*SPP[6]);
|
||
nextP[0][9] = P[0][9] + P[1][9]*SF[7] + P[2][9]*SF[9] + P[3][9]*SF[8] + P[10][9]*SF[11] + P[11][9]*SPP[7] + P[12][9]*SPP[6] + dt*(P[0][6] + P[1][6]*SF[7] + P[2][6]*SF[9] + P[3][6]*SF[8] + P[10][6]*SF[11] + P[11][6]*SPP[7] + P[12][6]*SPP[6]);
|
||
nextP[0][10] = P[0][10] + P[1][10]*SF[7] + P[2][10]*SF[9] + P[3][10]*SF[8] + P[10][10]*SF[11] + P[11][10]*SPP[7] + P[12][10]*SPP[6];
|
||
nextP[0][11] = P[0][11] + P[1][11]*SF[7] + P[2][11]*SF[9] + P[3][11]*SF[8] + P[10][11]*SF[11] + P[11][11]*SPP[7] + P[12][11]*SPP[6];
|
||
nextP[0][12] = P[0][12] + P[1][12]*SF[7] + P[2][12]*SF[9] + P[3][12]*SF[8] + P[10][12]*SF[11] + P[11][12]*SPP[7] + P[12][12]*SPP[6];
|
||
nextP[0][13] = P[0][13] + P[1][13]*SF[7] + P[2][13]*SF[9] + P[3][13]*SF[8] + P[10][13]*SF[11] + P[11][13]*SPP[7] + P[12][13]*SPP[6];
|
||
nextP[0][14] = P[0][14] + P[1][14]*SF[7] + P[2][14]*SF[9] + P[3][14]*SF[8] + P[10][14]*SF[11] + P[11][14]*SPP[7] + P[12][14]*SPP[6];
|
||
nextP[0][15] = P[0][15] + P[1][15]*SF[7] + P[2][15]*SF[9] + P[3][15]*SF[8] + P[10][15]*SF[11] + P[11][15]*SPP[7] + P[12][15]*SPP[6];
|
||
nextP[0][16] = P[0][16] + P[1][16]*SF[7] + P[2][16]*SF[9] + P[3][16]*SF[8] + P[10][16]*SF[11] + P[11][16]*SPP[7] + P[12][16]*SPP[6];
|
||
nextP[0][17] = P[0][17] + P[1][17]*SF[7] + P[2][17]*SF[9] + P[3][17]*SF[8] + P[10][17]*SF[11] + P[11][17]*SPP[7] + P[12][17]*SPP[6];
|
||
nextP[0][18] = P[0][18] + P[1][18]*SF[7] + P[2][18]*SF[9] + P[3][18]*SF[8] + P[10][18]*SF[11] + P[11][18]*SPP[7] + P[12][18]*SPP[6];
|
||
nextP[0][19] = P[0][19] + P[1][19]*SF[7] + P[2][19]*SF[9] + P[3][19]*SF[8] + P[10][19]*SF[11] + P[11][19]*SPP[7] + P[12][19]*SPP[6];
|
||
nextP[0][20] = P[0][20] + P[1][20]*SF[7] + P[2][20]*SF[9] + P[3][20]*SF[8] + P[10][20]*SF[11] + P[11][20]*SPP[7] + P[12][20]*SPP[6];
|
||
nextP[0][21] = P[0][21] + P[1][21]*SF[7] + P[2][21]*SF[9] + P[3][21]*SF[8] + P[10][21]*SF[11] + P[11][21]*SPP[7] + P[12][21]*SPP[6];
|
||
nextP[1][0] = P[1][0] + SQ[8] + P[0][0]*SF[6] + P[2][0]*SF[5] + P[3][0]*SF[9] + P[11][0]*SPP[6] - P[12][0]*SPP[7] - (P[10][0]*q0)/2 + SF[7]*(P[1][1] + P[0][1]*SF[6] + P[2][1]*SF[5] + P[3][1]*SF[9] + P[11][1]*SPP[6] - P[12][1]*SPP[7] - (P[10][1]*q0)/2) + SF[9]*(P[1][2] + P[0][2]*SF[6] + P[2][2]*SF[5] + P[3][2]*SF[9] + P[11][2]*SPP[6] - P[12][2]*SPP[7] - (P[10][2]*q0)/2) + SF[8]*(P[1][3] + P[0][3]*SF[6] + P[2][3]*SF[5] + P[3][3]*SF[9] + P[11][3]*SPP[6] - P[12][3]*SPP[7] - (P[10][3]*q0)/2) + SF[11]*(P[1][10] + P[0][10]*SF[6] + P[2][10]*SF[5] + P[3][10]*SF[9] + P[11][10]*SPP[6] - P[12][10]*SPP[7] - (P[10][10]*q0)/2) + SPP[7]*(P[1][11] + P[0][11]*SF[6] + P[2][11]*SF[5] + P[3][11]*SF[9] + P[11][11]*SPP[6] - P[12][11]*SPP[7] - (P[10][11]*q0)/2) + SPP[6]*(P[1][12] + P[0][12]*SF[6] + P[2][12]*SF[5] + P[3][12]*SF[9] + P[11][12]*SPP[6] - P[12][12]*SPP[7] - (P[10][12]*q0)/2);
|
||
nextP[1][1] = P[1][1] + P[0][1]*SF[6] + P[2][1]*SF[5] + P[3][1]*SF[9] + P[11][1]*SPP[6] - P[12][1]*SPP[7] + daxCov*SQ[9] - (P[10][1]*q0)/2 + SF[6]*(P[1][0] + P[0][0]*SF[6] + P[2][0]*SF[5] + P[3][0]*SF[9] + P[11][0]*SPP[6] - P[12][0]*SPP[7] - (P[10][0]*q0)/2) + SF[5]*(P[1][2] + P[0][2]*SF[6] + P[2][2]*SF[5] + P[3][2]*SF[9] + P[11][2]*SPP[6] - P[12][2]*SPP[7] - (P[10][2]*q0)/2) + SF[9]*(P[1][3] + P[0][3]*SF[6] + P[2][3]*SF[5] + P[3][3]*SF[9] + P[11][3]*SPP[6] - P[12][3]*SPP[7] - (P[10][3]*q0)/2) + SPP[6]*(P[1][11] + P[0][11]*SF[6] + P[2][11]*SF[5] + P[3][11]*SF[9] + P[11][11]*SPP[6] - P[12][11]*SPP[7] - (P[10][11]*q0)/2) - SPP[7]*(P[1][12] + P[0][12]*SF[6] + P[2][12]*SF[5] + P[3][12]*SF[9] + P[11][12]*SPP[6] - P[12][12]*SPP[7] - (P[10][12]*q0)/2) + (dayCov*sq(q3))/4 + (dazCov*sq(q2))/4 - (q0*(P[1][10] + P[0][10]*SF[6] + P[2][10]*SF[5] + P[3][10]*SF[9] + P[11][10]*SPP[6] - P[12][10]*SPP[7] - (P[10][10]*q0)/2))/2;
|
||
nextP[1][2] = P[1][2] + SQ[5] + P[0][2]*SF[6] + P[2][2]*SF[5] + P[3][2]*SF[9] + P[11][2]*SPP[6] - P[12][2]*SPP[7] - (P[10][2]*q0)/2 + SF[4]*(P[1][0] + P[0][0]*SF[6] + P[2][0]*SF[5] + P[3][0]*SF[9] + P[11][0]*SPP[6] - P[12][0]*SPP[7] - (P[10][0]*q0)/2) + SF[8]*(P[1][1] + P[0][1]*SF[6] + P[2][1]*SF[5] + P[3][1]*SF[9] + P[11][1]*SPP[6] - P[12][1]*SPP[7] - (P[10][1]*q0)/2) + SF[6]*(P[1][3] + P[0][3]*SF[6] + P[2][3]*SF[5] + P[3][3]*SF[9] + P[11][3]*SPP[6] - P[12][3]*SPP[7] - (P[10][3]*q0)/2) + SF[11]*(P[1][12] + P[0][12]*SF[6] + P[2][12]*SF[5] + P[3][12]*SF[9] + P[11][12]*SPP[6] - P[12][12]*SPP[7] - (P[10][12]*q0)/2) - SPP[6]*(P[1][10] + P[0][10]*SF[6] + P[2][10]*SF[5] + P[3][10]*SF[9] + P[11][10]*SPP[6] - P[12][10]*SPP[7] - (P[10][10]*q0)/2) - (q0*(P[1][11] + P[0][11]*SF[6] + P[2][11]*SF[5] + P[3][11]*SF[9] + P[11][11]*SPP[6] - P[12][11]*SPP[7] - (P[10][11]*q0)/2))/2;
|
||
nextP[1][3] = P[1][3] + SQ[4] + P[0][3]*SF[6] + P[2][3]*SF[5] + P[3][3]*SF[9] + P[11][3]*SPP[6] - P[12][3]*SPP[7] - (P[10][3]*q0)/2 + SF[5]*(P[1][0] + P[0][0]*SF[6] + P[2][0]*SF[5] + P[3][0]*SF[9] + P[11][0]*SPP[6] - P[12][0]*SPP[7] - (P[10][0]*q0)/2) + SF[4]*(P[1][1] + P[0][1]*SF[6] + P[2][1]*SF[5] + P[3][1]*SF[9] + P[11][1]*SPP[6] - P[12][1]*SPP[7] - (P[10][1]*q0)/2) + SF[7]*(P[1][2] + P[0][2]*SF[6] + P[2][2]*SF[5] + P[3][2]*SF[9] + P[11][2]*SPP[6] - P[12][2]*SPP[7] - (P[10][2]*q0)/2) - SF[11]*(P[1][11] + P[0][11]*SF[6] + P[2][11]*SF[5] + P[3][11]*SF[9] + P[11][11]*SPP[6] - P[12][11]*SPP[7] - (P[10][11]*q0)/2) + SPP[7]*(P[1][10] + P[0][10]*SF[6] + P[2][10]*SF[5] + P[3][10]*SF[9] + P[11][10]*SPP[6] - P[12][10]*SPP[7] - (P[10][10]*q0)/2) - (q0*(P[1][12] + P[0][12]*SF[6] + P[2][12]*SF[5] + P[3][12]*SF[9] + P[11][12]*SPP[6] - P[12][12]*SPP[7] - (P[10][12]*q0)/2))/2;
|
||
nextP[1][4] = P[1][4] + P[0][4]*SF[6] + P[2][4]*SF[5] + P[3][4]*SF[9] + P[11][4]*SPP[6] - P[12][4]*SPP[7] - (P[10][4]*q0)/2 + SF[3]*(P[1][0] + P[0][0]*SF[6] + P[2][0]*SF[5] + P[3][0]*SF[9] + P[11][0]*SPP[6] - P[12][0]*SPP[7] - (P[10][0]*q0)/2) + SF[1]*(P[1][1] + P[0][1]*SF[6] + P[2][1]*SF[5] + P[3][1]*SF[9] + P[11][1]*SPP[6] - P[12][1]*SPP[7] - (P[10][1]*q0)/2) + SPP[0]*(P[1][2] + P[0][2]*SF[6] + P[2][2]*SF[5] + P[3][2]*SF[9] + P[11][2]*SPP[6] - P[12][2]*SPP[7] - (P[10][2]*q0)/2) - SPP[2]*(P[1][3] + P[0][3]*SF[6] + P[2][3]*SF[5] + P[3][3]*SF[9] + P[11][3]*SPP[6] - P[12][3]*SPP[7] - (P[10][3]*q0)/2) - SPP[4]*(P[1][13] + P[0][13]*SF[6] + P[2][13]*SF[5] + P[3][13]*SF[9] + P[11][13]*SPP[6] - P[12][13]*SPP[7] - (P[10][13]*q0)/2);
|
||
nextP[1][5] = P[1][5] + P[0][5]*SF[6] + P[2][5]*SF[5] + P[3][5]*SF[9] + P[11][5]*SPP[6] - P[12][5]*SPP[7] - (P[10][5]*q0)/2 + SF[2]*(P[1][0] + P[0][0]*SF[6] + P[2][0]*SF[5] + P[3][0]*SF[9] + P[11][0]*SPP[6] - P[12][0]*SPP[7] - (P[10][0]*q0)/2) + SF[1]*(P[1][2] + P[0][2]*SF[6] + P[2][2]*SF[5] + P[3][2]*SF[9] + P[11][2]*SPP[6] - P[12][2]*SPP[7] - (P[10][2]*q0)/2) + SF[3]*(P[1][3] + P[0][3]*SF[6] + P[2][3]*SF[5] + P[3][3]*SF[9] + P[11][3]*SPP[6] - P[12][3]*SPP[7] - (P[10][3]*q0)/2) - SPP[0]*(P[1][1] + P[0][1]*SF[6] + P[2][1]*SF[5] + P[3][1]*SF[9] + P[11][1]*SPP[6] - P[12][1]*SPP[7] - (P[10][1]*q0)/2) + SPP[3]*(P[1][13] + P[0][13]*SF[6] + P[2][13]*SF[5] + P[3][13]*SF[9] + P[11][13]*SPP[6] - P[12][13]*SPP[7] - (P[10][13]*q0)/2);
|
||
nextP[1][6] = P[1][6] + P[0][6]*SF[6] + P[2][6]*SF[5] + P[3][6]*SF[9] + P[11][6]*SPP[6] - P[12][6]*SPP[7] - (P[10][6]*q0)/2 + SF[2]*(P[1][1] + P[0][1]*SF[6] + P[2][1]*SF[5] + P[3][1]*SF[9] + P[11][1]*SPP[6] - P[12][1]*SPP[7] - (P[10][1]*q0)/2) + SF[1]*(P[1][3] + P[0][3]*SF[6] + P[2][3]*SF[5] + P[3][3]*SF[9] + P[11][3]*SPP[6] - P[12][3]*SPP[7] - (P[10][3]*q0)/2) + SPP[0]*(P[1][0] + P[0][0]*SF[6] + P[2][0]*SF[5] + P[3][0]*SF[9] + P[11][0]*SPP[6] - P[12][0]*SPP[7] - (P[10][0]*q0)/2) - SPP[1]*(P[1][2] + P[0][2]*SF[6] + P[2][2]*SF[5] + P[3][2]*SF[9] + P[11][2]*SPP[6] - P[12][2]*SPP[7] - (P[10][2]*q0)/2) - (sq(q0) - sq(q1) - sq(q2) + sq(q3))*(P[1][13] + P[0][13]*SF[6] + P[2][13]*SF[5] + P[3][13]*SF[9] + P[11][13]*SPP[6] - P[12][13]*SPP[7] - (P[10][13]*q0)/2);
|
||
nextP[1][7] = P[1][7] + P[0][7]*SF[6] + P[2][7]*SF[5] + P[3][7]*SF[9] + P[11][7]*SPP[6] - P[12][7]*SPP[7] - (P[10][7]*q0)/2 + dt*(P[1][4] + P[0][4]*SF[6] + P[2][4]*SF[5] + P[3][4]*SF[9] + P[11][4]*SPP[6] - P[12][4]*SPP[7] - (P[10][4]*q0)/2);
|
||
nextP[1][8] = P[1][8] + P[0][8]*SF[6] + P[2][8]*SF[5] + P[3][8]*SF[9] + P[11][8]*SPP[6] - P[12][8]*SPP[7] - (P[10][8]*q0)/2 + dt*(P[1][5] + P[0][5]*SF[6] + P[2][5]*SF[5] + P[3][5]*SF[9] + P[11][5]*SPP[6] - P[12][5]*SPP[7] - (P[10][5]*q0)/2);
|
||
nextP[1][9] = P[1][9] + P[0][9]*SF[6] + P[2][9]*SF[5] + P[3][9]*SF[9] + P[11][9]*SPP[6] - P[12][9]*SPP[7] - (P[10][9]*q0)/2 + dt*(P[1][6] + P[0][6]*SF[6] + P[2][6]*SF[5] + P[3][6]*SF[9] + P[11][6]*SPP[6] - P[12][6]*SPP[7] - (P[10][6]*q0)/2);
|
||
nextP[1][10] = P[1][10] + P[0][10]*SF[6] + P[2][10]*SF[5] + P[3][10]*SF[9] + P[11][10]*SPP[6] - P[12][10]*SPP[7] - (P[10][10]*q0)/2;
|
||
nextP[1][11] = P[1][11] + P[0][11]*SF[6] + P[2][11]*SF[5] + P[3][11]*SF[9] + P[11][11]*SPP[6] - P[12][11]*SPP[7] - (P[10][11]*q0)/2;
|
||
nextP[1][12] = P[1][12] + P[0][12]*SF[6] + P[2][12]*SF[5] + P[3][12]*SF[9] + P[11][12]*SPP[6] - P[12][12]*SPP[7] - (P[10][12]*q0)/2;
|
||
nextP[1][13] = P[1][13] + P[0][13]*SF[6] + P[2][13]*SF[5] + P[3][13]*SF[9] + P[11][13]*SPP[6] - P[12][13]*SPP[7] - (P[10][13]*q0)/2;
|
||
nextP[1][14] = P[1][14] + P[0][14]*SF[6] + P[2][14]*SF[5] + P[3][14]*SF[9] + P[11][14]*SPP[6] - P[12][14]*SPP[7] - (P[10][14]*q0)/2;
|
||
nextP[1][15] = P[1][15] + P[0][15]*SF[6] + P[2][15]*SF[5] + P[3][15]*SF[9] + P[11][15]*SPP[6] - P[12][15]*SPP[7] - (P[10][15]*q0)/2;
|
||
nextP[1][16] = P[1][16] + P[0][16]*SF[6] + P[2][16]*SF[5] + P[3][16]*SF[9] + P[11][16]*SPP[6] - P[12][16]*SPP[7] - (P[10][16]*q0)/2;
|
||
nextP[1][17] = P[1][17] + P[0][17]*SF[6] + P[2][17]*SF[5] + P[3][17]*SF[9] + P[11][17]*SPP[6] - P[12][17]*SPP[7] - (P[10][17]*q0)/2;
|
||
nextP[1][18] = P[1][18] + P[0][18]*SF[6] + P[2][18]*SF[5] + P[3][18]*SF[9] + P[11][18]*SPP[6] - P[12][18]*SPP[7] - (P[10][18]*q0)/2;
|
||
nextP[1][19] = P[1][19] + P[0][19]*SF[6] + P[2][19]*SF[5] + P[3][19]*SF[9] + P[11][19]*SPP[6] - P[12][19]*SPP[7] - (P[10][19]*q0)/2;
|
||
nextP[1][20] = P[1][20] + P[0][20]*SF[6] + P[2][20]*SF[5] + P[3][20]*SF[9] + P[11][20]*SPP[6] - P[12][20]*SPP[7] - (P[10][20]*q0)/2;
|
||
nextP[1][21] = P[1][21] + P[0][21]*SF[6] + P[2][21]*SF[5] + P[3][21]*SF[9] + P[11][21]*SPP[6] - P[12][21]*SPP[7] - (P[10][21]*q0)/2;
|
||
nextP[2][0] = P[2][0] + SQ[7] + P[0][0]*SF[4] + P[1][0]*SF[8] + P[3][0]*SF[6] + P[12][0]*SF[11] - P[10][0]*SPP[6] - (P[11][0]*q0)/2 + SF[7]*(P[2][1] + P[0][1]*SF[4] + P[1][1]*SF[8] + P[3][1]*SF[6] + P[12][1]*SF[11] - P[10][1]*SPP[6] - (P[11][1]*q0)/2) + SF[9]*(P[2][2] + P[0][2]*SF[4] + P[1][2]*SF[8] + P[3][2]*SF[6] + P[12][2]*SF[11] - P[10][2]*SPP[6] - (P[11][2]*q0)/2) + SF[8]*(P[2][3] + P[0][3]*SF[4] + P[1][3]*SF[8] + P[3][3]*SF[6] + P[12][3]*SF[11] - P[10][3]*SPP[6] - (P[11][3]*q0)/2) + SF[11]*(P[2][10] + P[0][10]*SF[4] + P[1][10]*SF[8] + P[3][10]*SF[6] + P[12][10]*SF[11] - P[10][10]*SPP[6] - (P[11][10]*q0)/2) + SPP[7]*(P[2][11] + P[0][11]*SF[4] + P[1][11]*SF[8] + P[3][11]*SF[6] + P[12][11]*SF[11] - P[10][11]*SPP[6] - (P[11][11]*q0)/2) + SPP[6]*(P[2][12] + P[0][12]*SF[4] + P[1][12]*SF[8] + P[3][12]*SF[6] + P[12][12]*SF[11] - P[10][12]*SPP[6] - (P[11][12]*q0)/2);
|
||
nextP[2][1] = P[2][1] + SQ[5] + P[0][1]*SF[4] + P[1][1]*SF[8] + P[3][1]*SF[6] + P[12][1]*SF[11] - P[10][1]*SPP[6] - (P[11][1]*q0)/2 + SF[6]*(P[2][0] + P[0][0]*SF[4] + P[1][0]*SF[8] + P[3][0]*SF[6] + P[12][0]*SF[11] - P[10][0]*SPP[6] - (P[11][0]*q0)/2) + SF[5]*(P[2][2] + P[0][2]*SF[4] + P[1][2]*SF[8] + P[3][2]*SF[6] + P[12][2]*SF[11] - P[10][2]*SPP[6] - (P[11][2]*q0)/2) + SF[9]*(P[2][3] + P[0][3]*SF[4] + P[1][3]*SF[8] + P[3][3]*SF[6] + P[12][3]*SF[11] - P[10][3]*SPP[6] - (P[11][3]*q0)/2) + SPP[6]*(P[2][11] + P[0][11]*SF[4] + P[1][11]*SF[8] + P[3][11]*SF[6] + P[12][11]*SF[11] - P[10][11]*SPP[6] - (P[11][11]*q0)/2) - SPP[7]*(P[2][12] + P[0][12]*SF[4] + P[1][12]*SF[8] + P[3][12]*SF[6] + P[12][12]*SF[11] - P[10][12]*SPP[6] - (P[11][12]*q0)/2) - (q0*(P[2][10] + P[0][10]*SF[4] + P[1][10]*SF[8] + P[3][10]*SF[6] + P[12][10]*SF[11] - P[10][10]*SPP[6] - (P[11][10]*q0)/2))/2;
|
||
nextP[2][2] = P[2][2] + P[0][2]*SF[4] + P[1][2]*SF[8] + P[3][2]*SF[6] + P[12][2]*SF[11] - P[10][2]*SPP[6] + dayCov*SQ[9] + (dazCov*SQ[10])/4 - (P[11][2]*q0)/2 + SF[4]*(P[2][0] + P[0][0]*SF[4] + P[1][0]*SF[8] + P[3][0]*SF[6] + P[12][0]*SF[11] - P[10][0]*SPP[6] - (P[11][0]*q0)/2) + SF[8]*(P[2][1] + P[0][1]*SF[4] + P[1][1]*SF[8] + P[3][1]*SF[6] + P[12][1]*SF[11] - P[10][1]*SPP[6] - (P[11][1]*q0)/2) + SF[6]*(P[2][3] + P[0][3]*SF[4] + P[1][3]*SF[8] + P[3][3]*SF[6] + P[12][3]*SF[11] - P[10][3]*SPP[6] - (P[11][3]*q0)/2) + SF[11]*(P[2][12] + P[0][12]*SF[4] + P[1][12]*SF[8] + P[3][12]*SF[6] + P[12][12]*SF[11] - P[10][12]*SPP[6] - (P[11][12]*q0)/2) - SPP[6]*(P[2][10] + P[0][10]*SF[4] + P[1][10]*SF[8] + P[3][10]*SF[6] + P[12][10]*SF[11] - P[10][10]*SPP[6] - (P[11][10]*q0)/2) + (daxCov*sq(q3))/4 - (q0*(P[2][11] + P[0][11]*SF[4] + P[1][11]*SF[8] + P[3][11]*SF[6] + P[12][11]*SF[11] - P[10][11]*SPP[6] - (P[11][11]*q0)/2))/2;
|
||
nextP[2][3] = P[2][3] + SQ[3] + P[0][3]*SF[4] + P[1][3]*SF[8] + P[3][3]*SF[6] + P[12][3]*SF[11] - P[10][3]*SPP[6] - (P[11][3]*q0)/2 + SF[5]*(P[2][0] + P[0][0]*SF[4] + P[1][0]*SF[8] + P[3][0]*SF[6] + P[12][0]*SF[11] - P[10][0]*SPP[6] - (P[11][0]*q0)/2) + SF[4]*(P[2][1] + P[0][1]*SF[4] + P[1][1]*SF[8] + P[3][1]*SF[6] + P[12][1]*SF[11] - P[10][1]*SPP[6] - (P[11][1]*q0)/2) + SF[7]*(P[2][2] + P[0][2]*SF[4] + P[1][2]*SF[8] + P[3][2]*SF[6] + P[12][2]*SF[11] - P[10][2]*SPP[6] - (P[11][2]*q0)/2) - SF[11]*(P[2][11] + P[0][11]*SF[4] + P[1][11]*SF[8] + P[3][11]*SF[6] + P[12][11]*SF[11] - P[10][11]*SPP[6] - (P[11][11]*q0)/2) + SPP[7]*(P[2][10] + P[0][10]*SF[4] + P[1][10]*SF[8] + P[3][10]*SF[6] + P[12][10]*SF[11] - P[10][10]*SPP[6] - (P[11][10]*q0)/2) - (q0*(P[2][12] + P[0][12]*SF[4] + P[1][12]*SF[8] + P[3][12]*SF[6] + P[12][12]*SF[11] - P[10][12]*SPP[6] - (P[11][12]*q0)/2))/2;
|
||
nextP[2][4] = P[2][4] + P[0][4]*SF[4] + P[1][4]*SF[8] + P[3][4]*SF[6] + P[12][4]*SF[11] - P[10][4]*SPP[6] - (P[11][4]*q0)/2 + SF[3]*(P[2][0] + P[0][0]*SF[4] + P[1][0]*SF[8] + P[3][0]*SF[6] + P[12][0]*SF[11] - P[10][0]*SPP[6] - (P[11][0]*q0)/2) + SF[1]*(P[2][1] + P[0][1]*SF[4] + P[1][1]*SF[8] + P[3][1]*SF[6] + P[12][1]*SF[11] - P[10][1]*SPP[6] - (P[11][1]*q0)/2) + SPP[0]*(P[2][2] + P[0][2]*SF[4] + P[1][2]*SF[8] + P[3][2]*SF[6] + P[12][2]*SF[11] - P[10][2]*SPP[6] - (P[11][2]*q0)/2) - SPP[2]*(P[2][3] + P[0][3]*SF[4] + P[1][3]*SF[8] + P[3][3]*SF[6] + P[12][3]*SF[11] - P[10][3]*SPP[6] - (P[11][3]*q0)/2) - SPP[4]*(P[2][13] + P[0][13]*SF[4] + P[1][13]*SF[8] + P[3][13]*SF[6] + P[12][13]*SF[11] - P[10][13]*SPP[6] - (P[11][13]*q0)/2);
|
||
nextP[2][5] = P[2][5] + P[0][5]*SF[4] + P[1][5]*SF[8] + P[3][5]*SF[6] + P[12][5]*SF[11] - P[10][5]*SPP[6] - (P[11][5]*q0)/2 + SF[2]*(P[2][0] + P[0][0]*SF[4] + P[1][0]*SF[8] + P[3][0]*SF[6] + P[12][0]*SF[11] - P[10][0]*SPP[6] - (P[11][0]*q0)/2) + SF[1]*(P[2][2] + P[0][2]*SF[4] + P[1][2]*SF[8] + P[3][2]*SF[6] + P[12][2]*SF[11] - P[10][2]*SPP[6] - (P[11][2]*q0)/2) + SF[3]*(P[2][3] + P[0][3]*SF[4] + P[1][3]*SF[8] + P[3][3]*SF[6] + P[12][3]*SF[11] - P[10][3]*SPP[6] - (P[11][3]*q0)/2) - SPP[0]*(P[2][1] + P[0][1]*SF[4] + P[1][1]*SF[8] + P[3][1]*SF[6] + P[12][1]*SF[11] - P[10][1]*SPP[6] - (P[11][1]*q0)/2) + SPP[3]*(P[2][13] + P[0][13]*SF[4] + P[1][13]*SF[8] + P[3][13]*SF[6] + P[12][13]*SF[11] - P[10][13]*SPP[6] - (P[11][13]*q0)/2);
|
||
nextP[2][6] = P[2][6] + P[0][6]*SF[4] + P[1][6]*SF[8] + P[3][6]*SF[6] + P[12][6]*SF[11] - P[10][6]*SPP[6] - (P[11][6]*q0)/2 + SF[2]*(P[2][1] + P[0][1]*SF[4] + P[1][1]*SF[8] + P[3][1]*SF[6] + P[12][1]*SF[11] - P[10][1]*SPP[6] - (P[11][1]*q0)/2) + SF[1]*(P[2][3] + P[0][3]*SF[4] + P[1][3]*SF[8] + P[3][3]*SF[6] + P[12][3]*SF[11] - P[10][3]*SPP[6] - (P[11][3]*q0)/2) + SPP[0]*(P[2][0] + P[0][0]*SF[4] + P[1][0]*SF[8] + P[3][0]*SF[6] + P[12][0]*SF[11] - P[10][0]*SPP[6] - (P[11][0]*q0)/2) - SPP[1]*(P[2][2] + P[0][2]*SF[4] + P[1][2]*SF[8] + P[3][2]*SF[6] + P[12][2]*SF[11] - P[10][2]*SPP[6] - (P[11][2]*q0)/2) - (sq(q0) - sq(q1) - sq(q2) + sq(q3))*(P[2][13] + P[0][13]*SF[4] + P[1][13]*SF[8] + P[3][13]*SF[6] + P[12][13]*SF[11] - P[10][13]*SPP[6] - (P[11][13]*q0)/2);
|
||
nextP[2][7] = P[2][7] + P[0][7]*SF[4] + P[1][7]*SF[8] + P[3][7]*SF[6] + P[12][7]*SF[11] - P[10][7]*SPP[6] - (P[11][7]*q0)/2 + dt*(P[2][4] + P[0][4]*SF[4] + P[1][4]*SF[8] + P[3][4]*SF[6] + P[12][4]*SF[11] - P[10][4]*SPP[6] - (P[11][4]*q0)/2);
|
||
nextP[2][8] = P[2][8] + P[0][8]*SF[4] + P[1][8]*SF[8] + P[3][8]*SF[6] + P[12][8]*SF[11] - P[10][8]*SPP[6] - (P[11][8]*q0)/2 + dt*(P[2][5] + P[0][5]*SF[4] + P[1][5]*SF[8] + P[3][5]*SF[6] + P[12][5]*SF[11] - P[10][5]*SPP[6] - (P[11][5]*q0)/2);
|
||
nextP[2][9] = P[2][9] + P[0][9]*SF[4] + P[1][9]*SF[8] + P[3][9]*SF[6] + P[12][9]*SF[11] - P[10][9]*SPP[6] - (P[11][9]*q0)/2 + dt*(P[2][6] + P[0][6]*SF[4] + P[1][6]*SF[8] + P[3][6]*SF[6] + P[12][6]*SF[11] - P[10][6]*SPP[6] - (P[11][6]*q0)/2);
|
||
nextP[2][10] = P[2][10] + P[0][10]*SF[4] + P[1][10]*SF[8] + P[3][10]*SF[6] + P[12][10]*SF[11] - P[10][10]*SPP[6] - (P[11][10]*q0)/2;
|
||
nextP[2][11] = P[2][11] + P[0][11]*SF[4] + P[1][11]*SF[8] + P[3][11]*SF[6] + P[12][11]*SF[11] - P[10][11]*SPP[6] - (P[11][11]*q0)/2;
|
||
nextP[2][12] = P[2][12] + P[0][12]*SF[4] + P[1][12]*SF[8] + P[3][12]*SF[6] + P[12][12]*SF[11] - P[10][12]*SPP[6] - (P[11][12]*q0)/2;
|
||
nextP[2][13] = P[2][13] + P[0][13]*SF[4] + P[1][13]*SF[8] + P[3][13]*SF[6] + P[12][13]*SF[11] - P[10][13]*SPP[6] - (P[11][13]*q0)/2;
|
||
nextP[2][14] = P[2][14] + P[0][14]*SF[4] + P[1][14]*SF[8] + P[3][14]*SF[6] + P[12][14]*SF[11] - P[10][14]*SPP[6] - (P[11][14]*q0)/2;
|
||
nextP[2][15] = P[2][15] + P[0][15]*SF[4] + P[1][15]*SF[8] + P[3][15]*SF[6] + P[12][15]*SF[11] - P[10][15]*SPP[6] - (P[11][15]*q0)/2;
|
||
nextP[2][16] = P[2][16] + P[0][16]*SF[4] + P[1][16]*SF[8] + P[3][16]*SF[6] + P[12][16]*SF[11] - P[10][16]*SPP[6] - (P[11][16]*q0)/2;
|
||
nextP[2][17] = P[2][17] + P[0][17]*SF[4] + P[1][17]*SF[8] + P[3][17]*SF[6] + P[12][17]*SF[11] - P[10][17]*SPP[6] - (P[11][17]*q0)/2;
|
||
nextP[2][18] = P[2][18] + P[0][18]*SF[4] + P[1][18]*SF[8] + P[3][18]*SF[6] + P[12][18]*SF[11] - P[10][18]*SPP[6] - (P[11][18]*q0)/2;
|
||
nextP[2][19] = P[2][19] + P[0][19]*SF[4] + P[1][19]*SF[8] + P[3][19]*SF[6] + P[12][19]*SF[11] - P[10][19]*SPP[6] - (P[11][19]*q0)/2;
|
||
nextP[2][20] = P[2][20] + P[0][20]*SF[4] + P[1][20]*SF[8] + P[3][20]*SF[6] + P[12][20]*SF[11] - P[10][20]*SPP[6] - (P[11][20]*q0)/2;
|
||
nextP[2][21] = P[2][21] + P[0][21]*SF[4] + P[1][21]*SF[8] + P[3][21]*SF[6] + P[12][21]*SF[11] - P[10][21]*SPP[6] - (P[11][21]*q0)/2;
|
||
nextP[3][0] = P[3][0] + SQ[6] + P[0][0]*SF[5] + P[1][0]*SF[4] + P[2][0]*SF[7] - P[11][0]*SF[11] + P[10][0]*SPP[7] - (P[12][0]*q0)/2 + SF[7]*(P[3][1] + P[0][1]*SF[5] + P[1][1]*SF[4] + P[2][1]*SF[7] - P[11][1]*SF[11] + P[10][1]*SPP[7] - (P[12][1]*q0)/2) + SF[9]*(P[3][2] + P[0][2]*SF[5] + P[1][2]*SF[4] + P[2][2]*SF[7] - P[11][2]*SF[11] + P[10][2]*SPP[7] - (P[12][2]*q0)/2) + SF[8]*(P[3][3] + P[0][3]*SF[5] + P[1][3]*SF[4] + P[2][3]*SF[7] - P[11][3]*SF[11] + P[10][3]*SPP[7] - (P[12][3]*q0)/2) + SF[11]*(P[3][10] + P[0][10]*SF[5] + P[1][10]*SF[4] + P[2][10]*SF[7] - P[11][10]*SF[11] + P[10][10]*SPP[7] - (P[12][10]*q0)/2) + SPP[7]*(P[3][11] + P[0][11]*SF[5] + P[1][11]*SF[4] + P[2][11]*SF[7] - P[11][11]*SF[11] + P[10][11]*SPP[7] - (P[12][11]*q0)/2) + SPP[6]*(P[3][12] + P[0][12]*SF[5] + P[1][12]*SF[4] + P[2][12]*SF[7] - P[11][12]*SF[11] + P[10][12]*SPP[7] - (P[12][12]*q0)/2);
|
||
nextP[3][1] = P[3][1] + SQ[4] + P[0][1]*SF[5] + P[1][1]*SF[4] + P[2][1]*SF[7] - P[11][1]*SF[11] + P[10][1]*SPP[7] - (P[12][1]*q0)/2 + SF[6]*(P[3][0] + P[0][0]*SF[5] + P[1][0]*SF[4] + P[2][0]*SF[7] - P[11][0]*SF[11] + P[10][0]*SPP[7] - (P[12][0]*q0)/2) + SF[5]*(P[3][2] + P[0][2]*SF[5] + P[1][2]*SF[4] + P[2][2]*SF[7] - P[11][2]*SF[11] + P[10][2]*SPP[7] - (P[12][2]*q0)/2) + SF[9]*(P[3][3] + P[0][3]*SF[5] + P[1][3]*SF[4] + P[2][3]*SF[7] - P[11][3]*SF[11] + P[10][3]*SPP[7] - (P[12][3]*q0)/2) + SPP[6]*(P[3][11] + P[0][11]*SF[5] + P[1][11]*SF[4] + P[2][11]*SF[7] - P[11][11]*SF[11] + P[10][11]*SPP[7] - (P[12][11]*q0)/2) - SPP[7]*(P[3][12] + P[0][12]*SF[5] + P[1][12]*SF[4] + P[2][12]*SF[7] - P[11][12]*SF[11] + P[10][12]*SPP[7] - (P[12][12]*q0)/2) - (q0*(P[3][10] + P[0][10]*SF[5] + P[1][10]*SF[4] + P[2][10]*SF[7] - P[11][10]*SF[11] + P[10][10]*SPP[7] - (P[12][10]*q0)/2))/2;
|
||
nextP[3][2] = P[3][2] + SQ[3] + P[0][2]*SF[5] + P[1][2]*SF[4] + P[2][2]*SF[7] - P[11][2]*SF[11] + P[10][2]*SPP[7] - (P[12][2]*q0)/2 + SF[4]*(P[3][0] + P[0][0]*SF[5] + P[1][0]*SF[4] + P[2][0]*SF[7] - P[11][0]*SF[11] + P[10][0]*SPP[7] - (P[12][0]*q0)/2) + SF[8]*(P[3][1] + P[0][1]*SF[5] + P[1][1]*SF[4] + P[2][1]*SF[7] - P[11][1]*SF[11] + P[10][1]*SPP[7] - (P[12][1]*q0)/2) + SF[6]*(P[3][3] + P[0][3]*SF[5] + P[1][3]*SF[4] + P[2][3]*SF[7] - P[11][3]*SF[11] + P[10][3]*SPP[7] - (P[12][3]*q0)/2) + SF[11]*(P[3][12] + P[0][12]*SF[5] + P[1][12]*SF[4] + P[2][12]*SF[7] - P[11][12]*SF[11] + P[10][12]*SPP[7] - (P[12][12]*q0)/2) - SPP[6]*(P[3][10] + P[0][10]*SF[5] + P[1][10]*SF[4] + P[2][10]*SF[7] - P[11][10]*SF[11] + P[10][10]*SPP[7] - (P[12][10]*q0)/2) - (q0*(P[3][11] + P[0][11]*SF[5] + P[1][11]*SF[4] + P[2][11]*SF[7] - P[11][11]*SF[11] + P[10][11]*SPP[7] - (P[12][11]*q0)/2))/2;
|
||
nextP[3][3] = P[3][3] + P[0][3]*SF[5] + P[1][3]*SF[4] + P[2][3]*SF[7] - P[11][3]*SF[11] + P[10][3]*SPP[7] + (dayCov*SQ[10])/4 + dazCov*SQ[9] - (P[12][3]*q0)/2 + SF[5]*(P[3][0] + P[0][0]*SF[5] + P[1][0]*SF[4] + P[2][0]*SF[7] - P[11][0]*SF[11] + P[10][0]*SPP[7] - (P[12][0]*q0)/2) + SF[4]*(P[3][1] + P[0][1]*SF[5] + P[1][1]*SF[4] + P[2][1]*SF[7] - P[11][1]*SF[11] + P[10][1]*SPP[7] - (P[12][1]*q0)/2) + SF[7]*(P[3][2] + P[0][2]*SF[5] + P[1][2]*SF[4] + P[2][2]*SF[7] - P[11][2]*SF[11] + P[10][2]*SPP[7] - (P[12][2]*q0)/2) - SF[11]*(P[3][11] + P[0][11]*SF[5] + P[1][11]*SF[4] + P[2][11]*SF[7] - P[11][11]*SF[11] + P[10][11]*SPP[7] - (P[12][11]*q0)/2) + SPP[7]*(P[3][10] + P[0][10]*SF[5] + P[1][10]*SF[4] + P[2][10]*SF[7] - P[11][10]*SF[11] + P[10][10]*SPP[7] - (P[12][10]*q0)/2) + (daxCov*sq(q2))/4 - (q0*(P[3][12] + P[0][12]*SF[5] + P[1][12]*SF[4] + P[2][12]*SF[7] - P[11][12]*SF[11] + P[10][12]*SPP[7] - (P[12][12]*q0)/2))/2;
|
||
nextP[3][4] = P[3][4] + P[0][4]*SF[5] + P[1][4]*SF[4] + P[2][4]*SF[7] - P[11][4]*SF[11] + P[10][4]*SPP[7] - (P[12][4]*q0)/2 + SF[3]*(P[3][0] + P[0][0]*SF[5] + P[1][0]*SF[4] + P[2][0]*SF[7] - P[11][0]*SF[11] + P[10][0]*SPP[7] - (P[12][0]*q0)/2) + SF[1]*(P[3][1] + P[0][1]*SF[5] + P[1][1]*SF[4] + P[2][1]*SF[7] - P[11][1]*SF[11] + P[10][1]*SPP[7] - (P[12][1]*q0)/2) + SPP[0]*(P[3][2] + P[0][2]*SF[5] + P[1][2]*SF[4] + P[2][2]*SF[7] - P[11][2]*SF[11] + P[10][2]*SPP[7] - (P[12][2]*q0)/2) - SPP[2]*(P[3][3] + P[0][3]*SF[5] + P[1][3]*SF[4] + P[2][3]*SF[7] - P[11][3]*SF[11] + P[10][3]*SPP[7] - (P[12][3]*q0)/2) - SPP[4]*(P[3][13] + P[0][13]*SF[5] + P[1][13]*SF[4] + P[2][13]*SF[7] - P[11][13]*SF[11] + P[10][13]*SPP[7] - (P[12][13]*q0)/2);
|
||
nextP[3][5] = P[3][5] + P[0][5]*SF[5] + P[1][5]*SF[4] + P[2][5]*SF[7] - P[11][5]*SF[11] + P[10][5]*SPP[7] - (P[12][5]*q0)/2 + SF[2]*(P[3][0] + P[0][0]*SF[5] + P[1][0]*SF[4] + P[2][0]*SF[7] - P[11][0]*SF[11] + P[10][0]*SPP[7] - (P[12][0]*q0)/2) + SF[1]*(P[3][2] + P[0][2]*SF[5] + P[1][2]*SF[4] + P[2][2]*SF[7] - P[11][2]*SF[11] + P[10][2]*SPP[7] - (P[12][2]*q0)/2) + SF[3]*(P[3][3] + P[0][3]*SF[5] + P[1][3]*SF[4] + P[2][3]*SF[7] - P[11][3]*SF[11] + P[10][3]*SPP[7] - (P[12][3]*q0)/2) - SPP[0]*(P[3][1] + P[0][1]*SF[5] + P[1][1]*SF[4] + P[2][1]*SF[7] - P[11][1]*SF[11] + P[10][1]*SPP[7] - (P[12][1]*q0)/2) + SPP[3]*(P[3][13] + P[0][13]*SF[5] + P[1][13]*SF[4] + P[2][13]*SF[7] - P[11][13]*SF[11] + P[10][13]*SPP[7] - (P[12][13]*q0)/2);
|
||
nextP[3][6] = P[3][6] + P[0][6]*SF[5] + P[1][6]*SF[4] + P[2][6]*SF[7] - P[11][6]*SF[11] + P[10][6]*SPP[7] - (P[12][6]*q0)/2 + SF[2]*(P[3][1] + P[0][1]*SF[5] + P[1][1]*SF[4] + P[2][1]*SF[7] - P[11][1]*SF[11] + P[10][1]*SPP[7] - (P[12][1]*q0)/2) + SF[1]*(P[3][3] + P[0][3]*SF[5] + P[1][3]*SF[4] + P[2][3]*SF[7] - P[11][3]*SF[11] + P[10][3]*SPP[7] - (P[12][3]*q0)/2) + SPP[0]*(P[3][0] + P[0][0]*SF[5] + P[1][0]*SF[4] + P[2][0]*SF[7] - P[11][0]*SF[11] + P[10][0]*SPP[7] - (P[12][0]*q0)/2) - SPP[1]*(P[3][2] + P[0][2]*SF[5] + P[1][2]*SF[4] + P[2][2]*SF[7] - P[11][2]*SF[11] + P[10][2]*SPP[7] - (P[12][2]*q0)/2) - (sq(q0) - sq(q1) - sq(q2) + sq(q3))*(P[3][13] + P[0][13]*SF[5] + P[1][13]*SF[4] + P[2][13]*SF[7] - P[11][13]*SF[11] + P[10][13]*SPP[7] - (P[12][13]*q0)/2);
|
||
nextP[3][7] = P[3][7] + P[0][7]*SF[5] + P[1][7]*SF[4] + P[2][7]*SF[7] - P[11][7]*SF[11] + P[10][7]*SPP[7] - (P[12][7]*q0)/2 + dt*(P[3][4] + P[0][4]*SF[5] + P[1][4]*SF[4] + P[2][4]*SF[7] - P[11][4]*SF[11] + P[10][4]*SPP[7] - (P[12][4]*q0)/2);
|
||
nextP[3][8] = P[3][8] + P[0][8]*SF[5] + P[1][8]*SF[4] + P[2][8]*SF[7] - P[11][8]*SF[11] + P[10][8]*SPP[7] - (P[12][8]*q0)/2 + dt*(P[3][5] + P[0][5]*SF[5] + P[1][5]*SF[4] + P[2][5]*SF[7] - P[11][5]*SF[11] + P[10][5]*SPP[7] - (P[12][5]*q0)/2);
|
||
nextP[3][9] = P[3][9] + P[0][9]*SF[5] + P[1][9]*SF[4] + P[2][9]*SF[7] - P[11][9]*SF[11] + P[10][9]*SPP[7] - (P[12][9]*q0)/2 + dt*(P[3][6] + P[0][6]*SF[5] + P[1][6]*SF[4] + P[2][6]*SF[7] - P[11][6]*SF[11] + P[10][6]*SPP[7] - (P[12][6]*q0)/2);
|
||
nextP[3][10] = P[3][10] + P[0][10]*SF[5] + P[1][10]*SF[4] + P[2][10]*SF[7] - P[11][10]*SF[11] + P[10][10]*SPP[7] - (P[12][10]*q0)/2;
|
||
nextP[3][11] = P[3][11] + P[0][11]*SF[5] + P[1][11]*SF[4] + P[2][11]*SF[7] - P[11][11]*SF[11] + P[10][11]*SPP[7] - (P[12][11]*q0)/2;
|
||
nextP[3][12] = P[3][12] + P[0][12]*SF[5] + P[1][12]*SF[4] + P[2][12]*SF[7] - P[11][12]*SF[11] + P[10][12]*SPP[7] - (P[12][12]*q0)/2;
|
||
nextP[3][13] = P[3][13] + P[0][13]*SF[5] + P[1][13]*SF[4] + P[2][13]*SF[7] - P[11][13]*SF[11] + P[10][13]*SPP[7] - (P[12][13]*q0)/2;
|
||
nextP[3][14] = P[3][14] + P[0][14]*SF[5] + P[1][14]*SF[4] + P[2][14]*SF[7] - P[11][14]*SF[11] + P[10][14]*SPP[7] - (P[12][14]*q0)/2;
|
||
nextP[3][15] = P[3][15] + P[0][15]*SF[5] + P[1][15]*SF[4] + P[2][15]*SF[7] - P[11][15]*SF[11] + P[10][15]*SPP[7] - (P[12][15]*q0)/2;
|
||
nextP[3][16] = P[3][16] + P[0][16]*SF[5] + P[1][16]*SF[4] + P[2][16]*SF[7] - P[11][16]*SF[11] + P[10][16]*SPP[7] - (P[12][16]*q0)/2;
|
||
nextP[3][17] = P[3][17] + P[0][17]*SF[5] + P[1][17]*SF[4] + P[2][17]*SF[7] - P[11][17]*SF[11] + P[10][17]*SPP[7] - (P[12][17]*q0)/2;
|
||
nextP[3][18] = P[3][18] + P[0][18]*SF[5] + P[1][18]*SF[4] + P[2][18]*SF[7] - P[11][18]*SF[11] + P[10][18]*SPP[7] - (P[12][18]*q0)/2;
|
||
nextP[3][19] = P[3][19] + P[0][19]*SF[5] + P[1][19]*SF[4] + P[2][19]*SF[7] - P[11][19]*SF[11] + P[10][19]*SPP[7] - (P[12][19]*q0)/2;
|
||
nextP[3][20] = P[3][20] + P[0][20]*SF[5] + P[1][20]*SF[4] + P[2][20]*SF[7] - P[11][20]*SF[11] + P[10][20]*SPP[7] - (P[12][20]*q0)/2;
|
||
nextP[3][21] = P[3][21] + P[0][21]*SF[5] + P[1][21]*SF[4] + P[2][21]*SF[7] - P[11][21]*SF[11] + P[10][21]*SPP[7] - (P[12][21]*q0)/2;
|
||
nextP[4][0] = P[4][0] + P[0][0]*SF[3] + P[1][0]*SF[1] + P[2][0]*SPP[0] - P[3][0]*SPP[2] - P[13][0]*SPP[4] + SF[7]*(P[4][1] + P[0][1]*SF[3] + P[1][1]*SF[1] + P[2][1]*SPP[0] - P[3][1]*SPP[2] - P[13][1]*SPP[4]) + SF[9]*(P[4][2] + P[0][2]*SF[3] + P[1][2]*SF[1] + P[2][2]*SPP[0] - P[3][2]*SPP[2] - P[13][2]*SPP[4]) + SF[8]*(P[4][3] + P[0][3]*SF[3] + P[1][3]*SF[1] + P[2][3]*SPP[0] - P[3][3]*SPP[2] - P[13][3]*SPP[4]) + SF[11]*(P[4][10] + P[0][10]*SF[3] + P[1][10]*SF[1] + P[2][10]*SPP[0] - P[3][10]*SPP[2] - P[13][10]*SPP[4]) + SPP[7]*(P[4][11] + P[0][11]*SF[3] + P[1][11]*SF[1] + P[2][11]*SPP[0] - P[3][11]*SPP[2] - P[13][11]*SPP[4]) + SPP[6]*(P[4][12] + P[0][12]*SF[3] + P[1][12]*SF[1] + P[2][12]*SPP[0] - P[3][12]*SPP[2] - P[13][12]*SPP[4]);
|
||
nextP[4][1] = P[4][1] + P[0][1]*SF[3] + P[1][1]*SF[1] + P[2][1]*SPP[0] - P[3][1]*SPP[2] - P[13][1]*SPP[4] + SF[6]*(P[4][0] + P[0][0]*SF[3] + P[1][0]*SF[1] + P[2][0]*SPP[0] - P[3][0]*SPP[2] - P[13][0]*SPP[4]) + SF[5]*(P[4][2] + P[0][2]*SF[3] + P[1][2]*SF[1] + P[2][2]*SPP[0] - P[3][2]*SPP[2] - P[13][2]*SPP[4]) + SF[9]*(P[4][3] + P[0][3]*SF[3] + P[1][3]*SF[1] + P[2][3]*SPP[0] - P[3][3]*SPP[2] - P[13][3]*SPP[4]) + SPP[6]*(P[4][11] + P[0][11]*SF[3] + P[1][11]*SF[1] + P[2][11]*SPP[0] - P[3][11]*SPP[2] - P[13][11]*SPP[4]) - SPP[7]*(P[4][12] + P[0][12]*SF[3] + P[1][12]*SF[1] + P[2][12]*SPP[0] - P[3][12]*SPP[2] - P[13][12]*SPP[4]) - (q0*(P[4][10] + P[0][10]*SF[3] + P[1][10]*SF[1] + P[2][10]*SPP[0] - P[3][10]*SPP[2] - P[13][10]*SPP[4]))/2;
|
||
nextP[4][2] = P[4][2] + P[0][2]*SF[3] + P[1][2]*SF[1] + P[2][2]*SPP[0] - P[3][2]*SPP[2] - P[13][2]*SPP[4] + SF[4]*(P[4][0] + P[0][0]*SF[3] + P[1][0]*SF[1] + P[2][0]*SPP[0] - P[3][0]*SPP[2] - P[13][0]*SPP[4]) + SF[8]*(P[4][1] + P[0][1]*SF[3] + P[1][1]*SF[1] + P[2][1]*SPP[0] - P[3][1]*SPP[2] - P[13][1]*SPP[4]) + SF[6]*(P[4][3] + P[0][3]*SF[3] + P[1][3]*SF[1] + P[2][3]*SPP[0] - P[3][3]*SPP[2] - P[13][3]*SPP[4]) + SF[11]*(P[4][12] + P[0][12]*SF[3] + P[1][12]*SF[1] + P[2][12]*SPP[0] - P[3][12]*SPP[2] - P[13][12]*SPP[4]) - SPP[6]*(P[4][10] + P[0][10]*SF[3] + P[1][10]*SF[1] + P[2][10]*SPP[0] - P[3][10]*SPP[2] - P[13][10]*SPP[4]) - (q0*(P[4][11] + P[0][11]*SF[3] + P[1][11]*SF[1] + P[2][11]*SPP[0] - P[3][11]*SPP[2] - P[13][11]*SPP[4]))/2;
|
||
nextP[4][3] = P[4][3] + P[0][3]*SF[3] + P[1][3]*SF[1] + P[2][3]*SPP[0] - P[3][3]*SPP[2] - P[13][3]*SPP[4] + SF[5]*(P[4][0] + P[0][0]*SF[3] + P[1][0]*SF[1] + P[2][0]*SPP[0] - P[3][0]*SPP[2] - P[13][0]*SPP[4]) + SF[4]*(P[4][1] + P[0][1]*SF[3] + P[1][1]*SF[1] + P[2][1]*SPP[0] - P[3][1]*SPP[2] - P[13][1]*SPP[4]) + SF[7]*(P[4][2] + P[0][2]*SF[3] + P[1][2]*SF[1] + P[2][2]*SPP[0] - P[3][2]*SPP[2] - P[13][2]*SPP[4]) - SF[11]*(P[4][11] + P[0][11]*SF[3] + P[1][11]*SF[1] + P[2][11]*SPP[0] - P[3][11]*SPP[2] - P[13][11]*SPP[4]) + SPP[7]*(P[4][10] + P[0][10]*SF[3] + P[1][10]*SF[1] + P[2][10]*SPP[0] - P[3][10]*SPP[2] - P[13][10]*SPP[4]) - (q0*(P[4][12] + P[0][12]*SF[3] + P[1][12]*SF[1] + P[2][12]*SPP[0] - P[3][12]*SPP[2] - P[13][12]*SPP[4]))/2;
|
||
nextP[4][4] = P[4][4] + P[0][4]*SF[3] + P[1][4]*SF[1] + P[2][4]*SPP[0] - P[3][4]*SPP[2] - P[13][4]*SPP[4] + dvyCov*sq(SG[7] - 2*q0*q3) + dvzCov*sq(SG[6] + 2*q0*q2) + SF[3]*(P[4][0] + P[0][0]*SF[3] + P[1][0]*SF[1] + P[2][0]*SPP[0] - P[3][0]*SPP[2] - P[13][0]*SPP[4]) + SF[1]*(P[4][1] + P[0][1]*SF[3] + P[1][1]*SF[1] + P[2][1]*SPP[0] - P[3][1]*SPP[2] - P[13][1]*SPP[4]) + SPP[0]*(P[4][2] + P[0][2]*SF[3] + P[1][2]*SF[1] + P[2][2]*SPP[0] - P[3][2]*SPP[2] - P[13][2]*SPP[4]) - SPP[2]*(P[4][3] + P[0][3]*SF[3] + P[1][3]*SF[1] + P[2][3]*SPP[0] - P[3][3]*SPP[2] - P[13][3]*SPP[4]) - SPP[4]*(P[4][13] + P[0][13]*SF[3] + P[1][13]*SF[1] + P[2][13]*SPP[0] - P[3][13]*SPP[2] - P[13][13]*SPP[4]) + dvxCov*sq(SG[1] + SG[2] - SG[3] - SG[4]);
|
||
nextP[4][5] = P[4][5] + SQ[2] + P[0][5]*SF[3] + P[1][5]*SF[1] + P[2][5]*SPP[0] - P[3][5]*SPP[2] - P[13][5]*SPP[4] + SF[2]*(P[4][0] + P[0][0]*SF[3] + P[1][0]*SF[1] + P[2][0]*SPP[0] - P[3][0]*SPP[2] - P[13][0]*SPP[4]) + SF[1]*(P[4][2] + P[0][2]*SF[3] + P[1][2]*SF[1] + P[2][2]*SPP[0] - P[3][2]*SPP[2] - P[13][2]*SPP[4]) + SF[3]*(P[4][3] + P[0][3]*SF[3] + P[1][3]*SF[1] + P[2][3]*SPP[0] - P[3][3]*SPP[2] - P[13][3]*SPP[4]) - SPP[0]*(P[4][1] + P[0][1]*SF[3] + P[1][1]*SF[1] + P[2][1]*SPP[0] - P[3][1]*SPP[2] - P[13][1]*SPP[4]) + SPP[3]*(P[4][13] + P[0][13]*SF[3] + P[1][13]*SF[1] + P[2][13]*SPP[0] - P[3][13]*SPP[2] - P[13][13]*SPP[4]);
|
||
nextP[4][6] = P[4][6] + SQ[1] + P[0][6]*SF[3] + P[1][6]*SF[1] + P[2][6]*SPP[0] - P[3][6]*SPP[2] - P[13][6]*SPP[4] + SF[2]*(P[4][1] + P[0][1]*SF[3] + P[1][1]*SF[1] + P[2][1]*SPP[0] - P[3][1]*SPP[2] - P[13][1]*SPP[4]) + SF[1]*(P[4][3] + P[0][3]*SF[3] + P[1][3]*SF[1] + P[2][3]*SPP[0] - P[3][3]*SPP[2] - P[13][3]*SPP[4]) + SPP[0]*(P[4][0] + P[0][0]*SF[3] + P[1][0]*SF[1] + P[2][0]*SPP[0] - P[3][0]*SPP[2] - P[13][0]*SPP[4]) - SPP[1]*(P[4][2] + P[0][2]*SF[3] + P[1][2]*SF[1] + P[2][2]*SPP[0] - P[3][2]*SPP[2] - P[13][2]*SPP[4]) - (sq(q0) - sq(q1) - sq(q2) + sq(q3))*(P[4][13] + P[0][13]*SF[3] + P[1][13]*SF[1] + P[2][13]*SPP[0] - P[3][13]*SPP[2] - P[13][13]*SPP[4]);
|
||
nextP[4][7] = P[4][7] + P[0][7]*SF[3] + P[1][7]*SF[1] + P[2][7]*SPP[0] - P[3][7]*SPP[2] - P[13][7]*SPP[4] + dt*(P[4][4] + P[0][4]*SF[3] + P[1][4]*SF[1] + P[2][4]*SPP[0] - P[3][4]*SPP[2] - P[13][4]*SPP[4]);
|
||
nextP[4][8] = P[4][8] + P[0][8]*SF[3] + P[1][8]*SF[1] + P[2][8]*SPP[0] - P[3][8]*SPP[2] - P[13][8]*SPP[4] + dt*(P[4][5] + P[0][5]*SF[3] + P[1][5]*SF[1] + P[2][5]*SPP[0] - P[3][5]*SPP[2] - P[13][5]*SPP[4]);
|
||
nextP[4][9] = P[4][9] + P[0][9]*SF[3] + P[1][9]*SF[1] + P[2][9]*SPP[0] - P[3][9]*SPP[2] - P[13][9]*SPP[4] + dt*(P[4][6] + P[0][6]*SF[3] + P[1][6]*SF[1] + P[2][6]*SPP[0] - P[3][6]*SPP[2] - P[13][6]*SPP[4]);
|
||
nextP[4][10] = P[4][10] + P[0][10]*SF[3] + P[1][10]*SF[1] + P[2][10]*SPP[0] - P[3][10]*SPP[2] - P[13][10]*SPP[4];
|
||
nextP[4][11] = P[4][11] + P[0][11]*SF[3] + P[1][11]*SF[1] + P[2][11]*SPP[0] - P[3][11]*SPP[2] - P[13][11]*SPP[4];
|
||
nextP[4][12] = P[4][12] + P[0][12]*SF[3] + P[1][12]*SF[1] + P[2][12]*SPP[0] - P[3][12]*SPP[2] - P[13][12]*SPP[4];
|
||
nextP[4][13] = P[4][13] + P[0][13]*SF[3] + P[1][13]*SF[1] + P[2][13]*SPP[0] - P[3][13]*SPP[2] - P[13][13]*SPP[4];
|
||
nextP[4][14] = P[4][14] + P[0][14]*SF[3] + P[1][14]*SF[1] + P[2][14]*SPP[0] - P[3][14]*SPP[2] - P[13][14]*SPP[4];
|
||
nextP[4][15] = P[4][15] + P[0][15]*SF[3] + P[1][15]*SF[1] + P[2][15]*SPP[0] - P[3][15]*SPP[2] - P[13][15]*SPP[4];
|
||
nextP[4][16] = P[4][16] + P[0][16]*SF[3] + P[1][16]*SF[1] + P[2][16]*SPP[0] - P[3][16]*SPP[2] - P[13][16]*SPP[4];
|
||
nextP[4][17] = P[4][17] + P[0][17]*SF[3] + P[1][17]*SF[1] + P[2][17]*SPP[0] - P[3][17]*SPP[2] - P[13][17]*SPP[4];
|
||
nextP[4][18] = P[4][18] + P[0][18]*SF[3] + P[1][18]*SF[1] + P[2][18]*SPP[0] - P[3][18]*SPP[2] - P[13][18]*SPP[4];
|
||
nextP[4][19] = P[4][19] + P[0][19]*SF[3] + P[1][19]*SF[1] + P[2][19]*SPP[0] - P[3][19]*SPP[2] - P[13][19]*SPP[4];
|
||
nextP[4][20] = P[4][20] + P[0][20]*SF[3] + P[1][20]*SF[1] + P[2][20]*SPP[0] - P[3][20]*SPP[2] - P[13][20]*SPP[4];
|
||
nextP[4][21] = P[4][21] + P[0][21]*SF[3] + P[1][21]*SF[1] + P[2][21]*SPP[0] - P[3][21]*SPP[2] - P[13][21]*SPP[4];
|
||
nextP[5][0] = P[5][0] + P[0][0]*SF[2] + P[2][0]*SF[1] + P[3][0]*SF[3] - P[1][0]*SPP[0] + P[13][0]*SPP[3] + SF[7]*(P[5][1] + P[0][1]*SF[2] + P[2][1]*SF[1] + P[3][1]*SF[3] - P[1][1]*SPP[0] + P[13][1]*SPP[3]) + SF[9]*(P[5][2] + P[0][2]*SF[2] + P[2][2]*SF[1] + P[3][2]*SF[3] - P[1][2]*SPP[0] + P[13][2]*SPP[3]) + SF[8]*(P[5][3] + P[0][3]*SF[2] + P[2][3]*SF[1] + P[3][3]*SF[3] - P[1][3]*SPP[0] + P[13][3]*SPP[3]) + SF[11]*(P[5][10] + P[0][10]*SF[2] + P[2][10]*SF[1] + P[3][10]*SF[3] - P[1][10]*SPP[0] + P[13][10]*SPP[3]) + SPP[7]*(P[5][11] + P[0][11]*SF[2] + P[2][11]*SF[1] + P[3][11]*SF[3] - P[1][11]*SPP[0] + P[13][11]*SPP[3]) + SPP[6]*(P[5][12] + P[0][12]*SF[2] + P[2][12]*SF[1] + P[3][12]*SF[3] - P[1][12]*SPP[0] + P[13][12]*SPP[3]);
|
||
nextP[5][1] = P[5][1] + P[0][1]*SF[2] + P[2][1]*SF[1] + P[3][1]*SF[3] - P[1][1]*SPP[0] + P[13][1]*SPP[3] + SF[6]*(P[5][0] + P[0][0]*SF[2] + P[2][0]*SF[1] + P[3][0]*SF[3] - P[1][0]*SPP[0] + P[13][0]*SPP[3]) + SF[5]*(P[5][2] + P[0][2]*SF[2] + P[2][2]*SF[1] + P[3][2]*SF[3] - P[1][2]*SPP[0] + P[13][2]*SPP[3]) + SF[9]*(P[5][3] + P[0][3]*SF[2] + P[2][3]*SF[1] + P[3][3]*SF[3] - P[1][3]*SPP[0] + P[13][3]*SPP[3]) + SPP[6]*(P[5][11] + P[0][11]*SF[2] + P[2][11]*SF[1] + P[3][11]*SF[3] - P[1][11]*SPP[0] + P[13][11]*SPP[3]) - SPP[7]*(P[5][12] + P[0][12]*SF[2] + P[2][12]*SF[1] + P[3][12]*SF[3] - P[1][12]*SPP[0] + P[13][12]*SPP[3]) - (q0*(P[5][10] + P[0][10]*SF[2] + P[2][10]*SF[1] + P[3][10]*SF[3] - P[1][10]*SPP[0] + P[13][10]*SPP[3]))/2;
|
||
nextP[5][2] = P[5][2] + P[0][2]*SF[2] + P[2][2]*SF[1] + P[3][2]*SF[3] - P[1][2]*SPP[0] + P[13][2]*SPP[3] + SF[4]*(P[5][0] + P[0][0]*SF[2] + P[2][0]*SF[1] + P[3][0]*SF[3] - P[1][0]*SPP[0] + P[13][0]*SPP[3]) + SF[8]*(P[5][1] + P[0][1]*SF[2] + P[2][1]*SF[1] + P[3][1]*SF[3] - P[1][1]*SPP[0] + P[13][1]*SPP[3]) + SF[6]*(P[5][3] + P[0][3]*SF[2] + P[2][3]*SF[1] + P[3][3]*SF[3] - P[1][3]*SPP[0] + P[13][3]*SPP[3]) + SF[11]*(P[5][12] + P[0][12]*SF[2] + P[2][12]*SF[1] + P[3][12]*SF[3] - P[1][12]*SPP[0] + P[13][12]*SPP[3]) - SPP[6]*(P[5][10] + P[0][10]*SF[2] + P[2][10]*SF[1] + P[3][10]*SF[3] - P[1][10]*SPP[0] + P[13][10]*SPP[3]) - (q0*(P[5][11] + P[0][11]*SF[2] + P[2][11]*SF[1] + P[3][11]*SF[3] - P[1][11]*SPP[0] + P[13][11]*SPP[3]))/2;
|
||
nextP[5][3] = P[5][3] + P[0][3]*SF[2] + P[2][3]*SF[1] + P[3][3]*SF[3] - P[1][3]*SPP[0] + P[13][3]*SPP[3] + SF[5]*(P[5][0] + P[0][0]*SF[2] + P[2][0]*SF[1] + P[3][0]*SF[3] - P[1][0]*SPP[0] + P[13][0]*SPP[3]) + SF[4]*(P[5][1] + P[0][1]*SF[2] + P[2][1]*SF[1] + P[3][1]*SF[3] - P[1][1]*SPP[0] + P[13][1]*SPP[3]) + SF[7]*(P[5][2] + P[0][2]*SF[2] + P[2][2]*SF[1] + P[3][2]*SF[3] - P[1][2]*SPP[0] + P[13][2]*SPP[3]) - SF[11]*(P[5][11] + P[0][11]*SF[2] + P[2][11]*SF[1] + P[3][11]*SF[3] - P[1][11]*SPP[0] + P[13][11]*SPP[3]) + SPP[7]*(P[5][10] + P[0][10]*SF[2] + P[2][10]*SF[1] + P[3][10]*SF[3] - P[1][10]*SPP[0] + P[13][10]*SPP[3]) - (q0*(P[5][12] + P[0][12]*SF[2] + P[2][12]*SF[1] + P[3][12]*SF[3] - P[1][12]*SPP[0] + P[13][12]*SPP[3]))/2;
|
||
nextP[5][4] = P[5][4] + SQ[2] + P[0][4]*SF[2] + P[2][4]*SF[1] + P[3][4]*SF[3] - P[1][4]*SPP[0] + P[13][4]*SPP[3] + SF[3]*(P[5][0] + P[0][0]*SF[2] + P[2][0]*SF[1] + P[3][0]*SF[3] - P[1][0]*SPP[0] + P[13][0]*SPP[3]) + SF[1]*(P[5][1] + P[0][1]*SF[2] + P[2][1]*SF[1] + P[3][1]*SF[3] - P[1][1]*SPP[0] + P[13][1]*SPP[3]) + SPP[0]*(P[5][2] + P[0][2]*SF[2] + P[2][2]*SF[1] + P[3][2]*SF[3] - P[1][2]*SPP[0] + P[13][2]*SPP[3]) - SPP[2]*(P[5][3] + P[0][3]*SF[2] + P[2][3]*SF[1] + P[3][3]*SF[3] - P[1][3]*SPP[0] + P[13][3]*SPP[3]) - SPP[4]*(P[5][13] + P[0][13]*SF[2] + P[2][13]*SF[1] + P[3][13]*SF[3] - P[1][13]*SPP[0] + P[13][13]*SPP[3]);
|
||
nextP[5][5] = P[5][5] + P[0][5]*SF[2] + P[2][5]*SF[1] + P[3][5]*SF[3] - P[1][5]*SPP[0] + P[13][5]*SPP[3] + dvxCov*sq(SG[7] + 2*q0*q3) + dvzCov*sq(SG[5] - 2*q0*q1) + SF[2]*(P[5][0] + P[0][0]*SF[2] + P[2][0]*SF[1] + P[3][0]*SF[3] - P[1][0]*SPP[0] + P[13][0]*SPP[3]) + SF[1]*(P[5][2] + P[0][2]*SF[2] + P[2][2]*SF[1] + P[3][2]*SF[3] - P[1][2]*SPP[0] + P[13][2]*SPP[3]) + SF[3]*(P[5][3] + P[0][3]*SF[2] + P[2][3]*SF[1] + P[3][3]*SF[3] - P[1][3]*SPP[0] + P[13][3]*SPP[3]) - SPP[0]*(P[5][1] + P[0][1]*SF[2] + P[2][1]*SF[1] + P[3][1]*SF[3] - P[1][1]*SPP[0] + P[13][1]*SPP[3]) + SPP[3]*(P[5][13] + P[0][13]*SF[2] + P[2][13]*SF[1] + P[3][13]*SF[3] - P[1][13]*SPP[0] + P[13][13]*SPP[3]) + dvyCov*sq(SG[1] - SG[2] + SG[3] - SG[4]);
|
||
nextP[5][6] = P[5][6] + SQ[0] + P[0][6]*SF[2] + P[2][6]*SF[1] + P[3][6]*SF[3] - P[1][6]*SPP[0] + P[13][6]*SPP[3] + SF[2]*(P[5][1] + P[0][1]*SF[2] + P[2][1]*SF[1] + P[3][1]*SF[3] - P[1][1]*SPP[0] + P[13][1]*SPP[3]) + SF[1]*(P[5][3] + P[0][3]*SF[2] + P[2][3]*SF[1] + P[3][3]*SF[3] - P[1][3]*SPP[0] + P[13][3]*SPP[3]) + SPP[0]*(P[5][0] + P[0][0]*SF[2] + P[2][0]*SF[1] + P[3][0]*SF[3] - P[1][0]*SPP[0] + P[13][0]*SPP[3]) - SPP[1]*(P[5][2] + P[0][2]*SF[2] + P[2][2]*SF[1] + P[3][2]*SF[3] - P[1][2]*SPP[0] + P[13][2]*SPP[3]) - (sq(q0) - sq(q1) - sq(q2) + sq(q3))*(P[5][13] + P[0][13]*SF[2] + P[2][13]*SF[1] + P[3][13]*SF[3] - P[1][13]*SPP[0] + P[13][13]*SPP[3]);
|
||
nextP[5][7] = P[5][7] + P[0][7]*SF[2] + P[2][7]*SF[1] + P[3][7]*SF[3] - P[1][7]*SPP[0] + P[13][7]*SPP[3] + dt*(P[5][4] + P[0][4]*SF[2] + P[2][4]*SF[1] + P[3][4]*SF[3] - P[1][4]*SPP[0] + P[13][4]*SPP[3]);
|
||
nextP[5][8] = P[5][8] + P[0][8]*SF[2] + P[2][8]*SF[1] + P[3][8]*SF[3] - P[1][8]*SPP[0] + P[13][8]*SPP[3] + dt*(P[5][5] + P[0][5]*SF[2] + P[2][5]*SF[1] + P[3][5]*SF[3] - P[1][5]*SPP[0] + P[13][5]*SPP[3]);
|
||
nextP[5][9] = P[5][9] + P[0][9]*SF[2] + P[2][9]*SF[1] + P[3][9]*SF[3] - P[1][9]*SPP[0] + P[13][9]*SPP[3] + dt*(P[5][6] + P[0][6]*SF[2] + P[2][6]*SF[1] + P[3][6]*SF[3] - P[1][6]*SPP[0] + P[13][6]*SPP[3]);
|
||
nextP[5][10] = P[5][10] + P[0][10]*SF[2] + P[2][10]*SF[1] + P[3][10]*SF[3] - P[1][10]*SPP[0] + P[13][10]*SPP[3];
|
||
nextP[5][11] = P[5][11] + P[0][11]*SF[2] + P[2][11]*SF[1] + P[3][11]*SF[3] - P[1][11]*SPP[0] + P[13][11]*SPP[3];
|
||
nextP[5][12] = P[5][12] + P[0][12]*SF[2] + P[2][12]*SF[1] + P[3][12]*SF[3] - P[1][12]*SPP[0] + P[13][12]*SPP[3];
|
||
nextP[5][13] = P[5][13] + P[0][13]*SF[2] + P[2][13]*SF[1] + P[3][13]*SF[3] - P[1][13]*SPP[0] + P[13][13]*SPP[3];
|
||
nextP[5][14] = P[5][14] + P[0][14]*SF[2] + P[2][14]*SF[1] + P[3][14]*SF[3] - P[1][14]*SPP[0] + P[13][14]*SPP[3];
|
||
nextP[5][15] = P[5][15] + P[0][15]*SF[2] + P[2][15]*SF[1] + P[3][15]*SF[3] - P[1][15]*SPP[0] + P[13][15]*SPP[3];
|
||
nextP[5][16] = P[5][16] + P[0][16]*SF[2] + P[2][16]*SF[1] + P[3][16]*SF[3] - P[1][16]*SPP[0] + P[13][16]*SPP[3];
|
||
nextP[5][17] = P[5][17] + P[0][17]*SF[2] + P[2][17]*SF[1] + P[3][17]*SF[3] - P[1][17]*SPP[0] + P[13][17]*SPP[3];
|
||
nextP[5][18] = P[5][18] + P[0][18]*SF[2] + P[2][18]*SF[1] + P[3][18]*SF[3] - P[1][18]*SPP[0] + P[13][18]*SPP[3];
|
||
nextP[5][19] = P[5][19] + P[0][19]*SF[2] + P[2][19]*SF[1] + P[3][19]*SF[3] - P[1][19]*SPP[0] + P[13][19]*SPP[3];
|
||
nextP[5][20] = P[5][20] + P[0][20]*SF[2] + P[2][20]*SF[1] + P[3][20]*SF[3] - P[1][20]*SPP[0] + P[13][20]*SPP[3];
|
||
nextP[5][21] = P[5][21] + P[0][21]*SF[2] + P[2][21]*SF[1] + P[3][21]*SF[3] - P[1][21]*SPP[0] + P[13][21]*SPP[3];
|
||
nextP[6][0] = P[6][0] + P[1][0]*SF[2] + P[3][0]*SF[1] + P[0][0]*SPP[0] - P[2][0]*SPP[1] - P[13][0]*(sq(q0) - sq(q1) - sq(q2) + sq(q3)) + SF[7]*(P[6][1] + P[1][1]*SF[2] + P[3][1]*SF[1] + P[0][1]*SPP[0] - P[2][1]*SPP[1] - P[13][1]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[9]*(P[6][2] + P[1][2]*SF[2] + P[3][2]*SF[1] + P[0][2]*SPP[0] - P[2][2]*SPP[1] - P[13][2]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[8]*(P[6][3] + P[1][3]*SF[2] + P[3][3]*SF[1] + P[0][3]*SPP[0] - P[2][3]*SPP[1] - P[13][3]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[11]*(P[6][10] + P[1][10]*SF[2] + P[3][10]*SF[1] + P[0][10]*SPP[0] - P[2][10]*SPP[1] - P[13][10]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SPP[7]*(P[6][11] + P[1][11]*SF[2] + P[3][11]*SF[1] + P[0][11]*SPP[0] - P[2][11]*SPP[1] - P[13][11]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SPP[6]*(P[6][12] + P[1][12]*SF[2] + P[3][12]*SF[1] + P[0][12]*SPP[0] - P[2][12]*SPP[1] - P[13][12]*(sq(q0) - sq(q1) - sq(q2) + sq(q3)));
|
||
nextP[6][1] = P[6][1] + P[1][1]*SF[2] + P[3][1]*SF[1] + P[0][1]*SPP[0] - P[2][1]*SPP[1] - P[13][1]*(sq(q0) - sq(q1) - sq(q2) + sq(q3)) + SF[6]*(P[6][0] + P[1][0]*SF[2] + P[3][0]*SF[1] + P[0][0]*SPP[0] - P[2][0]*SPP[1] - P[13][0]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[5]*(P[6][2] + P[1][2]*SF[2] + P[3][2]*SF[1] + P[0][2]*SPP[0] - P[2][2]*SPP[1] - P[13][2]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[9]*(P[6][3] + P[1][3]*SF[2] + P[3][3]*SF[1] + P[0][3]*SPP[0] - P[2][3]*SPP[1] - P[13][3]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SPP[6]*(P[6][11] + P[1][11]*SF[2] + P[3][11]*SF[1] + P[0][11]*SPP[0] - P[2][11]*SPP[1] - P[13][11]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) - SPP[7]*(P[6][12] + P[1][12]*SF[2] + P[3][12]*SF[1] + P[0][12]*SPP[0] - P[2][12]*SPP[1] - P[13][12]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) - (q0*(P[6][10] + P[1][10]*SF[2] + P[3][10]*SF[1] + P[0][10]*SPP[0] - P[2][10]*SPP[1] - P[13][10]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))))/2;
|
||
nextP[6][2] = P[6][2] + P[1][2]*SF[2] + P[3][2]*SF[1] + P[0][2]*SPP[0] - P[2][2]*SPP[1] - P[13][2]*(sq(q0) - sq(q1) - sq(q2) + sq(q3)) + SF[4]*(P[6][0] + P[1][0]*SF[2] + P[3][0]*SF[1] + P[0][0]*SPP[0] - P[2][0]*SPP[1] - P[13][0]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[8]*(P[6][1] + P[1][1]*SF[2] + P[3][1]*SF[1] + P[0][1]*SPP[0] - P[2][1]*SPP[1] - P[13][1]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[6]*(P[6][3] + P[1][3]*SF[2] + P[3][3]*SF[1] + P[0][3]*SPP[0] - P[2][3]*SPP[1] - P[13][3]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[11]*(P[6][12] + P[1][12]*SF[2] + P[3][12]*SF[1] + P[0][12]*SPP[0] - P[2][12]*SPP[1] - P[13][12]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) - SPP[6]*(P[6][10] + P[1][10]*SF[2] + P[3][10]*SF[1] + P[0][10]*SPP[0] - P[2][10]*SPP[1] - P[13][10]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) - (q0*(P[6][11] + P[1][11]*SF[2] + P[3][11]*SF[1] + P[0][11]*SPP[0] - P[2][11]*SPP[1] - P[13][11]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))))/2;
|
||
nextP[6][3] = P[6][3] + P[1][3]*SF[2] + P[3][3]*SF[1] + P[0][3]*SPP[0] - P[2][3]*SPP[1] - P[13][3]*(sq(q0) - sq(q1) - sq(q2) + sq(q3)) + SF[5]*(P[6][0] + P[1][0]*SF[2] + P[3][0]*SF[1] + P[0][0]*SPP[0] - P[2][0]*SPP[1] - P[13][0]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[4]*(P[6][1] + P[1][1]*SF[2] + P[3][1]*SF[1] + P[0][1]*SPP[0] - P[2][1]*SPP[1] - P[13][1]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[7]*(P[6][2] + P[1][2]*SF[2] + P[3][2]*SF[1] + P[0][2]*SPP[0] - P[2][2]*SPP[1] - P[13][2]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) - SF[11]*(P[6][11] + P[1][11]*SF[2] + P[3][11]*SF[1] + P[0][11]*SPP[0] - P[2][11]*SPP[1] - P[13][11]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SPP[7]*(P[6][10] + P[1][10]*SF[2] + P[3][10]*SF[1] + P[0][10]*SPP[0] - P[2][10]*SPP[1] - P[13][10]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) - (q0*(P[6][12] + P[1][12]*SF[2] + P[3][12]*SF[1] + P[0][12]*SPP[0] - P[2][12]*SPP[1] - P[13][12]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))))/2;
|
||
nextP[6][4] = P[6][4] + SQ[1] + P[1][4]*SF[2] + P[3][4]*SF[1] + P[0][4]*SPP[0] - P[2][4]*SPP[1] - P[13][4]*(sq(q0) - sq(q1) - sq(q2) + sq(q3)) + SF[3]*(P[6][0] + P[1][0]*SF[2] + P[3][0]*SF[1] + P[0][0]*SPP[0] - P[2][0]*SPP[1] - P[13][0]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[1]*(P[6][1] + P[1][1]*SF[2] + P[3][1]*SF[1] + P[0][1]*SPP[0] - P[2][1]*SPP[1] - P[13][1]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SPP[0]*(P[6][2] + P[1][2]*SF[2] + P[3][2]*SF[1] + P[0][2]*SPP[0] - P[2][2]*SPP[1] - P[13][2]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) - SPP[2]*(P[6][3] + P[1][3]*SF[2] + P[3][3]*SF[1] + P[0][3]*SPP[0] - P[2][3]*SPP[1] - P[13][3]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) - SPP[4]*(P[6][13] + P[1][13]*SF[2] + P[3][13]*SF[1] + P[0][13]*SPP[0] - P[2][13]*SPP[1] - P[13][13]*(sq(q0) - sq(q1) - sq(q2) + sq(q3)));
|
||
nextP[6][5] = P[6][5] + SQ[0] + P[1][5]*SF[2] + P[3][5]*SF[1] + P[0][5]*SPP[0] - P[2][5]*SPP[1] - P[13][5]*(sq(q0) - sq(q1) - sq(q2) + sq(q3)) + SF[2]*(P[6][0] + P[1][0]*SF[2] + P[3][0]*SF[1] + P[0][0]*SPP[0] - P[2][0]*SPP[1] - P[13][0]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[1]*(P[6][2] + P[1][2]*SF[2] + P[3][2]*SF[1] + P[0][2]*SPP[0] - P[2][2]*SPP[1] - P[13][2]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[3]*(P[6][3] + P[1][3]*SF[2] + P[3][3]*SF[1] + P[0][3]*SPP[0] - P[2][3]*SPP[1] - P[13][3]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) - SPP[0]*(P[6][1] + P[1][1]*SF[2] + P[3][1]*SF[1] + P[0][1]*SPP[0] - P[2][1]*SPP[1] - P[13][1]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SPP[3]*(P[6][13] + P[1][13]*SF[2] + P[3][13]*SF[1] + P[0][13]*SPP[0] - P[2][13]*SPP[1] - P[13][13]*(sq(q0) - sq(q1) - sq(q2) + sq(q3)));
|
||
nextP[6][6] = P[6][6] + P[1][6]*SF[2] + P[3][6]*SF[1] + P[0][6]*SPP[0] - P[2][6]*SPP[1] - P[13][6]*(sq(q0) - sq(q1) - sq(q2) + sq(q3)) + dvxCov*sq(SG[6] - 2*q0*q2) + dvyCov*sq(SG[5] + 2*q0*q1) - SPP[5]*(P[6][13] + P[1][13]*SF[2] + P[3][13]*SF[1] + P[0][13]*SPP[0] - P[2][13]*SPP[1] - P[13][13]*SPP[5]) + SF[2]*(P[6][1] + P[1][1]*SF[2] + P[3][1]*SF[1] + P[0][1]*SPP[0] - P[2][1]*SPP[1] - P[13][1]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SF[1]*(P[6][3] + P[1][3]*SF[2] + P[3][3]*SF[1] + P[0][3]*SPP[0] - P[2][3]*SPP[1] - P[13][3]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + SPP[0]*(P[6][0] + P[1][0]*SF[2] + P[3][0]*SF[1] + P[0][0]*SPP[0] - P[2][0]*SPP[1] - P[13][0]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) - SPP[1]*(P[6][2] + P[1][2]*SF[2] + P[3][2]*SF[1] + P[0][2]*SPP[0] - P[2][2]*SPP[1] - P[13][2]*(sq(q0) - sq(q1) - sq(q2) + sq(q3))) + dvzCov*sq(SG[1] - SG[2] - SG[3] + SG[4]);
|
||
nextP[6][7] = P[6][7] + P[1][7]*SF[2] + P[3][7]*SF[1] + P[0][7]*SPP[0] - P[2][7]*SPP[1] - P[13][7]*SPP[5] + dt*(P[6][4] + P[1][4]*SF[2] + P[3][4]*SF[1] + P[0][4]*SPP[0] - P[2][4]*SPP[1] - P[13][4]*SPP[5]);
|
||
nextP[6][8] = P[6][8] + P[1][8]*SF[2] + P[3][8]*SF[1] + P[0][8]*SPP[0] - P[2][8]*SPP[1] - P[13][8]*SPP[5] + dt*(P[6][5] + P[1][5]*SF[2] + P[3][5]*SF[1] + P[0][5]*SPP[0] - P[2][5]*SPP[1] - P[13][5]*SPP[5]);
|
||
nextP[6][9] = P[6][9] + P[1][9]*SF[2] + P[3][9]*SF[1] + P[0][9]*SPP[0] - P[2][9]*SPP[1] - P[13][9]*SPP[5] + dt*(P[6][6] + P[1][6]*SF[2] + P[3][6]*SF[1] + P[0][6]*SPP[0] - P[2][6]*SPP[1] - P[13][6]*SPP[5]);
|
||
nextP[6][10] = P[6][10] + P[1][10]*SF[2] + P[3][10]*SF[1] + P[0][10]*SPP[0] - P[2][10]*SPP[1] - P[13][10]*SPP[5];
|
||
nextP[6][11] = P[6][11] + P[1][11]*SF[2] + P[3][11]*SF[1] + P[0][11]*SPP[0] - P[2][11]*SPP[1] - P[13][11]*SPP[5];
|
||
nextP[6][12] = P[6][12] + P[1][12]*SF[2] + P[3][12]*SF[1] + P[0][12]*SPP[0] - P[2][12]*SPP[1] - P[13][12]*SPP[5];
|
||
nextP[6][13] = P[6][13] + P[1][13]*SF[2] + P[3][13]*SF[1] + P[0][13]*SPP[0] - P[2][13]*SPP[1] - P[13][13]*SPP[5];
|
||
nextP[6][14] = P[6][14] + P[1][14]*SF[2] + P[3][14]*SF[1] + P[0][14]*SPP[0] - P[2][14]*SPP[1] - P[13][14]*SPP[5];
|
||
nextP[6][15] = P[6][15] + P[1][15]*SF[2] + P[3][15]*SF[1] + P[0][15]*SPP[0] - P[2][15]*SPP[1] - P[13][15]*SPP[5];
|
||
nextP[6][16] = P[6][16] + P[1][16]*SF[2] + P[3][16]*SF[1] + P[0][16]*SPP[0] - P[2][16]*SPP[1] - P[13][16]*SPP[5];
|
||
nextP[6][17] = P[6][17] + P[1][17]*SF[2] + P[3][17]*SF[1] + P[0][17]*SPP[0] - P[2][17]*SPP[1] - P[13][17]*SPP[5];
|
||
nextP[6][18] = P[6][18] + P[1][18]*SF[2] + P[3][18]*SF[1] + P[0][18]*SPP[0] - P[2][18]*SPP[1] - P[13][18]*SPP[5];
|
||
nextP[6][19] = P[6][19] + P[1][19]*SF[2] + P[3][19]*SF[1] + P[0][19]*SPP[0] - P[2][19]*SPP[1] - P[13][19]*SPP[5];
|
||
nextP[6][20] = P[6][20] + P[1][20]*SF[2] + P[3][20]*SF[1] + P[0][20]*SPP[0] - P[2][20]*SPP[1] - P[13][20]*SPP[5];
|
||
nextP[6][21] = P[6][21] + P[1][21]*SF[2] + P[3][21]*SF[1] + P[0][21]*SPP[0] - P[2][21]*SPP[1] - P[13][21]*SPP[5];
|
||
nextP[7][0] = P[7][0] + P[4][0]*dt + SF[7]*(P[7][1] + P[4][1]*dt) + SF[9]*(P[7][2] + P[4][2]*dt) + SF[8]*(P[7][3] + P[4][3]*dt) + SF[11]*(P[7][10] + P[4][10]*dt) + SPP[7]*(P[7][11] + P[4][11]*dt) + SPP[6]*(P[7][12] + P[4][12]*dt);
|
||
nextP[7][1] = P[7][1] + P[4][1]*dt + SF[6]*(P[7][0] + P[4][0]*dt) + SF[5]*(P[7][2] + P[4][2]*dt) + SF[9]*(P[7][3] + P[4][3]*dt) + SPP[6]*(P[7][11] + P[4][11]*dt) - SPP[7]*(P[7][12] + P[4][12]*dt) - (q0*(P[7][10] + P[4][10]*dt))/2;
|
||
nextP[7][2] = P[7][2] + P[4][2]*dt + SF[4]*(P[7][0] + P[4][0]*dt) + SF[8]*(P[7][1] + P[4][1]*dt) + SF[6]*(P[7][3] + P[4][3]*dt) + SF[11]*(P[7][12] + P[4][12]*dt) - SPP[6]*(P[7][10] + P[4][10]*dt) - (q0*(P[7][11] + P[4][11]*dt))/2;
|
||
nextP[7][3] = P[7][3] + P[4][3]*dt + SF[5]*(P[7][0] + P[4][0]*dt) + SF[4]*(P[7][1] + P[4][1]*dt) + SF[7]*(P[7][2] + P[4][2]*dt) - SF[11]*(P[7][11] + P[4][11]*dt) + SPP[7]*(P[7][10] + P[4][10]*dt) - (q0*(P[7][12] + P[4][12]*dt))/2;
|
||
nextP[7][4] = P[7][4] + P[4][4]*dt + SF[1]*(P[7][1] + P[4][1]*dt) + SF[3]*(P[7][0] + P[4][0]*dt) + SPP[0]*(P[7][2] + P[4][2]*dt) - SPP[2]*(P[7][3] + P[4][3]*dt) - SPP[4]*(P[7][13] + P[4][13]*dt);
|
||
nextP[7][5] = P[7][5] + P[4][5]*dt + SF[2]*(P[7][0] + P[4][0]*dt) + SF[1]*(P[7][2] + P[4][2]*dt) + SF[3]*(P[7][3] + P[4][3]*dt) - SPP[0]*(P[7][1] + P[4][1]*dt) + SPP[3]*(P[7][13] + P[4][13]*dt);
|
||
nextP[7][6] = P[7][6] + P[4][6]*dt + SF[2]*(P[7][1] + P[4][1]*dt) + SF[1]*(P[7][3] + P[4][3]*dt) + SPP[0]*(P[7][0] + P[4][0]*dt) - SPP[1]*(P[7][2] + P[4][2]*dt) - SPP[5]*(P[7][13] + P[4][13]*dt);
|
||
nextP[7][7] = P[7][7] + P[4][7]*dt + dt*(P[7][4] + P[4][4]*dt);
|
||
nextP[7][8] = P[7][8] + P[4][8]*dt + dt*(P[7][5] + P[4][5]*dt);
|
||
nextP[7][9] = P[7][9] + P[4][9]*dt + dt*(P[7][6] + P[4][6]*dt);
|
||
nextP[7][10] = P[7][10] + P[4][10]*dt;
|
||
nextP[7][11] = P[7][11] + P[4][11]*dt;
|
||
nextP[7][12] = P[7][12] + P[4][12]*dt;
|
||
nextP[7][13] = P[7][13] + P[4][13]*dt;
|
||
nextP[7][14] = P[7][14] + P[4][14]*dt;
|
||
nextP[7][15] = P[7][15] + P[4][15]*dt;
|
||
nextP[7][16] = P[7][16] + P[4][16]*dt;
|
||
nextP[7][17] = P[7][17] + P[4][17]*dt;
|
||
nextP[7][18] = P[7][18] + P[4][18]*dt;
|
||
nextP[7][19] = P[7][19] + P[4][19]*dt;
|
||
nextP[7][20] = P[7][20] + P[4][20]*dt;
|
||
nextP[7][21] = P[7][21] + P[4][21]*dt;
|
||
nextP[8][0] = P[8][0] + P[5][0]*dt + SF[7]*(P[8][1] + P[5][1]*dt) + SF[9]*(P[8][2] + P[5][2]*dt) + SF[8]*(P[8][3] + P[5][3]*dt) + SF[11]*(P[8][10] + P[5][10]*dt) + SPP[7]*(P[8][11] + P[5][11]*dt) + SPP[6]*(P[8][12] + P[5][12]*dt);
|
||
nextP[8][1] = P[8][1] + P[5][1]*dt + SF[6]*(P[8][0] + P[5][0]*dt) + SF[5]*(P[8][2] + P[5][2]*dt) + SF[9]*(P[8][3] + P[5][3]*dt) + SPP[6]*(P[8][11] + P[5][11]*dt) - SPP[7]*(P[8][12] + P[5][12]*dt) - (q0*(P[8][10] + P[5][10]*dt))/2;
|
||
nextP[8][2] = P[8][2] + P[5][2]*dt + SF[4]*(P[8][0] + P[5][0]*dt) + SF[8]*(P[8][1] + P[5][1]*dt) + SF[6]*(P[8][3] + P[5][3]*dt) + SF[11]*(P[8][12] + P[5][12]*dt) - SPP[6]*(P[8][10] + P[5][10]*dt) - (q0*(P[8][11] + P[5][11]*dt))/2;
|
||
nextP[8][3] = P[8][3] + P[5][3]*dt + SF[5]*(P[8][0] + P[5][0]*dt) + SF[4]*(P[8][1] + P[5][1]*dt) + SF[7]*(P[8][2] + P[5][2]*dt) - SF[11]*(P[8][11] + P[5][11]*dt) + SPP[7]*(P[8][10] + P[5][10]*dt) - (q0*(P[8][12] + P[5][12]*dt))/2;
|
||
nextP[8][4] = P[8][4] + P[5][4]*dt + SF[1]*(P[8][1] + P[5][1]*dt) + SF[3]*(P[8][0] + P[5][0]*dt) + SPP[0]*(P[8][2] + P[5][2]*dt) - SPP[2]*(P[8][3] + P[5][3]*dt) - SPP[4]*(P[8][13] + P[5][13]*dt);
|
||
nextP[8][5] = P[8][5] + P[5][5]*dt + SF[2]*(P[8][0] + P[5][0]*dt) + SF[1]*(P[8][2] + P[5][2]*dt) + SF[3]*(P[8][3] + P[5][3]*dt) - SPP[0]*(P[8][1] + P[5][1]*dt) + SPP[3]*(P[8][13] + P[5][13]*dt);
|
||
nextP[8][6] = P[8][6] + P[5][6]*dt + SF[2]*(P[8][1] + P[5][1]*dt) + SF[1]*(P[8][3] + P[5][3]*dt) + SPP[0]*(P[8][0] + P[5][0]*dt) - SPP[1]*(P[8][2] + P[5][2]*dt) - SPP[5]*(P[8][13] + P[5][13]*dt);
|
||
nextP[8][7] = P[8][7] + P[5][7]*dt + dt*(P[8][4] + P[5][4]*dt);
|
||
nextP[8][8] = P[8][8] + P[5][8]*dt + dt*(P[8][5] + P[5][5]*dt);
|
||
nextP[8][9] = P[8][9] + P[5][9]*dt + dt*(P[8][6] + P[5][6]*dt);
|
||
nextP[8][10] = P[8][10] + P[5][10]*dt;
|
||
nextP[8][11] = P[8][11] + P[5][11]*dt;
|
||
nextP[8][12] = P[8][12] + P[5][12]*dt;
|
||
nextP[8][13] = P[8][13] + P[5][13]*dt;
|
||
nextP[8][14] = P[8][14] + P[5][14]*dt;
|
||
nextP[8][15] = P[8][15] + P[5][15]*dt;
|
||
nextP[8][16] = P[8][16] + P[5][16]*dt;
|
||
nextP[8][17] = P[8][17] + P[5][17]*dt;
|
||
nextP[8][18] = P[8][18] + P[5][18]*dt;
|
||
nextP[8][19] = P[8][19] + P[5][19]*dt;
|
||
nextP[8][20] = P[8][20] + P[5][20]*dt;
|
||
nextP[8][21] = P[8][21] + P[5][21]*dt;
|
||
nextP[9][0] = P[9][0] + P[6][0]*dt + SF[7]*(P[9][1] + P[6][1]*dt) + SF[9]*(P[9][2] + P[6][2]*dt) + SF[8]*(P[9][3] + P[6][3]*dt) + SF[11]*(P[9][10] + P[6][10]*dt) + SPP[7]*(P[9][11] + P[6][11]*dt) + SPP[6]*(P[9][12] + P[6][12]*dt);
|
||
nextP[9][1] = P[9][1] + P[6][1]*dt + SF[6]*(P[9][0] + P[6][0]*dt) + SF[5]*(P[9][2] + P[6][2]*dt) + SF[9]*(P[9][3] + P[6][3]*dt) + SPP[6]*(P[9][11] + P[6][11]*dt) - SPP[7]*(P[9][12] + P[6][12]*dt) - (q0*(P[9][10] + P[6][10]*dt))/2;
|
||
nextP[9][2] = P[9][2] + P[6][2]*dt + SF[4]*(P[9][0] + P[6][0]*dt) + SF[8]*(P[9][1] + P[6][1]*dt) + SF[6]*(P[9][3] + P[6][3]*dt) + SF[11]*(P[9][12] + P[6][12]*dt) - SPP[6]*(P[9][10] + P[6][10]*dt) - (q0*(P[9][11] + P[6][11]*dt))/2;
|
||
nextP[9][3] = P[9][3] + P[6][3]*dt + SF[5]*(P[9][0] + P[6][0]*dt) + SF[4]*(P[9][1] + P[6][1]*dt) + SF[7]*(P[9][2] + P[6][2]*dt) - SF[11]*(P[9][11] + P[6][11]*dt) + SPP[7]*(P[9][10] + P[6][10]*dt) - (q0*(P[9][12] + P[6][12]*dt))/2;
|
||
nextP[9][4] = P[9][4] + P[6][4]*dt + SF[1]*(P[9][1] + P[6][1]*dt) + SF[3]*(P[9][0] + P[6][0]*dt) + SPP[0]*(P[9][2] + P[6][2]*dt) - SPP[2]*(P[9][3] + P[6][3]*dt) - SPP[4]*(P[9][13] + P[6][13]*dt);
|
||
nextP[9][5] = P[9][5] + P[6][5]*dt + SF[2]*(P[9][0] + P[6][0]*dt) + SF[1]*(P[9][2] + P[6][2]*dt) + SF[3]*(P[9][3] + P[6][3]*dt) - SPP[0]*(P[9][1] + P[6][1]*dt) + SPP[3]*(P[9][13] + P[6][13]*dt);
|
||
nextP[9][6] = P[9][6] + P[6][6]*dt + SF[2]*(P[9][1] + P[6][1]*dt) + SF[1]*(P[9][3] + P[6][3]*dt) + SPP[0]*(P[9][0] + P[6][0]*dt) - SPP[1]*(P[9][2] + P[6][2]*dt) - SPP[5]*(P[9][13] + P[6][13]*dt);
|
||
nextP[9][7] = P[9][7] + P[6][7]*dt + dt*(P[9][4] + P[6][4]*dt);
|
||
nextP[9][8] = P[9][8] + P[6][8]*dt + dt*(P[9][5] + P[6][5]*dt);
|
||
nextP[9][9] = P[9][9] + P[6][9]*dt + dt*(P[9][6] + P[6][6]*dt);
|
||
nextP[9][10] = P[9][10] + P[6][10]*dt;
|
||
nextP[9][11] = P[9][11] + P[6][11]*dt;
|
||
nextP[9][12] = P[9][12] + P[6][12]*dt;
|
||
nextP[9][13] = P[9][13] + P[6][13]*dt;
|
||
nextP[9][14] = P[9][14] + P[6][14]*dt;
|
||
nextP[9][15] = P[9][15] + P[6][15]*dt;
|
||
nextP[9][16] = P[9][16] + P[6][16]*dt;
|
||
nextP[9][17] = P[9][17] + P[6][17]*dt;
|
||
nextP[9][18] = P[9][18] + P[6][18]*dt;
|
||
nextP[9][19] = P[9][19] + P[6][19]*dt;
|
||
nextP[9][20] = P[9][20] + P[6][20]*dt;
|
||
nextP[9][21] = P[9][21] + P[6][21]*dt;
|
||
nextP[10][0] = P[10][0] + P[10][1]*SF[7] + P[10][2]*SF[9] + P[10][3]*SF[8] + P[10][10]*SF[11] + P[10][11]*SPP[7] + P[10][12]*SPP[6];
|
||
nextP[10][1] = P[10][1] + P[10][0]*SF[6] + P[10][2]*SF[5] + P[10][3]*SF[9] + P[10][11]*SPP[6] - P[10][12]*SPP[7] - (P[10][10]*q0)/2;
|
||
nextP[10][2] = P[10][2] + P[10][0]*SF[4] + P[10][1]*SF[8] + P[10][3]*SF[6] + P[10][12]*SF[11] - P[10][10]*SPP[6] - (P[10][11]*q0)/2;
|
||
nextP[10][3] = P[10][3] + P[10][0]*SF[5] + P[10][1]*SF[4] + P[10][2]*SF[7] - P[10][11]*SF[11] + P[10][10]*SPP[7] - (P[10][12]*q0)/2;
|
||
nextP[10][4] = P[10][4] + P[10][1]*SF[1] + P[10][0]*SF[3] + P[10][2]*SPP[0] - P[10][3]*SPP[2] - P[10][13]*SPP[4];
|
||
nextP[10][5] = P[10][5] + P[10][0]*SF[2] + P[10][2]*SF[1] + P[10][3]*SF[3] - P[10][1]*SPP[0] + P[10][13]*SPP[3];
|
||
nextP[10][6] = P[10][6] + P[10][1]*SF[2] + P[10][3]*SF[1] + P[10][0]*SPP[0] - P[10][2]*SPP[1] - P[10][13]*SPP[5];
|
||
nextP[10][7] = P[10][7] + P[10][4]*dt;
|
||
nextP[10][8] = P[10][8] + P[10][5]*dt;
|
||
nextP[10][9] = P[10][9] + P[10][6]*dt;
|
||
nextP[10][10] = P[10][10];
|
||
nextP[10][11] = P[10][11];
|
||
nextP[10][12] = P[10][12];
|
||
nextP[10][13] = P[10][13];
|
||
nextP[10][14] = P[10][14];
|
||
nextP[10][15] = P[10][15];
|
||
nextP[10][16] = P[10][16];
|
||
nextP[10][17] = P[10][17];
|
||
nextP[10][18] = P[10][18];
|
||
nextP[10][19] = P[10][19];
|
||
nextP[10][20] = P[10][20];
|
||
nextP[10][21] = P[10][21];
|
||
nextP[11][0] = P[11][0] + P[11][1]*SF[7] + P[11][2]*SF[9] + P[11][3]*SF[8] + P[11][10]*SF[11] + P[11][11]*SPP[7] + P[11][12]*SPP[6];
|
||
nextP[11][1] = P[11][1] + P[11][0]*SF[6] + P[11][2]*SF[5] + P[11][3]*SF[9] + P[11][11]*SPP[6] - P[11][12]*SPP[7] - (P[11][10]*q0)/2;
|
||
nextP[11][2] = P[11][2] + P[11][0]*SF[4] + P[11][1]*SF[8] + P[11][3]*SF[6] + P[11][12]*SF[11] - P[11][10]*SPP[6] - (P[11][11]*q0)/2;
|
||
nextP[11][3] = P[11][3] + P[11][0]*SF[5] + P[11][1]*SF[4] + P[11][2]*SF[7] - P[11][11]*SF[11] + P[11][10]*SPP[7] - (P[11][12]*q0)/2;
|
||
nextP[11][4] = P[11][4] + P[11][1]*SF[1] + P[11][0]*SF[3] + P[11][2]*SPP[0] - P[11][3]*SPP[2] - P[11][13]*SPP[4];
|
||
nextP[11][5] = P[11][5] + P[11][0]*SF[2] + P[11][2]*SF[1] + P[11][3]*SF[3] - P[11][1]*SPP[0] + P[11][13]*SPP[3];
|
||
nextP[11][6] = P[11][6] + P[11][1]*SF[2] + P[11][3]*SF[1] + P[11][0]*SPP[0] - P[11][2]*SPP[1] - P[11][13]*SPP[5];
|
||
nextP[11][7] = P[11][7] + P[11][4]*dt;
|
||
nextP[11][8] = P[11][8] + P[11][5]*dt;
|
||
nextP[11][9] = P[11][9] + P[11][6]*dt;
|
||
nextP[11][10] = P[11][10];
|
||
nextP[11][11] = P[11][11];
|
||
nextP[11][12] = P[11][12];
|
||
nextP[11][13] = P[11][13];
|
||
nextP[11][14] = P[11][14];
|
||
nextP[11][15] = P[11][15];
|
||
nextP[11][16] = P[11][16];
|
||
nextP[11][17] = P[11][17];
|
||
nextP[11][18] = P[11][18];
|
||
nextP[11][19] = P[11][19];
|
||
nextP[11][20] = P[11][20];
|
||
nextP[11][21] = P[11][21];
|
||
nextP[12][0] = P[12][0] + P[12][1]*SF[7] + P[12][2]*SF[9] + P[12][3]*SF[8] + P[12][10]*SF[11] + P[12][11]*SPP[7] + P[12][12]*SPP[6];
|
||
nextP[12][1] = P[12][1] + P[12][0]*SF[6] + P[12][2]*SF[5] + P[12][3]*SF[9] + P[12][11]*SPP[6] - P[12][12]*SPP[7] - (P[12][10]*q0)/2;
|
||
nextP[12][2] = P[12][2] + P[12][0]*SF[4] + P[12][1]*SF[8] + P[12][3]*SF[6] + P[12][12]*SF[11] - P[12][10]*SPP[6] - (P[12][11]*q0)/2;
|
||
nextP[12][3] = P[12][3] + P[12][0]*SF[5] + P[12][1]*SF[4] + P[12][2]*SF[7] - P[12][11]*SF[11] + P[12][10]*SPP[7] - (P[12][12]*q0)/2;
|
||
nextP[12][4] = P[12][4] + P[12][1]*SF[1] + P[12][0]*SF[3] + P[12][2]*SPP[0] - P[12][3]*SPP[2] - P[12][13]*SPP[4];
|
||
nextP[12][5] = P[12][5] + P[12][0]*SF[2] + P[12][2]*SF[1] + P[12][3]*SF[3] - P[12][1]*SPP[0] + P[12][13]*SPP[3];
|
||
nextP[12][6] = P[12][6] + P[12][1]*SF[2] + P[12][3]*SF[1] + P[12][0]*SPP[0] - P[12][2]*SPP[1] - P[12][13]*SPP[5];
|
||
nextP[12][7] = P[12][7] + P[12][4]*dt;
|
||
nextP[12][8] = P[12][8] + P[12][5]*dt;
|
||
nextP[12][9] = P[12][9] + P[12][6]*dt;
|
||
nextP[12][10] = P[12][10];
|
||
nextP[12][11] = P[12][11];
|
||
nextP[12][12] = P[12][12];
|
||
nextP[12][13] = P[12][13];
|
||
nextP[12][14] = P[12][14];
|
||
nextP[12][15] = P[12][15];
|
||
nextP[12][16] = P[12][16];
|
||
nextP[12][17] = P[12][17];
|
||
nextP[12][18] = P[12][18];
|
||
nextP[12][19] = P[12][19];
|
||
nextP[12][20] = P[12][20];
|
||
nextP[12][21] = P[12][21];
|
||
nextP[13][0] = P[13][0] + P[13][1]*SF[7] + P[13][2]*SF[9] + P[13][3]*SF[8] + P[13][10]*SF[11] + P[13][11]*SPP[7] + P[13][12]*SPP[6];
|
||
nextP[13][1] = P[13][1] + P[13][0]*SF[6] + P[13][2]*SF[5] + P[13][3]*SF[9] + P[13][11]*SPP[6] - P[13][12]*SPP[7] - (P[13][10]*q0)/2;
|
||
nextP[13][2] = P[13][2] + P[13][0]*SF[4] + P[13][1]*SF[8] + P[13][3]*SF[6] + P[13][12]*SF[11] - P[13][10]*SPP[6] - (P[13][11]*q0)/2;
|
||
nextP[13][3] = P[13][3] + P[13][0]*SF[5] + P[13][1]*SF[4] + P[13][2]*SF[7] - P[13][11]*SF[11] + P[13][10]*SPP[7] - (P[13][12]*q0)/2;
|
||
nextP[13][4] = P[13][4] + P[13][1]*SF[1] + P[13][0]*SF[3] + P[13][2]*SPP[0] - P[13][3]*SPP[2] - P[13][13]*SPP[4];
|
||
nextP[13][5] = P[13][5] + P[13][0]*SF[2] + P[13][2]*SF[1] + P[13][3]*SF[3] - P[13][1]*SPP[0] + P[13][13]*SPP[3];
|
||
nextP[13][6] = P[13][6] + P[13][1]*SF[2] + P[13][3]*SF[1] + P[13][0]*SPP[0] - P[13][2]*SPP[1] - P[13][13]*SPP[5];
|
||
nextP[13][7] = P[13][7] + P[13][4]*dt;
|
||
nextP[13][8] = P[13][8] + P[13][5]*dt;
|
||
nextP[13][9] = P[13][9] + P[13][6]*dt;
|
||
nextP[13][10] = P[13][10];
|
||
nextP[13][11] = P[13][11];
|
||
nextP[13][12] = P[13][12];
|
||
nextP[13][13] = P[13][13];
|
||
nextP[13][14] = P[13][14];
|
||
nextP[13][15] = P[13][15];
|
||
nextP[13][16] = P[13][16];
|
||
nextP[13][17] = P[13][17];
|
||
nextP[13][18] = P[13][18];
|
||
nextP[13][19] = P[13][19];
|
||
nextP[13][20] = P[13][20];
|
||
nextP[13][21] = P[13][21];
|
||
nextP[14][0] = P[14][0] + P[14][1]*SF[7] + P[14][2]*SF[9] + P[14][3]*SF[8] + P[14][10]*SF[11] + P[14][11]*SPP[7] + P[14][12]*SPP[6];
|
||
nextP[14][1] = P[14][1] + P[14][0]*SF[6] + P[14][2]*SF[5] + P[14][3]*SF[9] + P[14][11]*SPP[6] - P[14][12]*SPP[7] - (P[14][10]*q0)/2;
|
||
nextP[14][2] = P[14][2] + P[14][0]*SF[4] + P[14][1]*SF[8] + P[14][3]*SF[6] + P[14][12]*SF[11] - P[14][10]*SPP[6] - (P[14][11]*q0)/2;
|
||
nextP[14][3] = P[14][3] + P[14][0]*SF[5] + P[14][1]*SF[4] + P[14][2]*SF[7] - P[14][11]*SF[11] + P[14][10]*SPP[7] - (P[14][12]*q0)/2;
|
||
nextP[14][4] = P[14][4] + P[14][1]*SF[1] + P[14][0]*SF[3] + P[14][2]*SPP[0] - P[14][3]*SPP[2] - P[14][13]*SPP[4];
|
||
nextP[14][5] = P[14][5] + P[14][0]*SF[2] + P[14][2]*SF[1] + P[14][3]*SF[3] - P[14][1]*SPP[0] + P[14][13]*SPP[3];
|
||
nextP[14][6] = P[14][6] + P[14][1]*SF[2] + P[14][3]*SF[1] + P[14][0]*SPP[0] - P[14][2]*SPP[1] - P[14][13]*SPP[5];
|
||
nextP[14][7] = P[14][7] + P[14][4]*dt;
|
||
nextP[14][8] = P[14][8] + P[14][5]*dt;
|
||
nextP[14][9] = P[14][9] + P[14][6]*dt;
|
||
nextP[14][10] = P[14][10];
|
||
nextP[14][11] = P[14][11];
|
||
nextP[14][12] = P[14][12];
|
||
nextP[14][13] = P[14][13];
|
||
nextP[14][14] = P[14][14];
|
||
nextP[14][15] = P[14][15];
|
||
nextP[14][16] = P[14][16];
|
||
nextP[14][17] = P[14][17];
|
||
nextP[14][18] = P[14][18];
|
||
nextP[14][19] = P[14][19];
|
||
nextP[14][20] = P[14][20];
|
||
nextP[14][21] = P[14][21];
|
||
nextP[15][0] = P[15][0] + P[15][1]*SF[7] + P[15][2]*SF[9] + P[15][3]*SF[8] + P[15][10]*SF[11] + P[15][11]*SPP[7] + P[15][12]*SPP[6];
|
||
nextP[15][1] = P[15][1] + P[15][0]*SF[6] + P[15][2]*SF[5] + P[15][3]*SF[9] + P[15][11]*SPP[6] - P[15][12]*SPP[7] - (P[15][10]*q0)/2;
|
||
nextP[15][2] = P[15][2] + P[15][0]*SF[4] + P[15][1]*SF[8] + P[15][3]*SF[6] + P[15][12]*SF[11] - P[15][10]*SPP[6] - (P[15][11]*q0)/2;
|
||
nextP[15][3] = P[15][3] + P[15][0]*SF[5] + P[15][1]*SF[4] + P[15][2]*SF[7] - P[15][11]*SF[11] + P[15][10]*SPP[7] - (P[15][12]*q0)/2;
|
||
nextP[15][4] = P[15][4] + P[15][1]*SF[1] + P[15][0]*SF[3] + P[15][2]*SPP[0] - P[15][3]*SPP[2] - P[15][13]*SPP[4];
|
||
nextP[15][5] = P[15][5] + P[15][0]*SF[2] + P[15][2]*SF[1] + P[15][3]*SF[3] - P[15][1]*SPP[0] + P[15][13]*SPP[3];
|
||
nextP[15][6] = P[15][6] + P[15][1]*SF[2] + P[15][3]*SF[1] + P[15][0]*SPP[0] - P[15][2]*SPP[1] - P[15][13]*SPP[5];
|
||
nextP[15][7] = P[15][7] + P[15][4]*dt;
|
||
nextP[15][8] = P[15][8] + P[15][5]*dt;
|
||
nextP[15][9] = P[15][9] + P[15][6]*dt;
|
||
nextP[15][10] = P[15][10];
|
||
nextP[15][11] = P[15][11];
|
||
nextP[15][12] = P[15][12];
|
||
nextP[15][13] = P[15][13];
|
||
nextP[15][14] = P[15][14];
|
||
nextP[15][15] = P[15][15];
|
||
nextP[15][16] = P[15][16];
|
||
nextP[15][17] = P[15][17];
|
||
nextP[15][18] = P[15][18];
|
||
nextP[15][19] = P[15][19];
|
||
nextP[15][20] = P[15][20];
|
||
nextP[15][21] = P[15][21];
|
||
nextP[16][0] = P[16][0] + P[16][1]*SF[7] + P[16][2]*SF[9] + P[16][3]*SF[8] + P[16][10]*SF[11] + P[16][11]*SPP[7] + P[16][12]*SPP[6];
|
||
nextP[16][1] = P[16][1] + P[16][0]*SF[6] + P[16][2]*SF[5] + P[16][3]*SF[9] + P[16][11]*SPP[6] - P[16][12]*SPP[7] - (P[16][10]*q0)/2;
|
||
nextP[16][2] = P[16][2] + P[16][0]*SF[4] + P[16][1]*SF[8] + P[16][3]*SF[6] + P[16][12]*SF[11] - P[16][10]*SPP[6] - (P[16][11]*q0)/2;
|
||
nextP[16][3] = P[16][3] + P[16][0]*SF[5] + P[16][1]*SF[4] + P[16][2]*SF[7] - P[16][11]*SF[11] + P[16][10]*SPP[7] - (P[16][12]*q0)/2;
|
||
nextP[16][4] = P[16][4] + P[16][1]*SF[1] + P[16][0]*SF[3] + P[16][2]*SPP[0] - P[16][3]*SPP[2] - P[16][13]*SPP[4];
|
||
nextP[16][5] = P[16][5] + P[16][0]*SF[2] + P[16][2]*SF[1] + P[16][3]*SF[3] - P[16][1]*SPP[0] + P[16][13]*SPP[3];
|
||
nextP[16][6] = P[16][6] + P[16][1]*SF[2] + P[16][3]*SF[1] + P[16][0]*SPP[0] - P[16][2]*SPP[1] - P[16][13]*SPP[5];
|
||
nextP[16][7] = P[16][7] + P[16][4]*dt;
|
||
nextP[16][8] = P[16][8] + P[16][5]*dt;
|
||
nextP[16][9] = P[16][9] + P[16][6]*dt;
|
||
nextP[16][10] = P[16][10];
|
||
nextP[16][11] = P[16][11];
|
||
nextP[16][12] = P[16][12];
|
||
nextP[16][13] = P[16][13];
|
||
nextP[16][14] = P[16][14];
|
||
nextP[16][15] = P[16][15];
|
||
nextP[16][16] = P[16][16];
|
||
nextP[16][17] = P[16][17];
|
||
nextP[16][18] = P[16][18];
|
||
nextP[16][19] = P[16][19];
|
||
nextP[16][20] = P[16][20];
|
||
nextP[16][21] = P[16][21];
|
||
nextP[17][0] = P[17][0] + P[17][1]*SF[7] + P[17][2]*SF[9] + P[17][3]*SF[8] + P[17][10]*SF[11] + P[17][11]*SPP[7] + P[17][12]*SPP[6];
|
||
nextP[17][1] = P[17][1] + P[17][0]*SF[6] + P[17][2]*SF[5] + P[17][3]*SF[9] + P[17][11]*SPP[6] - P[17][12]*SPP[7] - (P[17][10]*q0)/2;
|
||
nextP[17][2] = P[17][2] + P[17][0]*SF[4] + P[17][1]*SF[8] + P[17][3]*SF[6] + P[17][12]*SF[11] - P[17][10]*SPP[6] - (P[17][11]*q0)/2;
|
||
nextP[17][3] = P[17][3] + P[17][0]*SF[5] + P[17][1]*SF[4] + P[17][2]*SF[7] - P[17][11]*SF[11] + P[17][10]*SPP[7] - (P[17][12]*q0)/2;
|
||
nextP[17][4] = P[17][4] + P[17][1]*SF[1] + P[17][0]*SF[3] + P[17][2]*SPP[0] - P[17][3]*SPP[2] - P[17][13]*SPP[4];
|
||
nextP[17][5] = P[17][5] + P[17][0]*SF[2] + P[17][2]*SF[1] + P[17][3]*SF[3] - P[17][1]*SPP[0] + P[17][13]*SPP[3];
|
||
nextP[17][6] = P[17][6] + P[17][1]*SF[2] + P[17][3]*SF[1] + P[17][0]*SPP[0] - P[17][2]*SPP[1] - P[17][13]*SPP[5];
|
||
nextP[17][7] = P[17][7] + P[17][4]*dt;
|
||
nextP[17][8] = P[17][8] + P[17][5]*dt;
|
||
nextP[17][9] = P[17][9] + P[17][6]*dt;
|
||
nextP[17][10] = P[17][10];
|
||
nextP[17][11] = P[17][11];
|
||
nextP[17][12] = P[17][12];
|
||
nextP[17][13] = P[17][13];
|
||
nextP[17][14] = P[17][14];
|
||
nextP[17][15] = P[17][15];
|
||
nextP[17][16] = P[17][16];
|
||
nextP[17][17] = P[17][17];
|
||
nextP[17][18] = P[17][18];
|
||
nextP[17][19] = P[17][19];
|
||
nextP[17][20] = P[17][20];
|
||
nextP[17][21] = P[17][21];
|
||
nextP[18][0] = P[18][0] + P[18][1]*SF[7] + P[18][2]*SF[9] + P[18][3]*SF[8] + P[18][10]*SF[11] + P[18][11]*SPP[7] + P[18][12]*SPP[6];
|
||
nextP[18][1] = P[18][1] + P[18][0]*SF[6] + P[18][2]*SF[5] + P[18][3]*SF[9] + P[18][11]*SPP[6] - P[18][12]*SPP[7] - (P[18][10]*q0)/2;
|
||
nextP[18][2] = P[18][2] + P[18][0]*SF[4] + P[18][1]*SF[8] + P[18][3]*SF[6] + P[18][12]*SF[11] - P[18][10]*SPP[6] - (P[18][11]*q0)/2;
|
||
nextP[18][3] = P[18][3] + P[18][0]*SF[5] + P[18][1]*SF[4] + P[18][2]*SF[7] - P[18][11]*SF[11] + P[18][10]*SPP[7] - (P[18][12]*q0)/2;
|
||
nextP[18][4] = P[18][4] + P[18][1]*SF[1] + P[18][0]*SF[3] + P[18][2]*SPP[0] - P[18][3]*SPP[2] - P[18][13]*SPP[4];
|
||
nextP[18][5] = P[18][5] + P[18][0]*SF[2] + P[18][2]*SF[1] + P[18][3]*SF[3] - P[18][1]*SPP[0] + P[18][13]*SPP[3];
|
||
nextP[18][6] = P[18][6] + P[18][1]*SF[2] + P[18][3]*SF[1] + P[18][0]*SPP[0] - P[18][2]*SPP[1] - P[18][13]*SPP[5];
|
||
nextP[18][7] = P[18][7] + P[18][4]*dt;
|
||
nextP[18][8] = P[18][8] + P[18][5]*dt;
|
||
nextP[18][9] = P[18][9] + P[18][6]*dt;
|
||
nextP[18][10] = P[18][10];
|
||
nextP[18][11] = P[18][11];
|
||
nextP[18][12] = P[18][12];
|
||
nextP[18][13] = P[18][13];
|
||
nextP[18][14] = P[18][14];
|
||
nextP[18][15] = P[18][15];
|
||
nextP[18][16] = P[18][16];
|
||
nextP[18][17] = P[18][17];
|
||
nextP[18][18] = P[18][18];
|
||
nextP[18][19] = P[18][19];
|
||
nextP[18][20] = P[18][20];
|
||
nextP[18][21] = P[18][21];
|
||
nextP[19][0] = P[19][0] + P[19][1]*SF[7] + P[19][2]*SF[9] + P[19][3]*SF[8] + P[19][10]*SF[11] + P[19][11]*SPP[7] + P[19][12]*SPP[6];
|
||
nextP[19][1] = P[19][1] + P[19][0]*SF[6] + P[19][2]*SF[5] + P[19][3]*SF[9] + P[19][11]*SPP[6] - P[19][12]*SPP[7] - (P[19][10]*q0)/2;
|
||
nextP[19][2] = P[19][2] + P[19][0]*SF[4] + P[19][1]*SF[8] + P[19][3]*SF[6] + P[19][12]*SF[11] - P[19][10]*SPP[6] - (P[19][11]*q0)/2;
|
||
nextP[19][3] = P[19][3] + P[19][0]*SF[5] + P[19][1]*SF[4] + P[19][2]*SF[7] - P[19][11]*SF[11] + P[19][10]*SPP[7] - (P[19][12]*q0)/2;
|
||
nextP[19][4] = P[19][4] + P[19][1]*SF[1] + P[19][0]*SF[3] + P[19][2]*SPP[0] - P[19][3]*SPP[2] - P[19][13]*SPP[4];
|
||
nextP[19][5] = P[19][5] + P[19][0]*SF[2] + P[19][2]*SF[1] + P[19][3]*SF[3] - P[19][1]*SPP[0] + P[19][13]*SPP[3];
|
||
nextP[19][6] = P[19][6] + P[19][1]*SF[2] + P[19][3]*SF[1] + P[19][0]*SPP[0] - P[19][2]*SPP[1] - P[19][13]*SPP[5];
|
||
nextP[19][7] = P[19][7] + P[19][4]*dt;
|
||
nextP[19][8] = P[19][8] + P[19][5]*dt;
|
||
nextP[19][9] = P[19][9] + P[19][6]*dt;
|
||
nextP[19][10] = P[19][10];
|
||
nextP[19][11] = P[19][11];
|
||
nextP[19][12] = P[19][12];
|
||
nextP[19][13] = P[19][13];
|
||
nextP[19][14] = P[19][14];
|
||
nextP[19][15] = P[19][15];
|
||
nextP[19][16] = P[19][16];
|
||
nextP[19][17] = P[19][17];
|
||
nextP[19][18] = P[19][18];
|
||
nextP[19][19] = P[19][19];
|
||
nextP[19][20] = P[19][20];
|
||
nextP[19][21] = P[19][21];
|
||
nextP[20][0] = P[20][0] + P[20][1]*SF[7] + P[20][2]*SF[9] + P[20][3]*SF[8] + P[20][10]*SF[11] + P[20][11]*SPP[7] + P[20][12]*SPP[6];
|
||
nextP[20][1] = P[20][1] + P[20][0]*SF[6] + P[20][2]*SF[5] + P[20][3]*SF[9] + P[20][11]*SPP[6] - P[20][12]*SPP[7] - (P[20][10]*q0)/2;
|
||
nextP[20][2] = P[20][2] + P[20][0]*SF[4] + P[20][1]*SF[8] + P[20][3]*SF[6] + P[20][12]*SF[11] - P[20][10]*SPP[6] - (P[20][11]*q0)/2;
|
||
nextP[20][3] = P[20][3] + P[20][0]*SF[5] + P[20][1]*SF[4] + P[20][2]*SF[7] - P[20][11]*SF[11] + P[20][10]*SPP[7] - (P[20][12]*q0)/2;
|
||
nextP[20][4] = P[20][4] + P[20][1]*SF[1] + P[20][0]*SF[3] + P[20][2]*SPP[0] - P[20][3]*SPP[2] - P[20][13]*SPP[4];
|
||
nextP[20][5] = P[20][5] + P[20][0]*SF[2] + P[20][2]*SF[1] + P[20][3]*SF[3] - P[20][1]*SPP[0] + P[20][13]*SPP[3];
|
||
nextP[20][6] = P[20][6] + P[20][1]*SF[2] + P[20][3]*SF[1] + P[20][0]*SPP[0] - P[20][2]*SPP[1] - P[20][13]*SPP[5];
|
||
nextP[20][7] = P[20][7] + P[20][4]*dt;
|
||
nextP[20][8] = P[20][8] + P[20][5]*dt;
|
||
nextP[20][9] = P[20][9] + P[20][6]*dt;
|
||
nextP[20][10] = P[20][10];
|
||
nextP[20][11] = P[20][11];
|
||
nextP[20][12] = P[20][12];
|
||
nextP[20][13] = P[20][13];
|
||
nextP[20][14] = P[20][14];
|
||
nextP[20][15] = P[20][15];
|
||
nextP[20][16] = P[20][16];
|
||
nextP[20][17] = P[20][17];
|
||
nextP[20][18] = P[20][18];
|
||
nextP[20][19] = P[20][19];
|
||
nextP[20][20] = P[20][20];
|
||
nextP[20][21] = P[20][21];
|
||
nextP[21][0] = P[21][0] + P[21][1]*SF[7] + P[21][2]*SF[9] + P[21][3]*SF[8] + P[21][10]*SF[11] + P[21][11]*SPP[7] + P[21][12]*SPP[6];
|
||
nextP[21][1] = P[21][1] + P[21][0]*SF[6] + P[21][2]*SF[5] + P[21][3]*SF[9] + P[21][11]*SPP[6] - P[21][12]*SPP[7] - (P[21][10]*q0)/2;
|
||
nextP[21][2] = P[21][2] + P[21][0]*SF[4] + P[21][1]*SF[8] + P[21][3]*SF[6] + P[21][12]*SF[11] - P[21][10]*SPP[6] - (P[21][11]*q0)/2;
|
||
nextP[21][3] = P[21][3] + P[21][0]*SF[5] + P[21][1]*SF[4] + P[21][2]*SF[7] - P[21][11]*SF[11] + P[21][10]*SPP[7] - (P[21][12]*q0)/2;
|
||
nextP[21][4] = P[21][4] + P[21][1]*SF[1] + P[21][0]*SF[3] + P[21][2]*SPP[0] - P[21][3]*SPP[2] - P[21][13]*SPP[4];
|
||
nextP[21][5] = P[21][5] + P[21][0]*SF[2] + P[21][2]*SF[1] + P[21][3]*SF[3] - P[21][1]*SPP[0] + P[21][13]*SPP[3];
|
||
nextP[21][6] = P[21][6] + P[21][1]*SF[2] + P[21][3]*SF[1] + P[21][0]*SPP[0] - P[21][2]*SPP[1] - P[21][13]*SPP[5];
|
||
nextP[21][7] = P[21][7] + P[21][4]*dt;
|
||
nextP[21][8] = P[21][8] + P[21][5]*dt;
|
||
nextP[21][9] = P[21][9] + P[21][6]*dt;
|
||
nextP[21][10] = P[21][10];
|
||
nextP[21][11] = P[21][11];
|
||
nextP[21][12] = P[21][12];
|
||
nextP[21][13] = P[21][13];
|
||
nextP[21][14] = P[21][14];
|
||
nextP[21][15] = P[21][15];
|
||
nextP[21][16] = P[21][16];
|
||
nextP[21][17] = P[21][17];
|
||
nextP[21][18] = P[21][18];
|
||
nextP[21][19] = P[21][19];
|
||
nextP[21][20] = P[21][20];
|
||
nextP[21][21] = P[21][21];
|
||
|
||
// add the general state process noise variances
|
||
for (uint8_t i=0; i<= 21; i++)
|
||
{
|
||
nextP[i][i] = nextP[i][i] + processNoise[i];
|
||
}
|
||
|
||
// if the total position variance exceeds 1e4 (100m), then stop covariance
|
||
// growth by setting the predicted to the previous values
|
||
// This prevent an ill conditioned matrix from occurring for long periods
|
||
// without GPS
|
||
if ((P[7][7] + P[8][8]) > 1e4f)
|
||
{
|
||
for (uint8_t i=7; i<=8; i++)
|
||
{
|
||
for (uint8_t j=0; j<=21; j++)
|
||
{
|
||
nextP[i][j] = P[i][j];
|
||
nextP[j][i] = P[j][i];
|
||
}
|
||
}
|
||
}
|
||
|
||
// copy covariances to output and fix numerical errors
|
||
CopyAndFixCovariances();
|
||
|
||
// constrain diagonals to prevent ill-conditioning
|
||
ConstrainVariances();
|
||
|
||
// set the flag to indicate that covariance prediction has been performed and reset the increments used by the covariance prediction
|
||
covPredStep = true;
|
||
summedDelAng.zero();
|
||
summedDelVel.zero();
|
||
dt = 0.0f;
|
||
|
||
hal.util->perf_end(_perf_CovariancePrediction);
|
||
}
|
||
|
||
// fuse selected position, velocity and height measurements
|
||
void NavEKF::FuseVelPosNED()
|
||
{
|
||
// start performance timer
|
||
hal.util->perf_begin(_perf_FuseVelPosNED);
|
||
|
||
// health is set bad until test passed
|
||
velHealth = false;
|
||
posHealth = false;
|
||
hgtHealth = false;
|
||
|
||
// declare variables used to check measurement errors
|
||
Vector3f velInnov;
|
||
Vector3f velInnov1;
|
||
Vector3f velInnov2;
|
||
|
||
// declare variables used to control access to arrays
|
||
bool fuseData[6] = {false,false,false,false,false,false};
|
||
uint8_t stateIndex;
|
||
uint8_t obsIndex;
|
||
|
||
// declare variables used by state and covariance update calculations
|
||
float posErr;
|
||
Vector6 R_OBS; // Measurement variances used for fusion
|
||
Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only
|
||
Vector6 observation;
|
||
float SK;
|
||
|
||
// perform sequential fusion of GPS measurements. This assumes that the
|
||
// errors in the different velocity and position components are
|
||
// uncorrelated which is not true, however in the absence of covariance
|
||
// data from the GPS receiver it is the only assumption we can make
|
||
// so we might as well take advantage of the computational efficiencies
|
||
// associated with sequential fusion
|
||
if (fuseVelData || fusePosData || fuseHgtData) {
|
||
|
||
// if constant position or constant velocity mode use the current states to calculate the predicted
|
||
// measurement rather than use states from a previous time. We need to do this
|
||
// because there may be no stored states due to lack of real measurements.
|
||
if (constPosMode) {
|
||
statesAtPosTime = state;
|
||
} else if (constVelMode) {
|
||
statesAtVelTime = state;
|
||
}
|
||
|
||
// set the GPS data timeout depending on whether airspeed data is present
|
||
uint32_t gpsRetryTime;
|
||
if (useAirspeed()) gpsRetryTime = gpsRetryTimeUseTAS;
|
||
else gpsRetryTime = gpsRetryTimeNoTAS;
|
||
|
||
// form the observation vector and zero velocity and horizontal position observations if in constant position mode
|
||
// If in constant velocity mode, hold the last known horizontal velocity vector
|
||
if (!constPosMode && !constVelMode) {
|
||
observation[0] = velNED.x + gpsVelGlitchOffset.x;
|
||
observation[1] = velNED.y + gpsVelGlitchOffset.y;
|
||
observation[2] = velNED.z;
|
||
observation[3] = gpsPosNE.x + gpsPosGlitchOffsetNE.x;
|
||
observation[4] = gpsPosNE.y + gpsPosGlitchOffsetNE.y;
|
||
} else if (constPosMode){
|
||
for (uint8_t i=0; i<=4; i++) observation[i] = 0.0f;
|
||
} else if (constVelMode) {
|
||
observation[0] = heldVelNE.x;
|
||
observation[1] = heldVelNE.y;
|
||
for (uint8_t i=2; i<=4; i++) observation[i] = 0.0f;
|
||
}
|
||
observation[5] = -hgtMea;
|
||
|
||
// calculate additional error in GPS position caused by manoeuvring
|
||
posErr = gpsPosVarAccScale * accNavMag;
|
||
|
||
// estimate the GPS Velocity, GPS horiz position and height measurement variances.
|
||
// if the GPS is able to report a speed error, we use it to adjust the observation noise for GPS velocity
|
||
// otherwise we scale it using manoeuvre acceleration
|
||
if (gpsSpdAccuracy > 0.0f) {
|
||
// use GPS receivers reported speed accuracy - floor at value set by gps noise parameter
|
||
R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, _gpsHorizVelNoise, 50.0f));
|
||
R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, _gpsVertVelNoise, 50.0f));
|
||
} else {
|
||
// calculate additional error in GPS velocity caused by manoeuvring
|
||
R_OBS[0] = sq(constrain_float(_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(gpsNEVelVarAccScale * accNavMag);
|
||
R_OBS[2] = sq(constrain_float(_gpsVertVelNoise, 0.05f, 5.0f)) + sq(gpsDVelVarAccScale * accNavMag);
|
||
}
|
||
R_OBS[1] = R_OBS[0];
|
||
R_OBS[3] = sq(constrain_float(_gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr);
|
||
R_OBS[4] = R_OBS[3];
|
||
R_OBS[5] = sq(constrain_float(_baroAltNoise, 0.1f, 10.0f));
|
||
|
||
// reduce weighting (increase observation noise) on baro if we are likely to be in ground effect
|
||
if ((getTakeoffExpected() || getTouchdownExpected()) && vehicleArmed) {
|
||
R_OBS[5] *= gndEffectBaroScaler;
|
||
}
|
||
|
||
// For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity
|
||
// For horizontal GPs velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPs perfomrance
|
||
// plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early
|
||
for (uint8_t i=0; i<=1; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(gpsNEVelVarAccScale * accNavMag);
|
||
for (uint8_t i=2; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i];
|
||
|
||
|
||
// if vertical GPS velocity data is being used, check to see if the GPS vertical velocity and barometer
|
||
// innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting
|
||
// the accelerometers and we should disable the GPS and barometer innovation consistency checks.
|
||
if (useGpsVertVel && fuseVelData && (imuSampleTime_ms - lastHgtMeasTime) < (2 * msecHgtAvg)) {
|
||
// calculate innovations for height and vertical GPS vel measurements
|
||
float hgtErr = statesAtHgtTime.position.z - observation[5];
|
||
float velDErr = statesAtVelTime.velocity.z - observation[2];
|
||
// check if they are the same sign and both more than 3-sigma out of bounds
|
||
if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[9][9] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[6][6] + R_OBS_DATA_CHECKS[2]))) {
|
||
badIMUdata = true;
|
||
} else {
|
||
badIMUdata = false;
|
||
}
|
||
}
|
||
|
||
// calculate innovations and check GPS data validity using an innovation consistency check
|
||
// test position measurements
|
||
if (fusePosData) {
|
||
// test horizontal position measurements
|
||
innovVelPos[3] = statesAtPosTime.position.x - observation[3];
|
||
innovVelPos[4] = statesAtPosTime.position.y - observation[4];
|
||
varInnovVelPos[3] = P[7][7] + R_OBS_DATA_CHECKS[3];
|
||
varInnovVelPos[4] = P[8][8] + R_OBS_DATA_CHECKS[4];
|
||
// apply an innovation consistency threshold test, but don't fail if bad IMU data
|
||
// calculate max valid position innovation squared based on a maximum horizontal inertial nav accel error and GPS noise parameter
|
||
// max inertial nav error is scaled with horizontal g to allow for increased errors when manoeuvring
|
||
float accelScale = (1.0f + 0.1f * accNavMag);
|
||
float maxPosInnov2 = sq(_gpsPosInnovGate * _gpsHorizPosNoise) + sq(0.005f * accelScale * float(_gpsGlitchAccelMax) * sq(0.001f * float(imuSampleTime_ms - lastPosPassTime)));
|
||
posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2;
|
||
posHealth = ((posTestRatio < 1.0f) || badIMUdata);
|
||
// declare a timeout condition if we have been too long without data or not aiding
|
||
posTimeout = (((imuSampleTime_ms - lastPosPassTime) > gpsRetryTime) || PV_AidingMode == AID_NONE);
|
||
// use position data if healthy, timed out, or in constant position mode
|
||
if (posHealth || posTimeout || constPosMode) {
|
||
posHealth = true;
|
||
// only reset the failed time and do glitch timeout checks if we are doing full aiding
|
||
if (PV_AidingMode == AID_ABSOLUTE) {
|
||
lastPosPassTime = imuSampleTime_ms;
|
||
// if timed out or outside the specified glitch radius, increment the offset applied to GPS data to compensate for large GPS position jumps
|
||
if (posTimeout || (maxPosInnov2 > sq(float(_gpsGlitchRadiusMax)))) {
|
||
gpsPosGlitchOffsetNE.x += innovVelPos[3];
|
||
gpsPosGlitchOffsetNE.y += innovVelPos[4];
|
||
// limit the radius of the offset and decay the offset to zero radially
|
||
decayGpsOffset();
|
||
// reset the position to the current GPS position which will include the glitch correction offset
|
||
ResetPosition();
|
||
// reset the velocity to the GPS velocity
|
||
ResetVelocity();
|
||
// don't fuse data on this time step
|
||
fusePosData = false;
|
||
// record the fail time
|
||
lastPosFailTime = imuSampleTime_ms;
|
||
// Reset the normalised innovation to avoid false failing the bad position fusion test
|
||
posTestRatio = 0.0f;
|
||
}
|
||
}
|
||
} else {
|
||
posHealth = false;
|
||
}
|
||
}
|
||
|
||
// test velocity measurements
|
||
if (fuseVelData) {
|
||
// test velocity measurements
|
||
uint8_t imax = 2;
|
||
if (_fusionModeGPS == 1 || constVelMode) {
|
||
imax = 1;
|
||
}
|
||
float K1 = 0; // innovation to error ratio for IMU1
|
||
float K2 = 0; // innovation to error ratio for IMU2
|
||
float innovVelSumSq = 0; // sum of squares of velocity innovations
|
||
float varVelSum = 0; // sum of velocity innovation variances
|
||
for (uint8_t i = 0; i<=imax; i++) {
|
||
// velocity states start at index 4
|
||
stateIndex = i + 4;
|
||
// calculate innovations using blended and single IMU predicted states
|
||
velInnov[i] = statesAtVelTime.velocity[i] - observation[i]; // blended
|
||
velInnov1[i] = statesAtVelTime.vel1[i] - observation[i]; // IMU1
|
||
velInnov2[i] = statesAtVelTime.vel2[i] - observation[i]; // IMU2
|
||
// calculate innovation variance
|
||
varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i];
|
||
// calculate error weightings for single IMU velocity states using
|
||
// observation error to normalise
|
||
float R_hgt;
|
||
if (i == 2) {
|
||
R_hgt = sq(constrain_float(_gpsVertVelNoise, 0.05f, 5.0f));
|
||
} else {
|
||
R_hgt = sq(constrain_float(_gpsHorizVelNoise, 0.05f, 5.0f));
|
||
}
|
||
K1 += R_hgt / (R_hgt + sq(velInnov1[i]));
|
||
K2 += R_hgt / (R_hgt + sq(velInnov2[i]));
|
||
// sum the innovation and innovation variances
|
||
innovVelSumSq += sq(velInnov[i]);
|
||
varVelSum += varInnovVelPos[i];
|
||
}
|
||
// calculate weighting used by fuseVelPosNED to do IMU accel data blending
|
||
// this is used to detect and compensate for aliasing errors with the accelerometers
|
||
// provide for a first order lowpass filter to reduce noise on the weighting if required
|
||
// set weighting to 0.5 when on ground to allow more rapid learning of bias errors without 'ringing' in bias estimates
|
||
// NOTE: this weighting can be overwritten in UpdateStrapdownEquationsNED
|
||
if (vehicleArmed) {
|
||
IMU1_weighting = 1.0f * (K1 / (K1 + K2)) + 0.0f * IMU1_weighting; // filter currently inactive
|
||
} else {
|
||
IMU1_weighting = 0.5f;
|
||
}
|
||
// apply an innovation consistency threshold test, but don't fail if bad IMU data
|
||
// calculate the test ratio
|
||
velTestRatio = innovVelSumSq / (varVelSum * sq(_gpsVelInnovGate));
|
||
// fail if the ratio is greater than 1
|
||
velHealth = ((velTestRatio < 1.0f) || badIMUdata);
|
||
// declare a timeout if we have not fused velocity data for too long or not aiding
|
||
velTimeout = (((imuSampleTime_ms - lastVelPassTime) > gpsRetryTime) || PV_AidingMode == AID_NONE);
|
||
// if data is healthy or in constant velocity mode we fuse it
|
||
if (velHealth || velTimeout || constVelMode) {
|
||
velHealth = true;
|
||
// restart the timeout count
|
||
lastVelPassTime = imuSampleTime_ms;
|
||
} else if (velTimeout && !posHealth && PV_AidingMode == AID_ABSOLUTE) {
|
||
// if data is not healthy and timed out and position is unhealthy and we are using aiding, we reset the velocity, but do not fuse data on this time step
|
||
ResetVelocity();
|
||
fuseVelData = false;
|
||
} else {
|
||
// if data is unhealthy and position is healthy, we do not fuse it
|
||
velHealth = false;
|
||
}
|
||
}
|
||
|
||
// test height measurements
|
||
if (fuseHgtData) {
|
||
// calculate height innovations
|
||
innovVelPos[5] = statesAtHgtTime.position.z - observation[5];
|
||
|
||
varInnovVelPos[5] = P[9][9] + R_OBS_DATA_CHECKS[5];
|
||
// calculate the innovation consistency test ratio
|
||
hgtTestRatio = sq(innovVelPos[5]) / (sq(_hgtInnovGate) * varInnovVelPos[5]);
|
||
// fail if the ratio is > 1, but don't fail if bad IMU data
|
||
hgtHealth = ((hgtTestRatio < 1.0f) || badIMUdata);
|
||
hgtTimeout = (imuSampleTime_ms - lastHgtPassTime) > hgtRetryTime;
|
||
// Fuse height data if healthy or timed out or in constant position mode
|
||
if (hgtHealth || hgtTimeout || constPosMode) {
|
||
hgtHealth = true;
|
||
lastHgtPassTime = imuSampleTime_ms;
|
||
// if timed out, reset the height, but do not fuse data on this time step
|
||
if (hgtTimeout) {
|
||
ResetHeight();
|
||
fuseHgtData = false;
|
||
}
|
||
}
|
||
else {
|
||
hgtHealth = false;
|
||
}
|
||
}
|
||
|
||
// set range for sequential fusion of velocity and position measurements depending on which data is available and its health
|
||
if (fuseVelData && useGpsVertVel && velHealth && !constPosMode && PV_AidingMode == AID_ABSOLUTE) {
|
||
fuseData[0] = true;
|
||
fuseData[1] = true;
|
||
fuseData[2] = true;
|
||
}
|
||
if (fuseVelData && _fusionModeGPS == 1 && velHealth && !constPosMode && PV_AidingMode == AID_ABSOLUTE) {
|
||
fuseData[0] = true;
|
||
fuseData[1] = true;
|
||
}
|
||
if ((fusePosData && posHealth && PV_AidingMode == AID_ABSOLUTE) || constPosMode) {
|
||
fuseData[3] = true;
|
||
fuseData[4] = true;
|
||
}
|
||
if ((fuseHgtData && hgtHealth) || constPosMode) {
|
||
fuseData[5] = true;
|
||
}
|
||
if (constVelMode) {
|
||
fuseData[0] = true;
|
||
fuseData[1] = true;
|
||
}
|
||
|
||
// fuse measurements sequentially
|
||
for (obsIndex=0; obsIndex<=5; obsIndex++) {
|
||
if (fuseData[obsIndex]) {
|
||
stateIndex = 4 + obsIndex;
|
||
// calculate the measurement innovation, using states from a different time coordinate if fusing height data
|
||
// adjust scaling on GPS measurement noise variances if not enough satellites
|
||
if (obsIndex <= 2)
|
||
{
|
||
innovVelPos[obsIndex] = statesAtVelTime.velocity[obsIndex] - observation[obsIndex];
|
||
R_OBS[obsIndex] *= sq(gpsNoiseScaler);
|
||
}
|
||
else if (obsIndex == 3 || obsIndex == 4) {
|
||
innovVelPos[obsIndex] = statesAtPosTime.position[obsIndex-3] - observation[obsIndex];
|
||
R_OBS[obsIndex] *= sq(gpsNoiseScaler);
|
||
} else {
|
||
innovVelPos[obsIndex] = statesAtHgtTime.position[obsIndex-3] - observation[obsIndex];
|
||
if (obsIndex == 5) {
|
||
static const float gndMaxBaroErr = 4.0f;
|
||
static const float gndBaroInnovFloor = -0.5f;
|
||
|
||
if(getTouchdownExpected()) {
|
||
// when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor
|
||
// constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr
|
||
// this function looks like this:
|
||
// |/
|
||
//---------|---------
|
||
// ____/|
|
||
// / |
|
||
// / |
|
||
innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr);
|
||
}
|
||
}
|
||
}
|
||
|
||
// calculate the Kalman gain and calculate innovation variances
|
||
varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex];
|
||
SK = 1.0f/varInnovVelPos[obsIndex];
|
||
for (uint8_t i= 0; i<=12; i++) {
|
||
Kfusion[i] = P[i][stateIndex]*SK;
|
||
}
|
||
// Only height and height rate observations are used to update z accel bias estimate
|
||
// Protect Kalman gain from ill-conditioning
|
||
// Don't update Z accel bias if off-level by greater than 60 degrees to avoid scale factor error effects
|
||
// Don't update if we are taking off with ground effect
|
||
if ((obsIndex == 5 || obsIndex == 2) && prevTnb.c.z > 0.5f && !getTakeoffExpected()) {
|
||
Kfusion[13] = constrain_float(P[13][stateIndex]*SK,-1.0f,0.0f);
|
||
} else {
|
||
Kfusion[13] = 0.0f;
|
||
}
|
||
// inhibit wind state estimation by setting Kalman gains to zero
|
||
if (!inhibitWindStates) {
|
||
Kfusion[14] = P[14][stateIndex]*SK;
|
||
Kfusion[15] = P[15][stateIndex]*SK;
|
||
} else {
|
||
Kfusion[14] = 0.0f;
|
||
Kfusion[15] = 0.0f;
|
||
}
|
||
// inhibit magnetic field state estimation by setting Kalman gains to zero
|
||
if (!inhibitMagStates) {
|
||
for (uint8_t i = 16; i<=21; i++) {
|
||
Kfusion[i] = P[i][stateIndex]*SK;
|
||
}
|
||
} else {
|
||
for (uint8_t i = 16; i<=21; i++) {
|
||
Kfusion[i] = 0.0f;
|
||
}
|
||
}
|
||
|
||
// Set the Kalman gain values for the single IMU states
|
||
Kfusion[26] = Kfusion[9]; // IMU1 posD
|
||
Kfusion[30] = Kfusion[9]; // IMU2 posD
|
||
for (uint8_t i = 0; i<=2; i++) {
|
||
Kfusion[i+23] = Kfusion[i+4]; // IMU1 velNED
|
||
Kfusion[i+27] = Kfusion[i+4]; // IMU2 velNED
|
||
}
|
||
// Don't update Z accel bias values for an acceleraometer we have hard switched away from
|
||
if ((IMU1_weighting >= 0.1f) && (IMU1_weighting <= 0.9f)) {
|
||
// both IMU's OK
|
||
Kfusion[22] = Kfusion[13];
|
||
} else if (IMU1_weighting < 0.1f) {
|
||
// IMU1 bad
|
||
Kfusion[22] = Kfusion[13];
|
||
Kfusion[13] = 0.0f;
|
||
} else {
|
||
// IMU2 bad
|
||
Kfusion[22] = 0.0f;
|
||
}
|
||
|
||
// Correct states that have been predicted using single (not blended) IMU data
|
||
if (obsIndex == 5){
|
||
// Calculate height measurement innovations using single IMU states
|
||
float hgtInnov1 = statesAtHgtTime.posD1 - observation[obsIndex];
|
||
float hgtInnov2 = statesAtHgtTime.posD2 - observation[obsIndex];
|
||
|
||
if (vehicleArmed) {
|
||
// Correct single IMU prediction states using height measurement, limiting rate of change of bias to 0.005 m/s3
|
||
float correctionLimit = 0.005f * dtIMUavg * dtVelPos;
|
||
state.accel_zbias1 -= constrain_float(Kfusion[13] * hgtInnov1, -correctionLimit, correctionLimit); // IMU1 Z accel bias
|
||
state.accel_zbias2 -= constrain_float(Kfusion[22] * hgtInnov2, -correctionLimit, correctionLimit); // IMU2 Z accel bias
|
||
} else {
|
||
// When disarmed, do not rate limit accel bias learning
|
||
state.accel_zbias1 -= Kfusion[13] * hgtInnov1; // IMU1 Z accel bias
|
||
state.accel_zbias2 -= Kfusion[22] * hgtInnov2; // IMU2 Z accel bias
|
||
}
|
||
|
||
for (uint8_t i = 23; i<=26; i++) {
|
||
states[i] = states[i] - Kfusion[i] * hgtInnov1; // IMU1 velNED,posD
|
||
}
|
||
for (uint8_t i = 27; i<=30; i++) {
|
||
states[i] = states[i] - Kfusion[i] * hgtInnov2; // IMU2 velNED,posD
|
||
}
|
||
} else if (obsIndex == 0 || obsIndex == 1 || obsIndex == 2) {
|
||
// Correct single IMU prediction states using velocity measurements
|
||
for (uint8_t i = 23; i<=26; i++) {
|
||
states[i] = states[i] - Kfusion[i] * velInnov1[obsIndex]; // IMU1 velNED,posD
|
||
}
|
||
for (uint8_t i = 27; i<=30; i++) {
|
||
states[i] = states[i] - Kfusion[i] * velInnov2[obsIndex]; // IMU2 velNED,posD
|
||
}
|
||
}
|
||
|
||
// calculate state corrections and re-normalise the quaternions for states predicted using the blended IMU data
|
||
// attitude, velocity and position corrections are spread across multiple prediction cycles between now
|
||
// and the anticipated time for the next measurement.
|
||
// Don't spread quaternion corrections if total angle change across predicted interval is going to exceed 0.1 rad
|
||
// Don't apply corrections to Z bias state as this has been done already as part of the single IMU calculations
|
||
bool highRates = ((gpsUpdateCountMax * correctedDelAng.length()) > 0.1f);
|
||
for (uint8_t i = 0; i<=21; i++) {
|
||
if (i != 13) {
|
||
if ((i <= 3 && highRates) || i >= 10 || constPosMode || constVelMode) {
|
||
states[i] = states[i] - Kfusion[i] * innovVelPos[obsIndex];
|
||
} else {
|
||
if (obsIndex == 5) {
|
||
hgtIncrStateDelta[i] -= Kfusion[i] * innovVelPos[obsIndex] * hgtUpdateCountMaxInv;
|
||
} else {
|
||
gpsIncrStateDelta[i] -= Kfusion[i] * innovVelPos[obsIndex] * gpsUpdateCountMaxInv;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
state.quat.normalize();
|
||
|
||
// update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations
|
||
// this is a numerically optimised implementation of standard equation P = (I - K*H)*P;
|
||
for (uint8_t i= 0; i<=21; i++) {
|
||
for (uint8_t j= 0; j<=21; j++)
|
||
{
|
||
KHP[i][j] = Kfusion[i] * P[stateIndex][j];
|
||
}
|
||
}
|
||
for (uint8_t i= 0; i<=21; i++) {
|
||
for (uint8_t j= 0; j<=21; j++) {
|
||
P[i][j] = P[i][j] - KHP[i][j];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning.
|
||
ForceSymmetry();
|
||
ConstrainVariances();
|
||
|
||
// stop performance timer
|
||
hal.util->perf_end(_perf_FuseVelPosNED);
|
||
}
|
||
|
||
// fuse magnetometer measurements and apply innovation consistency checks
|
||
// fuse each axis on consecutive time steps to spread computional load
|
||
void NavEKF::FuseMagnetometer()
|
||
{
|
||
// declarations
|
||
ftype &q0 = mag_state.q0;
|
||
ftype &q1 = mag_state.q1;
|
||
ftype &q2 = mag_state.q2;
|
||
ftype &q3 = mag_state.q3;
|
||
ftype &magN = mag_state.magN;
|
||
ftype &magE = mag_state.magE;
|
||
ftype &magD = mag_state.magD;
|
||
ftype &magXbias = mag_state.magXbias;
|
||
ftype &magYbias = mag_state.magYbias;
|
||
ftype &magZbias = mag_state.magZbias;
|
||
uint8_t &obsIndex = mag_state.obsIndex;
|
||
Matrix3f &DCM = mag_state.DCM;
|
||
Vector3f &MagPred = mag_state.MagPred;
|
||
ftype &R_MAG = mag_state.R_MAG;
|
||
ftype *SH_MAG = &mag_state.SH_MAG[0];
|
||
Vector22 H_MAG;
|
||
Vector6 SK_MX;
|
||
Vector6 SK_MY;
|
||
Vector6 SK_MZ;
|
||
|
||
// perform sequential fusion of magnetometer measurements.
|
||
// this assumes that the errors in the different components are
|
||
// uncorrelated which is not true, however in the absence of covariance
|
||
// data fit is the only assumption we can make
|
||
// so we might as well take advantage of the computational efficiencies
|
||
// associated with sequential fusion
|
||
// calculate observation jacobians and Kalman gains
|
||
if (obsIndex == 0)
|
||
{
|
||
// copy required states to local variable names
|
||
q0 = statesAtMagMeasTime.quat[0];
|
||
q1 = statesAtMagMeasTime.quat[1];
|
||
q2 = statesAtMagMeasTime.quat[2];
|
||
q3 = statesAtMagMeasTime.quat[3];
|
||
magN = statesAtMagMeasTime.earth_magfield[0];
|
||
magE = statesAtMagMeasTime.earth_magfield[1];
|
||
magD = statesAtMagMeasTime.earth_magfield[2];
|
||
magXbias = statesAtMagMeasTime.body_magfield[0];
|
||
magYbias = statesAtMagMeasTime.body_magfield[1];
|
||
magZbias = statesAtMagMeasTime.body_magfield[2];
|
||
|
||
// rotate predicted earth components into body axes and calculate
|
||
// predicted measurements
|
||
DCM[0][0] = q0*q0 + q1*q1 - q2*q2 - q3*q3;
|
||
DCM[0][1] = 2*(q1*q2 + q0*q3);
|
||
DCM[0][2] = 2*(q1*q3-q0*q2);
|
||
DCM[1][0] = 2*(q1*q2 - q0*q3);
|
||
DCM[1][1] = q0*q0 - q1*q1 + q2*q2 - q3*q3;
|
||
DCM[1][2] = 2*(q2*q3 + q0*q1);
|
||
DCM[2][0] = 2*(q1*q3 + q0*q2);
|
||
DCM[2][1] = 2*(q2*q3 - q0*q1);
|
||
DCM[2][2] = q0*q0 - q1*q1 - q2*q2 + q3*q3;
|
||
MagPred[0] = DCM[0][0]*magN + DCM[0][1]*magE + DCM[0][2]*magD + magXbias;
|
||
MagPred[1] = DCM[1][0]*magN + DCM[1][1]*magE + DCM[1][2]*magD + magYbias;
|
||
MagPred[2] = DCM[2][0]*magN + DCM[2][1]*magE + DCM[2][2]*magD + magZbias;
|
||
|
||
// scale magnetometer observation error with total angular rate
|
||
R_MAG = sq(constrain_float(_magNoise, 0.01f, 0.5f)) + sq(magVarRateScale*dAngIMU.length() / dtIMUavg);
|
||
|
||
// calculate observation jacobians
|
||
SH_MAG[0] = 2*magD*q3 + 2*magE*q2 + 2*magN*q1;
|
||
SH_MAG[1] = 2*magD*q0 - 2*magE*q1 + 2*magN*q2;
|
||
SH_MAG[2] = 2*magD*q1 + 2*magE*q0 - 2*magN*q3;
|
||
SH_MAG[3] = sq(q3);
|
||
SH_MAG[4] = sq(q2);
|
||
SH_MAG[5] = sq(q1);
|
||
SH_MAG[6] = sq(q0);
|
||
SH_MAG[7] = 2*magN*q0;
|
||
SH_MAG[8] = 2*magE*q3;
|
||
for (uint8_t i=0; i<=21; i++) H_MAG[i] = 0;
|
||
H_MAG[0] = SH_MAG[7] + SH_MAG[8] - 2*magD*q2;
|
||
H_MAG[1] = SH_MAG[0];
|
||
H_MAG[2] = 2*magE*q1 - 2*magD*q0 - 2*magN*q2;
|
||
H_MAG[3] = SH_MAG[2];
|
||
H_MAG[16] = SH_MAG[5] - SH_MAG[4] - SH_MAG[3] + SH_MAG[6];
|
||
H_MAG[17] = 2*q0*q3 + 2*q1*q2;
|
||
H_MAG[18] = 2*q1*q3 - 2*q0*q2;
|
||
H_MAG[19] = 1;
|
||
|
||
// calculate Kalman gain
|
||
float temp = (P[19][19] + R_MAG + P[1][19]*SH_MAG[0] + P[3][19]*SH_MAG[2] - P[16][19]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) - (2*magD*q0 - 2*magE*q1 + 2*magN*q2)*(P[19][2] + P[1][2]*SH_MAG[0] + P[3][2]*SH_MAG[2] - P[16][2]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][2]*(2*q0*q3 + 2*q1*q2) - P[18][2]*(2*q0*q2 - 2*q1*q3) - P[2][2]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[19][0] + P[1][0]*SH_MAG[0] + P[3][0]*SH_MAG[2] - P[16][0]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][0]*(2*q0*q3 + 2*q1*q2) - P[18][0]*(2*q0*q2 - 2*q1*q3) - P[2][0]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[0]*(P[19][1] + P[1][1]*SH_MAG[0] + P[3][1]*SH_MAG[2] - P[16][1]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][1]*(2*q0*q3 + 2*q1*q2) - P[18][1]*(2*q0*q2 - 2*q1*q3) - P[2][1]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[2]*(P[19][3] + P[1][3]*SH_MAG[0] + P[3][3]*SH_MAG[2] - P[16][3]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][3]*(2*q0*q3 + 2*q1*q2) - P[18][3]*(2*q0*q2 - 2*q1*q3) - P[2][3]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6])*(P[19][16] + P[1][16]*SH_MAG[0] + P[3][16]*SH_MAG[2] - P[16][16]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][16]*(2*q0*q3 + 2*q1*q2) - P[18][16]*(2*q0*q2 - 2*q1*q3) - P[2][16]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[17][19]*(2*q0*q3 + 2*q1*q2) - P[18][19]*(2*q0*q2 - 2*q1*q3) - P[2][19]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + (2*q0*q3 + 2*q1*q2)*(P[19][17] + P[1][17]*SH_MAG[0] + P[3][17]*SH_MAG[2] - P[16][17]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][17]*(2*q0*q3 + 2*q1*q2) - P[18][17]*(2*q0*q2 - 2*q1*q3) - P[2][17]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (2*q0*q2 - 2*q1*q3)*(P[19][18] + P[1][18]*SH_MAG[0] + P[3][18]*SH_MAG[2] - P[16][18]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][18]*(2*q0*q3 + 2*q1*q2) - P[18][18]*(2*q0*q2 - 2*q1*q3) - P[2][18]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][18]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[0][19]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2));
|
||
if (temp >= R_MAG) {
|
||
SK_MX[0] = 1.0f / temp;
|
||
faultStatus.bad_xmag = false;
|
||
} else {
|
||
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
||
// we reset the covariance matrix and try again next measurement
|
||
CovarianceInit();
|
||
obsIndex = 1;
|
||
faultStatus.bad_xmag = true;
|
||
return;
|
||
}
|
||
SK_MX[1] = SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6];
|
||
SK_MX[2] = 2*magD*q0 - 2*magE*q1 + 2*magN*q2;
|
||
SK_MX[3] = SH_MAG[7] + SH_MAG[8] - 2*magD*q2;
|
||
SK_MX[4] = 2*q0*q2 - 2*q1*q3;
|
||
SK_MX[5] = 2*q0*q3 + 2*q1*q2;
|
||
Kfusion[0] = SK_MX[0]*(P[0][19] + P[0][1]*SH_MAG[0] + P[0][3]*SH_MAG[2] + P[0][0]*SK_MX[3] - P[0][2]*SK_MX[2] - P[0][16]*SK_MX[1] + P[0][17]*SK_MX[5] - P[0][18]*SK_MX[4]);
|
||
Kfusion[1] = SK_MX[0]*(P[1][19] + P[1][1]*SH_MAG[0] + P[1][3]*SH_MAG[2] + P[1][0]*SK_MX[3] - P[1][2]*SK_MX[2] - P[1][16]*SK_MX[1] + P[1][17]*SK_MX[5] - P[1][18]*SK_MX[4]);
|
||
Kfusion[2] = SK_MX[0]*(P[2][19] + P[2][1]*SH_MAG[0] + P[2][3]*SH_MAG[2] + P[2][0]*SK_MX[3] - P[2][2]*SK_MX[2] - P[2][16]*SK_MX[1] + P[2][17]*SK_MX[5] - P[2][18]*SK_MX[4]);
|
||
Kfusion[3] = SK_MX[0]*(P[3][19] + P[3][1]*SH_MAG[0] + P[3][3]*SH_MAG[2] + P[3][0]*SK_MX[3] - P[3][2]*SK_MX[2] - P[3][16]*SK_MX[1] + P[3][17]*SK_MX[5] - P[3][18]*SK_MX[4]);
|
||
Kfusion[4] = SK_MX[0]*(P[4][19] + P[4][1]*SH_MAG[0] + P[4][3]*SH_MAG[2] + P[4][0]*SK_MX[3] - P[4][2]*SK_MX[2] - P[4][16]*SK_MX[1] + P[4][17]*SK_MX[5] - P[4][18]*SK_MX[4]);
|
||
Kfusion[5] = SK_MX[0]*(P[5][19] + P[5][1]*SH_MAG[0] + P[5][3]*SH_MAG[2] + P[5][0]*SK_MX[3] - P[5][2]*SK_MX[2] - P[5][16]*SK_MX[1] + P[5][17]*SK_MX[5] - P[5][18]*SK_MX[4]);
|
||
Kfusion[6] = SK_MX[0]*(P[6][19] + P[6][1]*SH_MAG[0] + P[6][3]*SH_MAG[2] + P[6][0]*SK_MX[3] - P[6][2]*SK_MX[2] - P[6][16]*SK_MX[1] + P[6][17]*SK_MX[5] - P[6][18]*SK_MX[4]);
|
||
Kfusion[7] = SK_MX[0]*(P[7][19] + P[7][1]*SH_MAG[0] + P[7][3]*SH_MAG[2] + P[7][0]*SK_MX[3] - P[7][2]*SK_MX[2] - P[7][16]*SK_MX[1] + P[7][17]*SK_MX[5] - P[7][18]*SK_MX[4]);
|
||
Kfusion[8] = SK_MX[0]*(P[8][19] + P[8][1]*SH_MAG[0] + P[8][3]*SH_MAG[2] + P[8][0]*SK_MX[3] - P[8][2]*SK_MX[2] - P[8][16]*SK_MX[1] + P[8][17]*SK_MX[5] - P[8][18]*SK_MX[4]);
|
||
Kfusion[9] = SK_MX[0]*(P[9][19] + P[9][1]*SH_MAG[0] + P[9][3]*SH_MAG[2] + P[9][0]*SK_MX[3] - P[9][2]*SK_MX[2] - P[9][16]*SK_MX[1] + P[9][17]*SK_MX[5] - P[9][18]*SK_MX[4]);
|
||
Kfusion[10] = SK_MX[0]*(P[10][19] + P[10][1]*SH_MAG[0] + P[10][3]*SH_MAG[2] + P[10][0]*SK_MX[3] - P[10][2]*SK_MX[2] - P[10][16]*SK_MX[1] + P[10][17]*SK_MX[5] - P[10][18]*SK_MX[4]);
|
||
Kfusion[11] = SK_MX[0]*(P[11][19] + P[11][1]*SH_MAG[0] + P[11][3]*SH_MAG[2] + P[11][0]*SK_MX[3] - P[11][2]*SK_MX[2] - P[11][16]*SK_MX[1] + P[11][17]*SK_MX[5] - P[11][18]*SK_MX[4]);
|
||
Kfusion[12] = SK_MX[0]*(P[12][19] + P[12][1]*SH_MAG[0] + P[12][3]*SH_MAG[2] + P[12][0]*SK_MX[3] - P[12][2]*SK_MX[2] - P[12][16]*SK_MX[1] + P[12][17]*SK_MX[5] - P[12][18]*SK_MX[4]);
|
||
// this term has been zeroed to improve stability of the Z accel bias
|
||
Kfusion[13] = 0.0f;//SK_MX[0]*(P[13][19] + P[13][1]*SH_MAG[0] + P[13][3]*SH_MAG[2] + P[13][0]*SK_MX[3] - P[13][2]*SK_MX[2] - P[13][16]*SK_MX[1] + P[13][17]*SK_MX[5] - P[13][18]*SK_MX[4]);
|
||
// zero Kalman gains to inhibit wind state estimation
|
||
if (!inhibitWindStates) {
|
||
Kfusion[14] = SK_MX[0]*(P[14][19] + P[14][1]*SH_MAG[0] + P[14][3]*SH_MAG[2] + P[14][0]*SK_MX[3] - P[14][2]*SK_MX[2] - P[14][16]*SK_MX[1] + P[14][17]*SK_MX[5] - P[14][18]*SK_MX[4]);
|
||
Kfusion[15] = SK_MX[0]*(P[15][19] + P[15][1]*SH_MAG[0] + P[15][3]*SH_MAG[2] + P[15][0]*SK_MX[3] - P[15][2]*SK_MX[2] - P[15][16]*SK_MX[1] + P[15][17]*SK_MX[5] - P[15][18]*SK_MX[4]);
|
||
} else {
|
||
Kfusion[14] = 0.0f;
|
||
Kfusion[15] = 0.0f;
|
||
}
|
||
// zero Kalman gains to inhibit magnetic field state estimation
|
||
if (!inhibitMagStates) {
|
||
Kfusion[16] = SK_MX[0]*(P[16][19] + P[16][1]*SH_MAG[0] + P[16][3]*SH_MAG[2] + P[16][0]*SK_MX[3] - P[16][2]*SK_MX[2] - P[16][16]*SK_MX[1] + P[16][17]*SK_MX[5] - P[16][18]*SK_MX[4]);
|
||
Kfusion[17] = SK_MX[0]*(P[17][19] + P[17][1]*SH_MAG[0] + P[17][3]*SH_MAG[2] + P[17][0]*SK_MX[3] - P[17][2]*SK_MX[2] - P[17][16]*SK_MX[1] + P[17][17]*SK_MX[5] - P[17][18]*SK_MX[4]);
|
||
Kfusion[18] = SK_MX[0]*(P[18][19] + P[18][1]*SH_MAG[0] + P[18][3]*SH_MAG[2] + P[18][0]*SK_MX[3] - P[18][2]*SK_MX[2] - P[18][16]*SK_MX[1] + P[18][17]*SK_MX[5] - P[18][18]*SK_MX[4]);
|
||
Kfusion[19] = SK_MX[0]*(P[19][19] + P[19][1]*SH_MAG[0] + P[19][3]*SH_MAG[2] + P[19][0]*SK_MX[3] - P[19][2]*SK_MX[2] - P[19][16]*SK_MX[1] + P[19][17]*SK_MX[5] - P[19][18]*SK_MX[4]);
|
||
Kfusion[20] = SK_MX[0]*(P[20][19] + P[20][1]*SH_MAG[0] + P[20][3]*SH_MAG[2] + P[20][0]*SK_MX[3] - P[20][2]*SK_MX[2] - P[20][16]*SK_MX[1] + P[20][17]*SK_MX[5] - P[20][18]*SK_MX[4]);
|
||
Kfusion[21] = SK_MX[0]*(P[21][19] + P[21][1]*SH_MAG[0] + P[21][3]*SH_MAG[2] + P[21][0]*SK_MX[3] - P[21][2]*SK_MX[2] - P[21][16]*SK_MX[1] + P[21][17]*SK_MX[5] - P[21][18]*SK_MX[4]);
|
||
} else {
|
||
for (uint8_t i=16; i<=21; i++) {
|
||
Kfusion[i] = 0.0f;
|
||
}
|
||
}
|
||
|
||
// calculate the observation innovation variance
|
||
varInnovMag[0] = 1.0f/SK_MX[0];
|
||
|
||
// reset the observation index to 0 (we start by fusing the X measurement)
|
||
obsIndex = 0;
|
||
|
||
// set flags to indicate to other processes that fusion has been performed and is required on the next frame
|
||
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
||
magFusePerformed = true;
|
||
magFuseRequired = true;
|
||
}
|
||
else if (obsIndex == 1) // we are now fusing the Y measurement
|
||
{
|
||
// calculate observation jacobians
|
||
for (uint8_t i=0; i<=21; i++) H_MAG[i] = 0;
|
||
H_MAG[0] = SH_MAG[2];
|
||
H_MAG[1] = SH_MAG[1];
|
||
H_MAG[2] = SH_MAG[0];
|
||
H_MAG[3] = 2*magD*q2 - SH_MAG[8] - SH_MAG[7];
|
||
H_MAG[16] = 2*q1*q2 - 2*q0*q3;
|
||
H_MAG[17] = SH_MAG[4] - SH_MAG[3] - SH_MAG[5] + SH_MAG[6];
|
||
H_MAG[18] = 2*q0*q1 + 2*q2*q3;
|
||
H_MAG[20] = 1;
|
||
|
||
// calculate Kalman gain
|
||
float temp = (P[20][20] + R_MAG + P[0][20]*SH_MAG[2] + P[1][20]*SH_MAG[1] + P[2][20]*SH_MAG[0] - P[17][20]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - (2*q0*q3 - 2*q1*q2)*(P[20][16] + P[0][16]*SH_MAG[2] + P[1][16]*SH_MAG[1] + P[2][16]*SH_MAG[0] - P[17][16]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][16]*(2*q0*q3 - 2*q1*q2) + P[18][16]*(2*q0*q1 + 2*q2*q3) - P[3][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (2*q0*q1 + 2*q2*q3)*(P[20][18] + P[0][18]*SH_MAG[2] + P[1][18]*SH_MAG[1] + P[2][18]*SH_MAG[0] - P[17][18]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][18]*(2*q0*q3 - 2*q1*q2) + P[18][18]*(2*q0*q1 + 2*q2*q3) - P[3][18]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[20][3] + P[0][3]*SH_MAG[2] + P[1][3]*SH_MAG[1] + P[2][3]*SH_MAG[0] - P[17][3]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][3]*(2*q0*q3 - 2*q1*q2) + P[18][3]*(2*q0*q1 + 2*q2*q3) - P[3][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - P[16][20]*(2*q0*q3 - 2*q1*q2) + P[18][20]*(2*q0*q1 + 2*q2*q3) + SH_MAG[2]*(P[20][0] + P[0][0]*SH_MAG[2] + P[1][0]*SH_MAG[1] + P[2][0]*SH_MAG[0] - P[17][0]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][0]*(2*q0*q3 - 2*q1*q2) + P[18][0]*(2*q0*q1 + 2*q2*q3) - P[3][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[1]*(P[20][1] + P[0][1]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[2][1]*SH_MAG[0] - P[17][1]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][1]*(2*q0*q3 - 2*q1*q2) + P[18][1]*(2*q0*q1 + 2*q2*q3) - P[3][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[0]*(P[20][2] + P[0][2]*SH_MAG[2] + P[1][2]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[17][2]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][2]*(2*q0*q3 - 2*q1*q2) + P[18][2]*(2*q0*q1 + 2*q2*q3) - P[3][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6])*(P[20][17] + P[0][17]*SH_MAG[2] + P[1][17]*SH_MAG[1] + P[2][17]*SH_MAG[0] - P[17][17]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][17]*(2*q0*q3 - 2*q1*q2) + P[18][17]*(2*q0*q1 + 2*q2*q3) - P[3][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - P[3][20]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2));
|
||
if (temp >= R_MAG) {
|
||
SK_MY[0] = 1.0f / temp;
|
||
faultStatus.bad_ymag = false;
|
||
} else {
|
||
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
||
// we reset the covariance matrix and try again next measurement
|
||
CovarianceInit();
|
||
obsIndex = 2;
|
||
faultStatus.bad_ymag = true;
|
||
return;
|
||
}
|
||
SK_MY[1] = SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6];
|
||
SK_MY[2] = SH_MAG[7] + SH_MAG[8] - 2*magD*q2;
|
||
SK_MY[3] = 2*q0*q3 - 2*q1*q2;
|
||
SK_MY[4] = 2*q0*q1 + 2*q2*q3;
|
||
Kfusion[0] = SK_MY[0]*(P[0][20] + P[0][0]*SH_MAG[2] + P[0][1]*SH_MAG[1] + P[0][2]*SH_MAG[0] - P[0][3]*SK_MY[2] - P[0][17]*SK_MY[1] - P[0][16]*SK_MY[3] + P[0][18]*SK_MY[4]);
|
||
Kfusion[1] = SK_MY[0]*(P[1][20] + P[1][0]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[1][2]*SH_MAG[0] - P[1][3]*SK_MY[2] - P[1][17]*SK_MY[1] - P[1][16]*SK_MY[3] + P[1][18]*SK_MY[4]);
|
||
Kfusion[2] = SK_MY[0]*(P[2][20] + P[2][0]*SH_MAG[2] + P[2][1]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[2][3]*SK_MY[2] - P[2][17]*SK_MY[1] - P[2][16]*SK_MY[3] + P[2][18]*SK_MY[4]);
|
||
Kfusion[3] = SK_MY[0]*(P[3][20] + P[3][0]*SH_MAG[2] + P[3][1]*SH_MAG[1] + P[3][2]*SH_MAG[0] - P[3][3]*SK_MY[2] - P[3][17]*SK_MY[1] - P[3][16]*SK_MY[3] + P[3][18]*SK_MY[4]);
|
||
Kfusion[4] = SK_MY[0]*(P[4][20] + P[4][0]*SH_MAG[2] + P[4][1]*SH_MAG[1] + P[4][2]*SH_MAG[0] - P[4][3]*SK_MY[2] - P[4][17]*SK_MY[1] - P[4][16]*SK_MY[3] + P[4][18]*SK_MY[4]);
|
||
Kfusion[5] = SK_MY[0]*(P[5][20] + P[5][0]*SH_MAG[2] + P[5][1]*SH_MAG[1] + P[5][2]*SH_MAG[0] - P[5][3]*SK_MY[2] - P[5][17]*SK_MY[1] - P[5][16]*SK_MY[3] + P[5][18]*SK_MY[4]);
|
||
Kfusion[6] = SK_MY[0]*(P[6][20] + P[6][0]*SH_MAG[2] + P[6][1]*SH_MAG[1] + P[6][2]*SH_MAG[0] - P[6][3]*SK_MY[2] - P[6][17]*SK_MY[1] - P[6][16]*SK_MY[3] + P[6][18]*SK_MY[4]);
|
||
Kfusion[7] = SK_MY[0]*(P[7][20] + P[7][0]*SH_MAG[2] + P[7][1]*SH_MAG[1] + P[7][2]*SH_MAG[0] - P[7][3]*SK_MY[2] - P[7][17]*SK_MY[1] - P[7][16]*SK_MY[3] + P[7][18]*SK_MY[4]);
|
||
Kfusion[8] = SK_MY[0]*(P[8][20] + P[8][0]*SH_MAG[2] + P[8][1]*SH_MAG[1] + P[8][2]*SH_MAG[0] - P[8][3]*SK_MY[2] - P[8][17]*SK_MY[1] - P[8][16]*SK_MY[3] + P[8][18]*SK_MY[4]);
|
||
Kfusion[9] = SK_MY[0]*(P[9][20] + P[9][0]*SH_MAG[2] + P[9][1]*SH_MAG[1] + P[9][2]*SH_MAG[0] - P[9][3]*SK_MY[2] - P[9][17]*SK_MY[1] - P[9][16]*SK_MY[3] + P[9][18]*SK_MY[4]);
|
||
Kfusion[10] = SK_MY[0]*(P[10][20] + P[10][0]*SH_MAG[2] + P[10][1]*SH_MAG[1] + P[10][2]*SH_MAG[0] - P[10][3]*SK_MY[2] - P[10][17]*SK_MY[1] - P[10][16]*SK_MY[3] + P[10][18]*SK_MY[4]);
|
||
Kfusion[11] = SK_MY[0]*(P[11][20] + P[11][0]*SH_MAG[2] + P[11][1]*SH_MAG[1] + P[11][2]*SH_MAG[0] - P[11][3]*SK_MY[2] - P[11][17]*SK_MY[1] - P[11][16]*SK_MY[3] + P[11][18]*SK_MY[4]);
|
||
Kfusion[12] = SK_MY[0]*(P[12][20] + P[12][0]*SH_MAG[2] + P[12][1]*SH_MAG[1] + P[12][2]*SH_MAG[0] - P[12][3]*SK_MY[2] - P[12][17]*SK_MY[1] - P[12][16]*SK_MY[3] + P[12][18]*SK_MY[4]);
|
||
// this term has been zeroed to improve stability of the Z accel bias
|
||
Kfusion[13] = 0.0f;//SK_MY[0]*(P[13][20] + P[13][0]*SH_MAG[2] + P[13][1]*SH_MAG[1] + P[13][2]*SH_MAG[0] - P[13][3]*SK_MY[2] - P[13][17]*SK_MY[1] - P[13][16]*SK_MY[3] + P[13][18]*SK_MY[4]);
|
||
// zero Kalman gains to inhibit wind state estimation
|
||
if (!inhibitWindStates) {
|
||
Kfusion[14] = SK_MY[0]*(P[14][20] + P[14][0]*SH_MAG[2] + P[14][1]*SH_MAG[1] + P[14][2]*SH_MAG[0] - P[14][3]*SK_MY[2] - P[14][17]*SK_MY[1] - P[14][16]*SK_MY[3] + P[14][18]*SK_MY[4]);
|
||
Kfusion[15] = SK_MY[0]*(P[15][20] + P[15][0]*SH_MAG[2] + P[15][1]*SH_MAG[1] + P[15][2]*SH_MAG[0] - P[15][3]*SK_MY[2] - P[15][17]*SK_MY[1] - P[15][16]*SK_MY[3] + P[15][18]*SK_MY[4]);
|
||
} else {
|
||
Kfusion[14] = 0.0f;
|
||
Kfusion[15] = 0.0f;
|
||
}
|
||
// zero Kalman gains to inhibit magnetic field state estimation
|
||
if (!inhibitMagStates) {
|
||
Kfusion[16] = SK_MY[0]*(P[16][20] + P[16][0]*SH_MAG[2] + P[16][1]*SH_MAG[1] + P[16][2]*SH_MAG[0] - P[16][3]*SK_MY[2] - P[16][17]*SK_MY[1] - P[16][16]*SK_MY[3] + P[16][18]*SK_MY[4]);
|
||
Kfusion[17] = SK_MY[0]*(P[17][20] + P[17][0]*SH_MAG[2] + P[17][1]*SH_MAG[1] + P[17][2]*SH_MAG[0] - P[17][3]*SK_MY[2] - P[17][17]*SK_MY[1] - P[17][16]*SK_MY[3] + P[17][18]*SK_MY[4]);
|
||
Kfusion[18] = SK_MY[0]*(P[18][20] + P[18][0]*SH_MAG[2] + P[18][1]*SH_MAG[1] + P[18][2]*SH_MAG[0] - P[18][3]*SK_MY[2] - P[18][17]*SK_MY[1] - P[18][16]*SK_MY[3] + P[18][18]*SK_MY[4]);
|
||
Kfusion[19] = SK_MY[0]*(P[19][20] + P[19][0]*SH_MAG[2] + P[19][1]*SH_MAG[1] + P[19][2]*SH_MAG[0] - P[19][3]*SK_MY[2] - P[19][17]*SK_MY[1] - P[19][16]*SK_MY[3] + P[19][18]*SK_MY[4]);
|
||
Kfusion[20] = SK_MY[0]*(P[20][20] + P[20][0]*SH_MAG[2] + P[20][1]*SH_MAG[1] + P[20][2]*SH_MAG[0] - P[20][3]*SK_MY[2] - P[20][17]*SK_MY[1] - P[20][16]*SK_MY[3] + P[20][18]*SK_MY[4]);
|
||
Kfusion[21] = SK_MY[0]*(P[21][20] + P[21][0]*SH_MAG[2] + P[21][1]*SH_MAG[1] + P[21][2]*SH_MAG[0] - P[21][3]*SK_MY[2] - P[21][17]*SK_MY[1] - P[21][16]*SK_MY[3] + P[21][18]*SK_MY[4]);
|
||
} else {
|
||
for (uint8_t i=16; i<=21; i++) {
|
||
Kfusion[i] = 0.0f;
|
||
}
|
||
}
|
||
|
||
// calculate the observation innovation variance
|
||
varInnovMag[1] = 1.0f/SK_MY[0];
|
||
|
||
// set flags to indicate to other processes that fusion has been performede and is required on the next frame
|
||
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
||
magFusePerformed = true;
|
||
magFuseRequired = true;
|
||
}
|
||
else if (obsIndex == 2) // we are now fusing the Z measurement
|
||
{
|
||
// calculate observation jacobians
|
||
for (uint8_t i=0; i<=21; i++) H_MAG[i] = 0;
|
||
H_MAG[0] = SH_MAG[1];
|
||
H_MAG[1] = 2*magN*q3 - 2*magE*q0 - 2*magD*q1;
|
||
H_MAG[2] = SH_MAG[7] + SH_MAG[8] - 2*magD*q2;
|
||
H_MAG[3] = SH_MAG[0];
|
||
H_MAG[16] = 2*q0*q2 + 2*q1*q3;
|
||
H_MAG[17] = 2*q2*q3 - 2*q0*q1;
|
||
H_MAG[18] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
|
||
H_MAG[21] = 1;
|
||
|
||
// calculate Kalman gain
|
||
float temp = (P[21][21] + R_MAG + P[0][21]*SH_MAG[1] + P[3][21]*SH_MAG[0] + P[18][21]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) - (2*magD*q1 + 2*magE*q0 - 2*magN*q3)*(P[21][1] + P[0][1]*SH_MAG[1] + P[3][1]*SH_MAG[0] + P[18][1]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][1]*(2*q0*q2 + 2*q1*q3) - P[17][1]*(2*q0*q1 - 2*q2*q3) - P[1][1]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[21][2] + P[0][2]*SH_MAG[1] + P[3][2]*SH_MAG[0] + P[18][2]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][2]*(2*q0*q2 + 2*q1*q3) - P[17][2]*(2*q0*q1 - 2*q2*q3) - P[1][2]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[1]*(P[21][0] + P[0][0]*SH_MAG[1] + P[3][0]*SH_MAG[0] + P[18][0]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][0]*(2*q0*q2 + 2*q1*q3) - P[17][0]*(2*q0*q1 - 2*q2*q3) - P[1][0]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[0]*(P[21][3] + P[0][3]*SH_MAG[1] + P[3][3]*SH_MAG[0] + P[18][3]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][3]*(2*q0*q2 + 2*q1*q3) - P[17][3]*(2*q0*q1 - 2*q2*q3) - P[1][3]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6])*(P[21][18] + P[0][18]*SH_MAG[1] + P[3][18]*SH_MAG[0] + P[18][18]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][18]*(2*q0*q2 + 2*q1*q3) - P[17][18]*(2*q0*q1 - 2*q2*q3) - P[1][18]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][18]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[16][21]*(2*q0*q2 + 2*q1*q3) - P[17][21]*(2*q0*q1 - 2*q2*q3) - P[1][21]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + (2*q0*q2 + 2*q1*q3)*(P[21][16] + P[0][16]*SH_MAG[1] + P[3][16]*SH_MAG[0] + P[18][16]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][16]*(2*q0*q2 + 2*q1*q3) - P[17][16]*(2*q0*q1 - 2*q2*q3) - P[1][16]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (2*q0*q1 - 2*q2*q3)*(P[21][17] + P[0][17]*SH_MAG[1] + P[3][17]*SH_MAG[0] + P[18][17]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][17]*(2*q0*q2 + 2*q1*q3) - P[17][17]*(2*q0*q1 - 2*q2*q3) - P[1][17]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[2][21]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2));
|
||
if (temp >= R_MAG) {
|
||
SK_MZ[0] = 1.0f / temp;
|
||
faultStatus.bad_zmag = false;
|
||
} else {
|
||
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
||
// we reset the covariance matrix and try again next measurement
|
||
CovarianceInit();
|
||
obsIndex = 3;
|
||
faultStatus.bad_zmag = true;
|
||
return;
|
||
}
|
||
SK_MZ[1] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
|
||
SK_MZ[2] = 2*magD*q1 + 2*magE*q0 - 2*magN*q3;
|
||
SK_MZ[3] = SH_MAG[7] + SH_MAG[8] - 2*magD*q2;
|
||
SK_MZ[4] = 2*q0*q1 - 2*q2*q3;
|
||
SK_MZ[5] = 2*q0*q2 + 2*q1*q3;
|
||
Kfusion[0] = SK_MZ[0]*(P[0][21] + P[0][0]*SH_MAG[1] + P[0][3]*SH_MAG[0] - P[0][1]*SK_MZ[2] + P[0][2]*SK_MZ[3] + P[0][18]*SK_MZ[1] + P[0][16]*SK_MZ[5] - P[0][17]*SK_MZ[4]);
|
||
Kfusion[1] = SK_MZ[0]*(P[1][21] + P[1][0]*SH_MAG[1] + P[1][3]*SH_MAG[0] - P[1][1]*SK_MZ[2] + P[1][2]*SK_MZ[3] + P[1][18]*SK_MZ[1] + P[1][16]*SK_MZ[5] - P[1][17]*SK_MZ[4]);
|
||
Kfusion[2] = SK_MZ[0]*(P[2][21] + P[2][0]*SH_MAG[1] + P[2][3]*SH_MAG[0] - P[2][1]*SK_MZ[2] + P[2][2]*SK_MZ[3] + P[2][18]*SK_MZ[1] + P[2][16]*SK_MZ[5] - P[2][17]*SK_MZ[4]);
|
||
Kfusion[3] = SK_MZ[0]*(P[3][21] + P[3][0]*SH_MAG[1] + P[3][3]*SH_MAG[0] - P[3][1]*SK_MZ[2] + P[3][2]*SK_MZ[3] + P[3][18]*SK_MZ[1] + P[3][16]*SK_MZ[5] - P[3][17]*SK_MZ[4]);
|
||
Kfusion[4] = SK_MZ[0]*(P[4][21] + P[4][0]*SH_MAG[1] + P[4][3]*SH_MAG[0] - P[4][1]*SK_MZ[2] + P[4][2]*SK_MZ[3] + P[4][18]*SK_MZ[1] + P[4][16]*SK_MZ[5] - P[4][17]*SK_MZ[4]);
|
||
Kfusion[5] = SK_MZ[0]*(P[5][21] + P[5][0]*SH_MAG[1] + P[5][3]*SH_MAG[0] - P[5][1]*SK_MZ[2] + P[5][2]*SK_MZ[3] + P[5][18]*SK_MZ[1] + P[5][16]*SK_MZ[5] - P[5][17]*SK_MZ[4]);
|
||
Kfusion[6] = SK_MZ[0]*(P[6][21] + P[6][0]*SH_MAG[1] + P[6][3]*SH_MAG[0] - P[6][1]*SK_MZ[2] + P[6][2]*SK_MZ[3] + P[6][18]*SK_MZ[1] + P[6][16]*SK_MZ[5] - P[6][17]*SK_MZ[4]);
|
||
Kfusion[7] = SK_MZ[0]*(P[7][21] + P[7][0]*SH_MAG[1] + P[7][3]*SH_MAG[0] - P[7][1]*SK_MZ[2] + P[7][2]*SK_MZ[3] + P[7][18]*SK_MZ[1] + P[7][16]*SK_MZ[5] - P[7][17]*SK_MZ[4]);
|
||
Kfusion[8] = SK_MZ[0]*(P[8][21] + P[8][0]*SH_MAG[1] + P[8][3]*SH_MAG[0] - P[8][1]*SK_MZ[2] + P[8][2]*SK_MZ[3] + P[8][18]*SK_MZ[1] + P[8][16]*SK_MZ[5] - P[8][17]*SK_MZ[4]);
|
||
Kfusion[9] = SK_MZ[0]*(P[9][21] + P[9][0]*SH_MAG[1] + P[9][3]*SH_MAG[0] - P[9][1]*SK_MZ[2] + P[9][2]*SK_MZ[3] + P[9][18]*SK_MZ[1] + P[9][16]*SK_MZ[5] - P[9][17]*SK_MZ[4]);
|
||
Kfusion[10] = SK_MZ[0]*(P[10][21] + P[10][0]*SH_MAG[1] + P[10][3]*SH_MAG[0] - P[10][1]*SK_MZ[2] + P[10][2]*SK_MZ[3] + P[10][18]*SK_MZ[1] + P[10][16]*SK_MZ[5] - P[10][17]*SK_MZ[4]);
|
||
Kfusion[11] = SK_MZ[0]*(P[11][21] + P[11][0]*SH_MAG[1] + P[11][3]*SH_MAG[0] - P[11][1]*SK_MZ[2] + P[11][2]*SK_MZ[3] + P[11][18]*SK_MZ[1] + P[11][16]*SK_MZ[5] - P[11][17]*SK_MZ[4]);
|
||
Kfusion[12] = SK_MZ[0]*(P[12][21] + P[12][0]*SH_MAG[1] + P[12][3]*SH_MAG[0] - P[12][1]*SK_MZ[2] + P[12][2]*SK_MZ[3] + P[12][18]*SK_MZ[1] + P[12][16]*SK_MZ[5] - P[12][17]*SK_MZ[4]);
|
||
// this term has been zeroed to improve stability of the Z accel bias
|
||
Kfusion[13] = 0.0f;//SK_MZ[0]*(P[13][21] + P[13][0]*SH_MAG[1] + P[13][3]*SH_MAG[0] - P[13][1]*SK_MZ[2] + P[13][2]*SK_MZ[3] + P[13][18]*SK_MZ[1] + P[13][16]*SK_MZ[5] - P[13][17]*SK_MZ[4]);
|
||
// zero Kalman gains to inhibit wind state estimation
|
||
if (!inhibitWindStates) {
|
||
Kfusion[14] = SK_MZ[0]*(P[14][21] + P[14][0]*SH_MAG[1] + P[14][3]*SH_MAG[0] - P[14][1]*SK_MZ[2] + P[14][2]*SK_MZ[3] + P[14][18]*SK_MZ[1] + P[14][16]*SK_MZ[5] - P[14][17]*SK_MZ[4]);
|
||
Kfusion[15] = SK_MZ[0]*(P[15][21] + P[15][0]*SH_MAG[1] + P[15][3]*SH_MAG[0] - P[15][1]*SK_MZ[2] + P[15][2]*SK_MZ[3] + P[15][18]*SK_MZ[1] + P[15][16]*SK_MZ[5] - P[15][17]*SK_MZ[4]);
|
||
} else {
|
||
Kfusion[14] = 0.0f;
|
||
Kfusion[15] = 0.0f;
|
||
}
|
||
// zero Kalman gains to inhibit magnetic field state estimation
|
||
if (!inhibitMagStates) {
|
||
Kfusion[16] = SK_MZ[0]*(P[16][21] + P[16][0]*SH_MAG[1] + P[16][3]*SH_MAG[0] - P[16][1]*SK_MZ[2] + P[16][2]*SK_MZ[3] + P[16][18]*SK_MZ[1] + P[16][16]*SK_MZ[5] - P[16][17]*SK_MZ[4]);
|
||
Kfusion[17] = SK_MZ[0]*(P[17][21] + P[17][0]*SH_MAG[1] + P[17][3]*SH_MAG[0] - P[17][1]*SK_MZ[2] + P[17][2]*SK_MZ[3] + P[17][18]*SK_MZ[1] + P[17][16]*SK_MZ[5] - P[17][17]*SK_MZ[4]);
|
||
Kfusion[18] = SK_MZ[0]*(P[18][21] + P[18][0]*SH_MAG[1] + P[18][3]*SH_MAG[0] - P[18][1]*SK_MZ[2] + P[18][2]*SK_MZ[3] + P[18][18]*SK_MZ[1] + P[18][16]*SK_MZ[5] - P[18][17]*SK_MZ[4]);
|
||
Kfusion[19] = SK_MZ[0]*(P[19][21] + P[19][0]*SH_MAG[1] + P[19][3]*SH_MAG[0] - P[19][1]*SK_MZ[2] + P[19][2]*SK_MZ[3] + P[19][18]*SK_MZ[1] + P[19][16]*SK_MZ[5] - P[19][17]*SK_MZ[4]);
|
||
Kfusion[20] = SK_MZ[0]*(P[20][21] + P[20][0]*SH_MAG[1] + P[20][3]*SH_MAG[0] - P[20][1]*SK_MZ[2] + P[20][2]*SK_MZ[3] + P[20][18]*SK_MZ[1] + P[20][16]*SK_MZ[5] - P[20][17]*SK_MZ[4]);
|
||
Kfusion[21] = SK_MZ[0]*(P[21][21] + P[21][0]*SH_MAG[1] + P[21][3]*SH_MAG[0] - P[21][1]*SK_MZ[2] + P[21][2]*SK_MZ[3] + P[21][18]*SK_MZ[1] + P[21][16]*SK_MZ[5] - P[21][17]*SK_MZ[4]);
|
||
} else {
|
||
for (uint8_t i=16; i<=21; i++) {
|
||
Kfusion[i] = 0.0f;
|
||
}
|
||
}
|
||
|
||
// calculate the observation innovation variance
|
||
varInnovMag[2] = 1.0f/SK_MZ[0];
|
||
|
||
// set flags to indicate to other processes that fusion has been performede and is required on the next frame
|
||
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
||
magFusePerformed = true;
|
||
magFuseRequired = false;
|
||
}
|
||
// calculate the measurement innovation
|
||
innovMag[obsIndex] = MagPred[obsIndex] - magData[obsIndex];
|
||
// calculate the innovation test ratio
|
||
magTestRatio[obsIndex] = sq(innovMag[obsIndex]) / (sq(_magInnovGate) * varInnovMag[obsIndex]);
|
||
// check the last values from all components and set magnetometer health accordingly
|
||
magHealth = (magTestRatio[0] < 1.0f && magTestRatio[1] < 1.0f && magTestRatio[2] < 1.0f);
|
||
// Don't fuse unless all componenets pass. The exception is if the bad health has timed out and we are not a fly forward vehicle
|
||
// In this case we might as well try using the magnetometer, but with a reduced weighting
|
||
if (magHealth || ((magTestRatio[obsIndex] < 1.0f) && !assume_zero_sideslip() && magTimeout)) {
|
||
// Attitude, velocity and position corrections are averaged across multiple prediction cycles between now and the anticipated time for the next measurement.
|
||
// Don't do averaging of quaternion state corrections if total angle change across predicted interval is going to exceed 0.1 rad
|
||
bool highRates = ((magUpdateCountMax * correctedDelAng.length()) > 0.1f);
|
||
// Calculate the number of averaging frames left to go. This is required becasue magnetometer fusion is applied across three consecutive prediction cycles
|
||
// There is no point averaging if the number of cycles left is less than 2
|
||
float minorFramesToGo = float(magUpdateCountMax) - float(magUpdateCount);
|
||
// correct the state vector or store corrections to be applied incrementally
|
||
for (uint8_t j= 0; j<=21; j++) {
|
||
// If we are forced to use a bad compass in flight, we reduce the weighting by a factor of 4
|
||
if (!magHealth && !constPosMode) {
|
||
Kfusion[j] *= 0.25f;
|
||
}
|
||
// If in the air and there is no other form of heading reference or we are yawing rapidly which creates larger inertial yaw errors,
|
||
// we strengthen the magnetometer attitude correction
|
||
if (vehicleArmed && (constPosMode || highYawRate) && j <= 3) {
|
||
Kfusion[j] *= 4.0f;
|
||
}
|
||
// We don't need to spread corrections for non-dynamic states or if we are in a constant postion mode
|
||
// We can't spread corrections if there is not enough time remaining
|
||
// We don't spread corrections to attitude states if we are rotating rapidly
|
||
if ((j <= 3 && highRates) || j >= 10 || constPosMode || minorFramesToGo < 1.5f ) {
|
||
states[j] = states[j] - Kfusion[j] * innovMag[obsIndex];
|
||
} else {
|
||
// scale the correction based on the number of averaging frames left to go
|
||
magIncrStateDelta[j] -= Kfusion[j] * innovMag[obsIndex] * (magUpdateCountMaxInv * float(magUpdateCountMax) / minorFramesToGo);
|
||
}
|
||
}
|
||
// normalise the quaternion states
|
||
state.quat.normalize();
|
||
// correct the covariance P = (I - K*H)*P
|
||
// take advantage of the empty columns in KH to reduce the
|
||
// number of operations
|
||
for (uint8_t i = 0; i<=21; i++) {
|
||
for (uint8_t j = 0; j<=3; j++) {
|
||
KH[i][j] = Kfusion[i] * H_MAG[j];
|
||
}
|
||
for (uint8_t j = 4; j<=15; j++) {
|
||
KH[i][j] = 0.0f;
|
||
}
|
||
if (!inhibitMagStates) {
|
||
for (uint8_t j = 16; j<=21; j++) {
|
||
KH[i][j] = Kfusion[i] * H_MAG[j];
|
||
}
|
||
} else {
|
||
for (uint8_t j = 16; j<=21; j++) {
|
||
KH[i][j] = 0.0f;
|
||
}
|
||
}
|
||
}
|
||
for (uint8_t i = 0; i<=21; i++) {
|
||
for (uint8_t j = 0; j<=21; j++) {
|
||
KHP[i][j] = 0;
|
||
for (uint8_t k = 0; k<=3; k++) {
|
||
KHP[i][j] = KHP[i][j] + KH[i][k] * P[k][j];
|
||
}
|
||
if (!inhibitMagStates) {
|
||
for (uint8_t k = 16; k<=21; k++) {
|
||
KHP[i][j] = KHP[i][j] + KH[i][k] * P[k][j];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
for (uint8_t i = 0; i<=21; i++) {
|
||
for (uint8_t j = 0; j<=21; j++) {
|
||
P[i][j] = P[i][j] - KHP[i][j];
|
||
}
|
||
}
|
||
}
|
||
|
||
// force the covariance matrix to be symmetrical and limit the variances to prevent
|
||
// ill-condiioning.
|
||
ForceSymmetry();
|
||
ConstrainVariances();
|
||
}
|
||
|
||
/*
|
||
Estimation of terrain offset using a single state EKF
|
||
The filter can fuse motion compensated optiocal flow rates and range finder measurements
|
||
*/
|
||
void NavEKF::EstimateTerrainOffset()
|
||
{
|
||
// start performance timer
|
||
hal.util->perf_begin(_perf_OpticalFlowEKF);
|
||
|
||
// constrain height above ground to be above range measured on ground
|
||
float heightAboveGndEst = max((terrainState - state.position.z), rngOnGnd);
|
||
|
||
// calculate a predicted LOS rate squared
|
||
float velHorizSq = sq(state.velocity.x) + sq(state.velocity.y);
|
||
float losRateSq = velHorizSq / sq(heightAboveGndEst);
|
||
|
||
// don't update terrain offset state if there is no range finder and not generating enough LOS rate, or without GPS, as it is poorly observable
|
||
if (!fuseRngData && (gpsNotAvailable || PV_AidingMode == AID_RELATIVE || velHorizSq < 25.0f || losRateSq < 0.01f || onGround)) {
|
||
inhibitGndState = true;
|
||
} else {
|
||
inhibitGndState = false;
|
||
// record the time we last updated the terrain offset state
|
||
gndHgtValidTime_ms = imuSampleTime_ms;
|
||
|
||
// propagate ground position state noise each time this is called using the difference in position since the last observations and an RMS gradient assumption
|
||
// limit distance to prevent intialisation afer bad gps causing bad numerical conditioning
|
||
float distanceTravelledSq = sq(statesAtRngTime.position[0] - prevPosN) + sq(statesAtRngTime.position[1] - prevPosE);
|
||
distanceTravelledSq = min(distanceTravelledSq, 100.0f);
|
||
prevPosN = statesAtRngTime.position[0];
|
||
prevPosE = statesAtRngTime.position[1];
|
||
|
||
// in addition to a terrain gradient error model, we also have a time based error growth that is scaled using the gradient parameter
|
||
float timeLapsed = min(0.001f * (imuSampleTime_ms - timeAtLastAuxEKF_ms), 1.0f);
|
||
float Pincrement = (distanceTravelledSq * sq(0.01f*float(_gndGradientSigma))) + sq(float(_gndGradientSigma) * timeLapsed);
|
||
Popt += Pincrement;
|
||
timeAtLastAuxEKF_ms = imuSampleTime_ms;
|
||
|
||
// fuse range finder data
|
||
if (fuseRngData) {
|
||
// predict range
|
||
float predRngMeas = max((terrainState - statesAtRngTime.position[2]),rngOnGnd) / Tnb_flow.c.z;
|
||
|
||
// Copy required states to local variable names
|
||
float q0 = statesAtRngTime.quat[0]; // quaternion at optical flow measurement time
|
||
float q1 = statesAtRngTime.quat[1]; // quaternion at optical flow measurement time
|
||
float q2 = statesAtRngTime.quat[2]; // quaternion at optical flow measurement time
|
||
float q3 = statesAtRngTime.quat[3]; // quaternion at optical flow measurement time
|
||
|
||
// Set range finder measurement noise variance. TODO make this a function of range and tilt to allow for sensor, alignment and AHRS errors
|
||
float R_RNG = 0.5f;
|
||
|
||
// calculate Kalman gain
|
||
float SK_RNG = sq(q0) - sq(q1) - sq(q2) + sq(q3);
|
||
float K_RNG = Popt/(SK_RNG*(R_RNG + Popt/sq(SK_RNG)));
|
||
|
||
// Calculate the innovation variance for data logging
|
||
varInnovRng = (R_RNG + Popt/sq(SK_RNG));
|
||
|
||
// constrain terrain height to be below the vehicle
|
||
terrainState = max(terrainState, statesAtRngTime.position[2] + rngOnGnd);
|
||
|
||
// Calculate the measurement innovation
|
||
innovRng = predRngMeas - rngMea;
|
||
|
||
// calculate the innovation consistency test ratio
|
||
auxRngTestRatio = sq(innovRng) / (sq(_rngInnovGate) * varInnovRng);
|
||
|
||
// Check the innovation for consistency and don't fuse if > 5Sigma
|
||
if ((sq(innovRng)*SK_RNG) < 25.0f)
|
||
{
|
||
// correct the state
|
||
terrainState -= K_RNG * innovRng;
|
||
|
||
// constrain the state
|
||
terrainState = max(terrainState, statesAtRngTime.position[2] + rngOnGnd);
|
||
|
||
// correct the covariance
|
||
Popt = Popt - sq(Popt)/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))*(sq(q0) - sq(q1) - sq(q2) + sq(q3)));
|
||
|
||
// prevent the state variance from becoming negative
|
||
Popt = max(Popt,0.0f);
|
||
|
||
}
|
||
}
|
||
|
||
if (fuseOptFlowData) {
|
||
|
||
Vector3f vel; // velocity of sensor relative to ground in NED axes
|
||
Vector3f relVelSensor; // velocity of sensor relative to ground in sensor axes
|
||
float losPred; // predicted optical flow angular rate measurement
|
||
float q0 = statesAtFlowTime.quat[0]; // quaternion at optical flow measurement time
|
||
float q1 = statesAtFlowTime.quat[1]; // quaternion at optical flow measurement time
|
||
float q2 = statesAtFlowTime.quat[2]; // quaternion at optical flow measurement time
|
||
float q3 = statesAtFlowTime.quat[3]; // quaternion at optical flow measurement time
|
||
float K_OPT;
|
||
float H_OPT;
|
||
|
||
// Correct velocities for GPS glitch recovery offset
|
||
vel.x = statesAtFlowTime.velocity[0] - gpsVelGlitchOffset.x;
|
||
vel.y = statesAtFlowTime.velocity[1] - gpsVelGlitchOffset.y;
|
||
vel.z = statesAtFlowTime.velocity[2];
|
||
|
||
// predict range to centre of image
|
||
float flowRngPred = max((terrainState - statesAtFlowTime.position[2]),rngOnGnd) / Tnb_flow.c.z;
|
||
|
||
// constrain terrain height to be below the vehicle
|
||
terrainState = max(terrainState, statesAtFlowTime.position[2] + rngOnGnd);
|
||
|
||
// calculate relative velocity in sensor frame
|
||
relVelSensor = Tnb_flow*vel;
|
||
|
||
// divide velocity by range, subtract body rates and apply scale factor to
|
||
// get predicted sensed angular optical rates relative to X and Y sensor axes
|
||
losPred = relVelSensor.length()/flowRngPred;
|
||
|
||
// calculate innovations
|
||
auxFlowObsInnov = losPred - sqrtf(sq(flowRadXYcomp[0]) + sq(flowRadXYcomp[1]));
|
||
|
||
// calculate observation jacobian
|
||
float t3 = sq(q0);
|
||
float t4 = sq(q1);
|
||
float t5 = sq(q2);
|
||
float t6 = sq(q3);
|
||
float t10 = q0*q3*2.0f;
|
||
float t11 = q1*q2*2.0f;
|
||
float t14 = t3+t4-t5-t6;
|
||
float t15 = t14*vel.x;
|
||
float t16 = t10+t11;
|
||
float t17 = t16*vel.y;
|
||
float t18 = q0*q2*2.0f;
|
||
float t19 = q1*q3*2.0f;
|
||
float t20 = t18-t19;
|
||
float t21 = t20*vel.z;
|
||
float t2 = t15+t17-t21;
|
||
float t7 = t3-t4-t5+t6;
|
||
float t8 = statesAtFlowTime.position[2]-terrainState;
|
||
float t9 = 1.0f/sq(t8);
|
||
float t24 = t3-t4+t5-t6;
|
||
float t25 = t24*vel.y;
|
||
float t26 = t10-t11;
|
||
float t27 = t26*vel.x;
|
||
float t28 = q0*q1*2.0f;
|
||
float t29 = q2*q3*2.0f;
|
||
float t30 = t28+t29;
|
||
float t31 = t30*vel.z;
|
||
float t12 = t25-t27+t31;
|
||
float t13 = sq(t7);
|
||
float t22 = sq(t2);
|
||
float t23 = 1.0f/(t8*t8*t8);
|
||
float t32 = sq(t12);
|
||
H_OPT = 0.5f*(t13*t22*t23*2.0f+t13*t23*t32*2.0f)/sqrtf(t9*t13*t22+t9*t13*t32);
|
||
|
||
// calculate innovation variances
|
||
auxFlowObsInnovVar = H_OPT*Popt*H_OPT + R_LOS;
|
||
|
||
// calculate Kalman gain
|
||
K_OPT = Popt*H_OPT/auxFlowObsInnovVar;
|
||
|
||
// calculate the innovation consistency test ratio
|
||
auxFlowTestRatio = sq(auxFlowObsInnov) / (sq(_flowInnovGate) * auxFlowObsInnovVar);
|
||
|
||
// don't fuse if optical flow data is outside valid range
|
||
if (max(flowRadXY[0],flowRadXY[1]) < _maxFlowRate) {
|
||
|
||
// correct the state
|
||
terrainState -= K_OPT * auxFlowObsInnov;
|
||
|
||
// constrain the state
|
||
terrainState = max(terrainState, statesAtFlowTime.position[2] + rngOnGnd);
|
||
|
||
// correct the covariance
|
||
Popt = Popt - K_OPT * H_OPT * Popt;
|
||
|
||
// prevent the state variances from becoming negative
|
||
Popt = max(Popt,0.0f);
|
||
}
|
||
}
|
||
}
|
||
|
||
// stop the performance timer
|
||
hal.util->perf_end(_perf_OpticalFlowEKF);
|
||
}
|
||
|
||
void NavEKF::FuseOptFlow()
|
||
{
|
||
Vector22 H_LOS;
|
||
Vector8 tempVar;
|
||
Vector3f velNED_local;
|
||
Vector3f relVelSensor;
|
||
|
||
uint8_t obsIndex = flow_state.obsIndex;
|
||
ftype &q0 = flow_state.q0;
|
||
ftype &q1 = flow_state.q1;
|
||
ftype &q2 = flow_state.q2;
|
||
ftype &q3 = flow_state.q3;
|
||
ftype *SH_LOS = &flow_state.SH_LOS[0];
|
||
ftype *SK_LOS = &flow_state.SK_LOS[0];
|
||
ftype &vn = flow_state.vn;
|
||
ftype &ve = flow_state.ve;
|
||
ftype &vd = flow_state.vd;
|
||
ftype &pd = flow_state.pd;
|
||
ftype *losPred = &flow_state.losPred[0];
|
||
|
||
// Copy required states to local variable names
|
||
q0 = statesAtFlowTime.quat[0];
|
||
q1 = statesAtFlowTime.quat[1];
|
||
q2 = statesAtFlowTime.quat[2];
|
||
q3 = statesAtFlowTime.quat[3];
|
||
vn = statesAtFlowTime.velocity[0];
|
||
ve = statesAtFlowTime.velocity[1];
|
||
vd = statesAtFlowTime.velocity[2];
|
||
pd = statesAtFlowTime.position[2];
|
||
// Correct velocities for GPS glitch recovery offset
|
||
velNED_local.x = vn - gpsVelGlitchOffset.x;
|
||
velNED_local.y = ve - gpsVelGlitchOffset.y;
|
||
velNED_local.z = vd;
|
||
|
||
// constrain height above ground to be above range measured on ground
|
||
float heightAboveGndEst = max((terrainState - pd), rngOnGnd);
|
||
// Calculate observation jacobians and Kalman gains
|
||
if (obsIndex == 0) {
|
||
// calculate range from ground plain to centre of sensor fov assuming flat earth
|
||
float range = constrain_float((heightAboveGndEst/Tnb_flow.c.z),rngOnGnd,1000.0f);
|
||
|
||
// calculate relative velocity in sensor frame
|
||
relVelSensor = Tnb_flow*velNED_local;
|
||
|
||
// divide velocity by range to get predicted angular LOS rates relative to X and Y axes
|
||
losPred[0] = relVelSensor.y/range;
|
||
losPred[1] = -relVelSensor.x/range;
|
||
|
||
|
||
// Calculate common expressions for observation jacobians
|
||
SH_LOS[0] = sq(q0) - sq(q1) - sq(q2) + sq(q3);
|
||
SH_LOS[1] = vn*(sq(q0) + sq(q1) - sq(q2) - sq(q3)) - vd*(2*q0*q2 - 2*q1*q3) + ve*(2*q0*q3 + 2*q1*q2);
|
||
SH_LOS[2] = ve*(sq(q0) - sq(q1) + sq(q2) - sq(q3)) + vd*(2*q0*q1 + 2*q2*q3) - vn*(2*q0*q3 - 2*q1*q2);
|
||
SH_LOS[3] = -1.0f/heightAboveGndEst;
|
||
|
||
// Calculate common expressions for Kalman gains
|
||
// calculate innovation variance for Y axis observation
|
||
varInnovOptFlow[1] = (R_LOS + (SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) + 2*q0*SH_LOS[1]*SH_LOS[3])*(P[0][0]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) + 2*q0*SH_LOS[1]*SH_LOS[3]) + P[1][0]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q1*SH_LOS[1]*SH_LOS[3]) - P[2][0]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) + 2*q2*SH_LOS[1]*SH_LOS[3]) + P[3][0]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q3*SH_LOS[1]*SH_LOS[3]) + P[5][0]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 + 2*q1*q2) - P[6][0]*SH_LOS[0]*SH_LOS[3]*(2*q0*q2 - 2*q1*q3) - (P[9][0]*SH_LOS[0]*SH_LOS[1])/sq(pd - terrainState) + P[4][0]*SH_LOS[0]*SH_LOS[3]*(sq(q0) + sq(q1) - sq(q2) - sq(q3))) + (SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q1*SH_LOS[1]*SH_LOS[3])*(P[0][1]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) + 2*q0*SH_LOS[1]*SH_LOS[3]) + P[1][1]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q1*SH_LOS[1]*SH_LOS[3]) - P[2][1]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) + 2*q2*SH_LOS[1]*SH_LOS[3]) + P[3][1]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q3*SH_LOS[1]*SH_LOS[3]) + P[5][1]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 + 2*q1*q2) - P[6][1]*SH_LOS[0]*SH_LOS[3]*(2*q0*q2 - 2*q1*q3) - (P[9][1]*SH_LOS[0]*SH_LOS[1])/sq(pd - terrainState) + P[4][1]*SH_LOS[0]*SH_LOS[3]*(sq(q0) + sq(q1) - sq(q2) - sq(q3))) - (SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) + 2*q2*SH_LOS[1]*SH_LOS[3])*(P[0][2]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) + 2*q0*SH_LOS[1]*SH_LOS[3]) + P[1][2]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q1*SH_LOS[1]*SH_LOS[3]) - P[2][2]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) + 2*q2*SH_LOS[1]*SH_LOS[3]) + P[3][2]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q3*SH_LOS[1]*SH_LOS[3]) + P[5][2]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 + 2*q1*q2) - P[6][2]*SH_LOS[0]*SH_LOS[3]*(2*q0*q2 - 2*q1*q3) - (P[9][2]*SH_LOS[0]*SH_LOS[1])/sq(pd - terrainState) + P[4][2]*SH_LOS[0]*SH_LOS[3]*(sq(q0) + sq(q1) - sq(q2) - sq(q3))) + (SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q3*SH_LOS[1]*SH_LOS[3])*(P[0][3]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) + 2*q0*SH_LOS[1]*SH_LOS[3]) + P[1][3]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q1*SH_LOS[1]*SH_LOS[3]) - P[2][3]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) + 2*q2*SH_LOS[1]*SH_LOS[3]) + P[3][3]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q3*SH_LOS[1]*SH_LOS[3]) + P[5][3]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 + 2*q1*q2) - P[6][3]*SH_LOS[0]*SH_LOS[3]*(2*q0*q2 - 2*q1*q3) - (P[9][3]*SH_LOS[0]*SH_LOS[1])/sq(pd - terrainState) + P[4][3]*SH_LOS[0]*SH_LOS[3]*(sq(q0) + sq(q1) - sq(q2) - sq(q3))) + SH_LOS[0]*SH_LOS[3]*(sq(q0) + sq(q1) - sq(q2) - sq(q3))*(P[0][4]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) + 2*q0*SH_LOS[1]*SH_LOS[3]) + P[1][4]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q1*SH_LOS[1]*SH_LOS[3]) - P[2][4]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) + 2*q2*SH_LOS[1]*SH_LOS[3]) + P[3][4]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q3*SH_LOS[1]*SH_LOS[3]) + P[5][4]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 + 2*q1*q2) - P[6][4]*SH_LOS[0]*SH_LOS[3]*(2*q0*q2 - 2*q1*q3) - (P[9][4]*SH_LOS[0]*SH_LOS[1])/sq(pd - terrainState) + P[4][4]*SH_LOS[0]*SH_LOS[3]*(sq(q0) + sq(q1) - sq(q2) - sq(q3))) + SH_LOS[0]*SH_LOS[3]*(2*q0*q3 + 2*q1*q2)*(P[0][5]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) + 2*q0*SH_LOS[1]*SH_LOS[3]) + P[1][5]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q1*SH_LOS[1]*SH_LOS[3]) - P[2][5]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) + 2*q2*SH_LOS[1]*SH_LOS[3]) + P[3][5]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q3*SH_LOS[1]*SH_LOS[3]) + P[5][5]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 + 2*q1*q2) - P[6][5]*SH_LOS[0]*SH_LOS[3]*(2*q0*q2 - 2*q1*q3) - (P[9][5]*SH_LOS[0]*SH_LOS[1])/sq(pd - terrainState) + P[4][5]*SH_LOS[0]*SH_LOS[3]*(sq(q0) + sq(q1) - sq(q2) - sq(q3))) - SH_LOS[0]*SH_LOS[3]*(2*q0*q2 - 2*q1*q3)*(P[0][6]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) + 2*q0*SH_LOS[1]*SH_LOS[3]) + P[1][6]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q1*SH_LOS[1]*SH_LOS[3]) - P[2][6]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) + 2*q2*SH_LOS[1]*SH_LOS[3]) + P[3][6]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q3*SH_LOS[1]*SH_LOS[3]) + P[5][6]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 + 2*q1*q2) - P[6][6]*SH_LOS[0]*SH_LOS[3]*(2*q0*q2 - 2*q1*q3) - (P[9][6]*SH_LOS[0]*SH_LOS[1])/sq(pd - terrainState) + P[4][6]*SH_LOS[0]*SH_LOS[3]*(sq(q0) + sq(q1) - sq(q2) - sq(q3))) - (SH_LOS[0]*SH_LOS[1]*(P[0][9]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) + 2*q0*SH_LOS[1]*SH_LOS[3]) + P[1][9]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q1*SH_LOS[1]*SH_LOS[3]) - P[2][9]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) + 2*q2*SH_LOS[1]*SH_LOS[3]) + P[3][9]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q3*SH_LOS[1]*SH_LOS[3]) + P[5][9]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 + 2*q1*q2) - P[6][9]*SH_LOS[0]*SH_LOS[3]*(2*q0*q2 - 2*q1*q3) - (P[9][9]*SH_LOS[0]*SH_LOS[1])/sq(pd - terrainState) + P[4][9]*SH_LOS[0]*SH_LOS[3]*(sq(q0) + sq(q1) - sq(q2) - sq(q3))))/sq(pd - terrainState));
|
||
if (varInnovOptFlow[1] > R_LOS) {
|
||
SK_LOS[0] = 1.0f/varInnovOptFlow[1];
|
||
} else {
|
||
SK_LOS[0] = 1.0f/R_LOS;
|
||
}
|
||
// calculate innovation variance for X axis observation
|
||
varInnovOptFlow[0] = (R_LOS + (SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q0*SH_LOS[2]*SH_LOS[3])*(P[0][0]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q0*SH_LOS[2]*SH_LOS[3]) + P[1][0]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) - 2*q1*SH_LOS[2]*SH_LOS[3]) + P[2][0]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q2*SH_LOS[2]*SH_LOS[3]) - P[3][0]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) - 2*q3*SH_LOS[2]*SH_LOS[3]) - P[4][0]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 - 2*q1*q2) + P[6][0]*SH_LOS[0]*SH_LOS[3]*(2*q0*q1 + 2*q2*q3) - (P[9][0]*SH_LOS[0]*SH_LOS[2])/sq(pd - terrainState) + P[5][0]*SH_LOS[0]*SH_LOS[3]*(sq(q0) - sq(q1) + sq(q2) - sq(q3))) + (SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) - 2*q1*SH_LOS[2]*SH_LOS[3])*(P[0][1]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q0*SH_LOS[2]*SH_LOS[3]) + P[1][1]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) - 2*q1*SH_LOS[2]*SH_LOS[3]) + P[2][1]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q2*SH_LOS[2]*SH_LOS[3]) - P[3][1]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) - 2*q3*SH_LOS[2]*SH_LOS[3]) - P[4][1]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 - 2*q1*q2) + P[6][1]*SH_LOS[0]*SH_LOS[3]*(2*q0*q1 + 2*q2*q3) - (P[9][1]*SH_LOS[0]*SH_LOS[2])/sq(pd - terrainState) + P[5][1]*SH_LOS[0]*SH_LOS[3]*(sq(q0) - sq(q1) + sq(q2) - sq(q3))) + (SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q2*SH_LOS[2]*SH_LOS[3])*(P[0][2]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q0*SH_LOS[2]*SH_LOS[3]) + P[1][2]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) - 2*q1*SH_LOS[2]*SH_LOS[3]) + P[2][2]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q2*SH_LOS[2]*SH_LOS[3]) - P[3][2]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) - 2*q3*SH_LOS[2]*SH_LOS[3]) - P[4][2]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 - 2*q1*q2) + P[6][2]*SH_LOS[0]*SH_LOS[3]*(2*q0*q1 + 2*q2*q3) - (P[9][2]*SH_LOS[0]*SH_LOS[2])/sq(pd - terrainState) + P[5][2]*SH_LOS[0]*SH_LOS[3]*(sq(q0) - sq(q1) + sq(q2) - sq(q3))) - (SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) - 2*q3*SH_LOS[2]*SH_LOS[3])*(P[0][3]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q0*SH_LOS[2]*SH_LOS[3]) + P[1][3]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) - 2*q1*SH_LOS[2]*SH_LOS[3]) + P[2][3]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q2*SH_LOS[2]*SH_LOS[3]) - P[3][3]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) - 2*q3*SH_LOS[2]*SH_LOS[3]) - P[4][3]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 - 2*q1*q2) + P[6][3]*SH_LOS[0]*SH_LOS[3]*(2*q0*q1 + 2*q2*q3) - (P[9][3]*SH_LOS[0]*SH_LOS[2])/sq(pd - terrainState) + P[5][3]*SH_LOS[0]*SH_LOS[3]*(sq(q0) - sq(q1) + sq(q2) - sq(q3))) + SH_LOS[0]*SH_LOS[3]*(sq(q0) - sq(q1) + sq(q2) - sq(q3))*(P[0][5]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q0*SH_LOS[2]*SH_LOS[3]) + P[1][5]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) - 2*q1*SH_LOS[2]*SH_LOS[3]) + P[2][5]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q2*SH_LOS[2]*SH_LOS[3]) - P[3][5]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) - 2*q3*SH_LOS[2]*SH_LOS[3]) - P[4][5]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 - 2*q1*q2) + P[6][5]*SH_LOS[0]*SH_LOS[3]*(2*q0*q1 + 2*q2*q3) - (P[9][5]*SH_LOS[0]*SH_LOS[2])/sq(pd - terrainState) + P[5][5]*SH_LOS[0]*SH_LOS[3]*(sq(q0) - sq(q1) + sq(q2) - sq(q3))) - SH_LOS[0]*SH_LOS[3]*(2*q0*q3 - 2*q1*q2)*(P[0][4]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q0*SH_LOS[2]*SH_LOS[3]) + P[1][4]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) - 2*q1*SH_LOS[2]*SH_LOS[3]) + P[2][4]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q2*SH_LOS[2]*SH_LOS[3]) - P[3][4]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) - 2*q3*SH_LOS[2]*SH_LOS[3]) - P[4][4]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 - 2*q1*q2) + P[6][4]*SH_LOS[0]*SH_LOS[3]*(2*q0*q1 + 2*q2*q3) - (P[9][4]*SH_LOS[0]*SH_LOS[2])/sq(pd - terrainState) + P[5][4]*SH_LOS[0]*SH_LOS[3]*(sq(q0) - sq(q1) + sq(q2) - sq(q3))) + SH_LOS[0]*SH_LOS[3]*(2*q0*q1 + 2*q2*q3)*(P[0][6]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q0*SH_LOS[2]*SH_LOS[3]) + P[1][6]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) - 2*q1*SH_LOS[2]*SH_LOS[3]) + P[2][6]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q2*SH_LOS[2]*SH_LOS[3]) - P[3][6]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) - 2*q3*SH_LOS[2]*SH_LOS[3]) - P[4][6]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 - 2*q1*q2) + P[6][6]*SH_LOS[0]*SH_LOS[3]*(2*q0*q1 + 2*q2*q3) - (P[9][6]*SH_LOS[0]*SH_LOS[2])/sq(pd - terrainState) + P[5][6]*SH_LOS[0]*SH_LOS[3]*(sq(q0) - sq(q1) + sq(q2) - sq(q3))) - (SH_LOS[0]*SH_LOS[2]*(P[0][9]*(SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q0*SH_LOS[2]*SH_LOS[3]) + P[1][9]*(SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) - 2*q1*SH_LOS[2]*SH_LOS[3]) + P[2][9]*(SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q2*SH_LOS[2]*SH_LOS[3]) - P[3][9]*(SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) - 2*q3*SH_LOS[2]*SH_LOS[3]) - P[4][9]*SH_LOS[0]*SH_LOS[3]*(2*q0*q3 - 2*q1*q2) + P[6][9]*SH_LOS[0]*SH_LOS[3]*(2*q0*q1 + 2*q2*q3) - (P[9][9]*SH_LOS[0]*SH_LOS[2])/sq(pd - terrainState) + P[5][9]*SH_LOS[0]*SH_LOS[3]*(sq(q0) - sq(q1) + sq(q2) - sq(q3))))/sq(pd - terrainState));
|
||
if (varInnovOptFlow[0] > R_LOS) {
|
||
SK_LOS[1] = 1.0f/varInnovOptFlow[0];
|
||
} else {
|
||
SK_LOS[1] = 1.0f/R_LOS;
|
||
}
|
||
SK_LOS[2] = SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn);
|
||
SK_LOS[3] = SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn);
|
||
SK_LOS[4] = SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn);
|
||
SK_LOS[5] = SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn);
|
||
SK_LOS[6] = sq(q0) - sq(q1) + sq(q2) - sq(q3);
|
||
SK_LOS[7] = 1.0f/sq(heightAboveGndEst);
|
||
SK_LOS[8] = sq(q0) + sq(q1) - sq(q2) - sq(q3);
|
||
SK_LOS[9] = SH_LOS[3];
|
||
|
||
// Calculate common intermediate terms
|
||
tempVar[0] = SK_LOS[4] + 2*q0*SH_LOS[2]*SK_LOS[9];
|
||
tempVar[1] = SK_LOS[3] - 2*q1*SH_LOS[2]*SK_LOS[9];
|
||
tempVar[2] = SK_LOS[2] - 2*q3*SH_LOS[2]*SK_LOS[9];
|
||
tempVar[3] = SH_LOS[0]*SK_LOS[9]*(2*q0*q3 - 2*q1*q2);
|
||
tempVar[4] = SH_LOS[0]*SK_LOS[9]*(2*q0*q1 + 2*q2*q3);
|
||
tempVar[5] = SH_LOS[0]*SH_LOS[2]*SK_LOS[7];
|
||
tempVar[6] = SH_LOS[0]*SK_LOS[6]*SK_LOS[9];
|
||
tempVar[7] = SK_LOS[5] - 2*q2*SH_LOS[2]*SK_LOS[9];
|
||
|
||
// calculate observation jacobians for X LOS rate
|
||
memset(&H_LOS[0], 0, sizeof(H_LOS));
|
||
H_LOS[0] = - SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) - 2*q0*SH_LOS[2]*SH_LOS[3];
|
||
H_LOS[1] = 2*q1*SH_LOS[2]*SH_LOS[3] - SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn);
|
||
H_LOS[2] = 2*q2*SH_LOS[2]*SH_LOS[3] - SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn);
|
||
H_LOS[3] = SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) - 2*q3*SH_LOS[2]*SH_LOS[3];
|
||
H_LOS[4] = SH_LOS[0]*SH_LOS[3]*(2*q0*q3 - 2*q1*q2);
|
||
H_LOS[5] = -SH_LOS[0]*SH_LOS[3]*(sq(q0) - sq(q1) + sq(q2) - sq(q3));
|
||
H_LOS[6] = -SH_LOS[0]*SH_LOS[3]*(2*q0*q1 + 2*q2*q3);
|
||
H_LOS[9] = (SH_LOS[0]*SH_LOS[2])/sq(heightAboveGndEst);
|
||
|
||
// calculate Kalman gains for X LOS rate
|
||
Kfusion[0] = -SK_LOS[1]*(P[0][0]*tempVar[0] + P[0][1]*tempVar[1] - P[0][3]*tempVar[2] + P[0][2]*tempVar[7] - P[0][4]*tempVar[3] + P[0][6]*tempVar[4] - P[0][9]*tempVar[5] + P[0][5]*tempVar[6]);
|
||
Kfusion[1] = -SK_LOS[1]*(P[1][0]*tempVar[0] + P[1][1]*tempVar[1] - P[1][3]*tempVar[2] + P[1][2]*tempVar[7] - P[1][4]*tempVar[3] + P[1][6]*tempVar[4] - P[1][9]*tempVar[5] + P[1][5]*tempVar[6]);
|
||
Kfusion[2] = -SK_LOS[1]*(P[2][0]*tempVar[0] + P[2][1]*tempVar[1] - P[2][3]*tempVar[2] + P[2][2]*tempVar[7] - P[2][4]*tempVar[3] + P[2][6]*tempVar[4] - P[2][9]*tempVar[5] + P[2][5]*tempVar[6]);
|
||
Kfusion[3] = -SK_LOS[1]*(P[3][0]*tempVar[0] + P[3][1]*tempVar[1] - P[3][3]*tempVar[2] + P[3][2]*tempVar[7] - P[3][4]*tempVar[3] + P[3][6]*tempVar[4] - P[3][9]*tempVar[5] + P[3][5]*tempVar[6]);
|
||
Kfusion[4] = -SK_LOS[1]*(P[4][0]*tempVar[0] + P[4][1]*tempVar[1] - P[4][3]*tempVar[2] + P[4][2]*tempVar[7] - P[4][4]*tempVar[3] + P[4][6]*tempVar[4] - P[4][9]*tempVar[5] + P[4][5]*tempVar[6]);
|
||
Kfusion[5] = -SK_LOS[1]*(P[5][0]*tempVar[0] + P[5][1]*tempVar[1] - P[5][3]*tempVar[2] + P[5][2]*tempVar[7] - P[5][4]*tempVar[3] + P[5][6]*tempVar[4] - P[5][9]*tempVar[5] + P[5][5]*tempVar[6]);
|
||
// Don't allow optical flow measurements to modify vertical velocity as it can produce height offsets
|
||
Kfusion[6] = 0.0f;//-SK_LOS[1]*(P[6][0]*tempVar[0] + P[6][1]*tempVar[1] - P[6][3]*tempVar[2] + P[6][2]*tempVar[7] - P[6][4]*tempVar[3] + P[6][6]*tempVar[4] - P[6][9]*tempVar[5] + P[6][5]*tempVar[6]);
|
||
Kfusion[7] = -SK_LOS[1]*(P[7][0]*tempVar[0] + P[7][1]*tempVar[1] - P[7][3]*tempVar[2] + P[7][2]*tempVar[7] - P[7][4]*tempVar[3] + P[7][6]*tempVar[4] - P[7][9]*tempVar[5] + P[7][5]*tempVar[6]);
|
||
Kfusion[8] = -SK_LOS[1]*(P[8][0]*tempVar[0] + P[8][1]*tempVar[1] - P[8][3]*tempVar[2] + P[8][2]*tempVar[7] - P[8][4]*tempVar[3] + P[8][6]*tempVar[4] - P[8][9]*tempVar[5] + P[8][5]*tempVar[6]);
|
||
// Don't allow optical flow measurements to modify vertical position as it can produce height offsets
|
||
Kfusion[9] = 0.0f;//-SK_LOS[1]*(P[9][0]*tempVar[0] + P[9][1]*tempVar[1] - P[9][3]*tempVar[2] + P[9][2]*tempVar[7] - P[9][4]*tempVar[3] + P[9][6]*tempVar[4] - P[9][9]*tempVar[5] + P[9][5]*tempVar[6]);
|
||
Kfusion[10] = -SK_LOS[1]*(P[10][0]*tempVar[0] + P[10][1]*tempVar[1] - P[10][3]*tempVar[2] + P[10][2]*tempVar[7] - P[10][4]*tempVar[3] + P[10][6]*tempVar[4] - P[10][9]*tempVar[5] + P[10][5]*tempVar[6]);
|
||
Kfusion[11] = -SK_LOS[1]*(P[11][0]*tempVar[0] + P[11][1]*tempVar[1] - P[11][3]*tempVar[2] + P[11][2]*tempVar[7] - P[11][4]*tempVar[3] + P[11][6]*tempVar[4] - P[11][9]*tempVar[5] + P[11][5]*tempVar[6]);
|
||
Kfusion[12] = -SK_LOS[1]*(P[12][0]*tempVar[0] + P[12][1]*tempVar[1] - P[12][3]*tempVar[2] + P[12][2]*tempVar[7] - P[12][4]*tempVar[3] + P[12][6]*tempVar[4] - P[12][9]*tempVar[5] + P[12][5]*tempVar[6]);
|
||
// only height measurements are allowed to modify the Z bias state to improve the stability of the estimate
|
||
Kfusion[13] = 0.0f;//Kfusion[13] = -SK_LOS[1]*(P[13][0]*tempVar[0] + P[13][1]*tempVar[1] - P[13][3]*tempVar[2] + P[13][2]*tempVar[7] - P[13][4]*tempVar[3] + P[13][6]*tempVar[4] - P[13][9]*tempVar[5] + P[13][5]*tempVar[6]);
|
||
if (inhibitWindStates) {
|
||
Kfusion[14] = -SK_LOS[1]*(P[14][0]*tempVar[0] + P[14][1]*tempVar[1] - P[14][3]*tempVar[2] + P[14][2]*tempVar[7] - P[14][4]*tempVar[3] + P[14][6]*tempVar[4] - P[14][9]*tempVar[5] + P[14][5]*tempVar[6]);
|
||
Kfusion[15] = -SK_LOS[1]*(P[15][0]*tempVar[0] + P[15][1]*tempVar[1] - P[15][3]*tempVar[2] + P[15][2]*tempVar[7] - P[15][4]*tempVar[3] + P[15][6]*tempVar[4] - P[15][9]*tempVar[5] + P[15][5]*tempVar[6]);
|
||
} else {
|
||
Kfusion[14] = 0.0f;
|
||
Kfusion[15] = 0.0f;
|
||
}
|
||
if (inhibitMagStates) {
|
||
Kfusion[16] = -SK_LOS[1]*(P[16][0]*tempVar[0] + P[16][1]*tempVar[1] - P[16][3]*tempVar[2] + P[16][2]*tempVar[7] - P[16][4]*tempVar[3] + P[16][6]*tempVar[4] - P[16][9]*tempVar[5] + P[16][5]*tempVar[6]);
|
||
Kfusion[17] = -SK_LOS[1]*(P[17][0]*tempVar[0] + P[17][1]*tempVar[1] - P[17][3]*tempVar[2] + P[17][2]*tempVar[7] - P[17][4]*tempVar[3] + P[17][6]*tempVar[4] - P[17][9]*tempVar[5] + P[17][5]*tempVar[6]);
|
||
Kfusion[18] = -SK_LOS[1]*(P[18][0]*tempVar[0] + P[18][1]*tempVar[1] - P[18][3]*tempVar[2] + P[18][2]*tempVar[7] - P[18][4]*tempVar[3] + P[18][6]*tempVar[4] - P[18][9]*tempVar[5] + P[18][5]*tempVar[6]);
|
||
Kfusion[19] = -SK_LOS[1]*(P[19][0]*tempVar[0] + P[19][1]*tempVar[1] - P[19][3]*tempVar[2] + P[19][2]*tempVar[7] - P[19][4]*tempVar[3] + P[19][6]*tempVar[4] - P[19][9]*tempVar[5] + P[19][5]*tempVar[6]);
|
||
Kfusion[20] = -SK_LOS[1]*(P[20][0]*tempVar[0] + P[20][1]*tempVar[1] - P[20][3]*tempVar[2] + P[20][2]*tempVar[7] - P[20][4]*tempVar[3] + P[20][6]*tempVar[4] - P[20][9]*tempVar[5] + P[20][5]*tempVar[6]);
|
||
Kfusion[21] = -SK_LOS[1]*(P[21][0]*tempVar[0] + P[21][1]*tempVar[1] - P[21][3]*tempVar[2] + P[21][2]*tempVar[7] - P[21][4]*tempVar[3] + P[21][6]*tempVar[4] - P[21][9]*tempVar[5] + P[21][5]*tempVar[6]);
|
||
} else {
|
||
for (uint8_t i = 16; i <= 21; i++) {
|
||
Kfusion[i] = 0.0f;
|
||
}
|
||
}
|
||
// calculate innovation for X axis observation
|
||
innovOptFlow[0] = losPred[0] - flowRadXYcomp[0];
|
||
|
||
} else if (obsIndex == 1) {
|
||
|
||
// calculate intermediate common variables
|
||
tempVar[0] = SK_LOS[2] + 2*q0*SH_LOS[1]*SK_LOS[9];
|
||
tempVar[1] = SK_LOS[5] - 2*q1*SH_LOS[1]*SK_LOS[9];
|
||
tempVar[2] = SK_LOS[3] + 2*q2*SH_LOS[1]*SK_LOS[9];
|
||
tempVar[3] = SK_LOS[4] + 2*q3*SH_LOS[1]*SK_LOS[9];
|
||
tempVar[4] = SH_LOS[0]*SK_LOS[9]*(2*q0*q3 + 2*q1*q2);
|
||
tempVar[5] = SH_LOS[0]*SK_LOS[9]*(2*q0*q2 - 2*q1*q3);
|
||
tempVar[6] = SH_LOS[0]*SH_LOS[1]*SK_LOS[7];
|
||
tempVar[7] = SH_LOS[0]*SK_LOS[8]*SK_LOS[9];
|
||
|
||
// Calculate observation jacobians for Y LOS rate
|
||
memset(&H_LOS[0], 0, sizeof(H_LOS));
|
||
H_LOS[0] = SH_LOS[0]*SH_LOS[3]*(2*q3*ve - 2*q2*vd + 2*q0*vn) + 2*q0*SH_LOS[1]*SH_LOS[3];
|
||
H_LOS[1] = SH_LOS[0]*SH_LOS[3]*(2*q3*vd + 2*q2*ve + 2*q1*vn) - 2*q1*SH_LOS[1]*SH_LOS[3];
|
||
H_LOS[2] = - SH_LOS[0]*SH_LOS[3]*(2*q0*vd - 2*q1*ve + 2*q2*vn) - 2*q2*SH_LOS[1]*SH_LOS[3];
|
||
H_LOS[3] = SH_LOS[0]*SH_LOS[3]*(2*q1*vd + 2*q0*ve - 2*q3*vn) + 2*q3*SH_LOS[1]*SH_LOS[3];
|
||
H_LOS[4] = SH_LOS[0]*SH_LOS[3]*(sq(q0) + sq(q1) - sq(q2) - sq(q3));
|
||
H_LOS[5] = SH_LOS[0]*SH_LOS[3]*(2*q0*q3 + 2*q1*q2);
|
||
H_LOS[6] = -SH_LOS[0]*SH_LOS[3]*(2*q0*q2 - 2*q1*q3);
|
||
H_LOS[9] = -(SH_LOS[0]*SH_LOS[1])/sq(heightAboveGndEst);
|
||
|
||
// Calculate Kalman gains for Y LOS rate
|
||
Kfusion[0] = SK_LOS[0]*(P[0][0]*tempVar[0] + P[0][1]*tempVar[1] - P[0][2]*tempVar[2] + P[0][3]*tempVar[3] + P[0][5]*tempVar[4] - P[0][6]*tempVar[5] - P[0][9]*tempVar[6] + P[0][4]*tempVar[7]);
|
||
Kfusion[1] = SK_LOS[0]*(P[1][0]*tempVar[0] + P[1][1]*tempVar[1] - P[1][2]*tempVar[2] + P[1][3]*tempVar[3] + P[1][5]*tempVar[4] - P[1][6]*tempVar[5] - P[1][9]*tempVar[6] + P[1][4]*tempVar[7]);
|
||
Kfusion[2] = SK_LOS[0]*(P[2][0]*tempVar[0] + P[2][1]*tempVar[1] - P[2][2]*tempVar[2] + P[2][3]*tempVar[3] + P[2][5]*tempVar[4] - P[2][6]*tempVar[5] - P[2][9]*tempVar[6] + P[2][4]*tempVar[7]);
|
||
Kfusion[3] = SK_LOS[0]*(P[3][0]*tempVar[0] + P[3][1]*tempVar[1] - P[3][2]*tempVar[2] + P[3][3]*tempVar[3] + P[3][5]*tempVar[4] - P[3][6]*tempVar[5] - P[3][9]*tempVar[6] + P[3][4]*tempVar[7]);
|
||
Kfusion[4] = SK_LOS[0]*(P[4][0]*tempVar[0] + P[4][1]*tempVar[1] - P[4][2]*tempVar[2] + P[4][3]*tempVar[3] + P[4][5]*tempVar[4] - P[4][6]*tempVar[5] - P[4][9]*tempVar[6] + P[4][4]*tempVar[7]);
|
||
Kfusion[5] = SK_LOS[0]*(P[5][0]*tempVar[0] + P[5][1]*tempVar[1] - P[5][2]*tempVar[2] + P[5][3]*tempVar[3] + P[5][5]*tempVar[4] - P[5][6]*tempVar[5] - P[5][9]*tempVar[6] + P[5][4]*tempVar[7]);
|
||
// Don't allow optical flow measurements to modify vertical velocity as it can produce height offsets
|
||
Kfusion[6] = 0.0f;//SK_LOS[0]*(P[6][0]*tempVar[0] + P[6][1]*tempVar[1] - P[6][2]*tempVar[2] + P[6][3]*tempVar[3] + P[6][5]*tempVar[4] - P[6][6]*tempVar[5] - P[6][9]*tempVar[6] + P[6][4]*tempVar[7]);
|
||
Kfusion[7] = SK_LOS[0]*(P[7][0]*tempVar[0] + P[7][1]*tempVar[1] - P[7][2]*tempVar[2] + P[7][3]*tempVar[3] + P[7][5]*tempVar[4] - P[7][6]*tempVar[5] - P[7][9]*tempVar[6] + P[7][4]*tempVar[7]);
|
||
Kfusion[8] = SK_LOS[0]*(P[8][0]*tempVar[0] + P[8][1]*tempVar[1] - P[8][2]*tempVar[2] + P[8][3]*tempVar[3] + P[8][5]*tempVar[4] - P[8][6]*tempVar[5] - P[8][9]*tempVar[6] + P[8][4]*tempVar[7]);
|
||
// Don't allow optical flow measurements to modify vertical position as it can produce height offsets
|
||
Kfusion[9] = 0.0f;//SK_LOS[0]*(P[9][0]*tempVar[0] + P[9][1]*tempVar[1] - P[9][2]*tempVar[2] + P[9][3]*tempVar[3] + P[9][5]*tempVar[4] - P[9][6]*tempVar[5] - P[9][9]*tempVar[6] + P[9][4]*tempVar[7]);
|
||
Kfusion[10] = SK_LOS[0]*(P[10][0]*tempVar[0] + P[10][1]*tempVar[1] - P[10][2]*tempVar[2] + P[10][3]*tempVar[3] + P[10][5]*tempVar[4] - P[10][6]*tempVar[5] - P[10][9]*tempVar[6] + P[10][4]*tempVar[7]);
|
||
Kfusion[11] = SK_LOS[0]*(P[11][0]*tempVar[0] + P[11][1]*tempVar[1] - P[11][2]*tempVar[2] + P[11][3]*tempVar[3] + P[11][5]*tempVar[4] - P[11][6]*tempVar[5] - P[11][9]*tempVar[6] + P[11][4]*tempVar[7]);
|
||
Kfusion[12] = SK_LOS[0]*(P[12][0]*tempVar[0] + P[12][1]*tempVar[1] - P[12][2]*tempVar[2] + P[12][3]*tempVar[3] + P[12][5]*tempVar[4] - P[12][6]*tempVar[5] - P[12][9]*tempVar[6] + P[12][4]*tempVar[7]);
|
||
// only height measurements are allowed to modify the Z bias state to improve the stability of the estimate
|
||
Kfusion[13] = 0.0f;//SK_LOS[0]*(P[13][0]*tempVar[0] + P[13][1]*tempVar[1] - P[13][2]*tempVar[2] + P[13][3]*tempVar[3] + P[13][5]*tempVar[4] - P[13][6]*tempVar[5] - P[13][9]*tempVar[6] + P[13][4]*tempVar[7]);
|
||
if (inhibitWindStates) {
|
||
Kfusion[14] = SK_LOS[0]*(P[14][0]*tempVar[0] + P[14][1]*tempVar[1] - P[14][2]*tempVar[2] + P[14][3]*tempVar[3] + P[14][5]*tempVar[4] - P[14][6]*tempVar[5] - P[14][9]*tempVar[6] + P[14][4]*tempVar[7]);
|
||
Kfusion[15] = SK_LOS[0]*(P[15][0]*tempVar[0] + P[15][1]*tempVar[1] - P[15][2]*tempVar[2] + P[15][3]*tempVar[3] + P[15][5]*tempVar[4] - P[15][6]*tempVar[5] - P[15][9]*tempVar[6] + P[15][4]*tempVar[7]);
|
||
} else {
|
||
Kfusion[14] = 0.0f;
|
||
Kfusion[15] = 0.0f;
|
||
}
|
||
if (inhibitMagStates) {
|
||
Kfusion[16] = SK_LOS[0]*(P[16][0]*tempVar[0] + P[16][1]*tempVar[1] - P[16][2]*tempVar[2] + P[16][3]*tempVar[3] + P[16][5]*tempVar[4] - P[16][6]*tempVar[5] - P[16][9]*tempVar[6] + P[16][4]*tempVar[7]);
|
||
Kfusion[17] = SK_LOS[0]*(P[17][0]*tempVar[0] + P[17][1]*tempVar[1] - P[17][2]*tempVar[2] + P[17][3]*tempVar[3] + P[17][5]*tempVar[4] - P[17][6]*tempVar[5] - P[17][9]*tempVar[6] + P[17][4]*tempVar[7]);
|
||
Kfusion[18] = SK_LOS[0]*(P[18][0]*tempVar[0] + P[18][1]*tempVar[1] - P[18][2]*tempVar[2] + P[18][3]*tempVar[3] + P[18][5]*tempVar[4] - P[18][6]*tempVar[5] - P[18][9]*tempVar[6] + P[18][4]*tempVar[7]);
|
||
Kfusion[19] = SK_LOS[0]*(P[19][0]*tempVar[0] + P[19][1]*tempVar[1] - P[19][2]*tempVar[2] + P[19][3]*tempVar[3] + P[19][5]*tempVar[4] - P[19][6]*tempVar[5] - P[19][9]*tempVar[6] + P[19][4]*tempVar[7]);
|
||
Kfusion[20] = SK_LOS[0]*(P[20][0]*tempVar[0] + P[20][1]*tempVar[1] - P[20][2]*tempVar[2] + P[20][3]*tempVar[3] + P[20][5]*tempVar[4] - P[20][6]*tempVar[5] - P[20][9]*tempVar[6] + P[20][4]*tempVar[7]);
|
||
Kfusion[21] = SK_LOS[0]*(P[21][0]*tempVar[0] + P[21][1]*tempVar[1] - P[21][2]*tempVar[2] + P[21][3]*tempVar[3] + P[21][5]*tempVar[4] - P[21][6]*tempVar[5] - P[21][9]*tempVar[6] + P[21][4]*tempVar[7]);
|
||
} else {
|
||
for (uint8_t i = 16; i <= 21; i++) {
|
||
Kfusion[i] = 0.0f;
|
||
}
|
||
}
|
||
// calculate innovation for Y observation
|
||
innovOptFlow[1] = losPred[1] - flowRadXYcomp[1];
|
||
|
||
}
|
||
|
||
// calculate the innovation consistency test ratio
|
||
flowTestRatio[obsIndex] = sq(innovOptFlow[obsIndex]) / (sq(_flowInnovGate) * varInnovOptFlow[obsIndex]);
|
||
|
||
// Check the innovation for consistency and don't fuse if out of bounds or flow is too fast to be reliable
|
||
if ((flowTestRatio[obsIndex]) < 1.0f && (flowRadXY[obsIndex] < _maxFlowRate)) {
|
||
// record the last time both X and Y observations were accepted for fusion
|
||
if (obsIndex == 0) {
|
||
flowXfailed = false;
|
||
} else if (!flowXfailed) {
|
||
prevFlowFuseTime_ms = imuSampleTime_ms;
|
||
}
|
||
// Attitude, velocity and position corrections are averaged across multiple prediction cycles between now and the anticipated time for the next measurement.
|
||
// Don't do averaging of quaternion state corrections if total angle change across predicted interval is going to exceed 0.1 rad
|
||
bool highRates = ((flowUpdateCountMax * correctedDelAng.length()) > 0.1f);
|
||
// Calculate the number of averaging frames left to go.
|
||
// There is no point averaging if the number of cycles left is less than 2
|
||
float minorFramesToGo = float(flowUpdateCountMax) - float(flowUpdateCount);
|
||
for (uint8_t i = 0; i<=21; i++) {
|
||
if ((i <= 3 && highRates) || i >= 10 || minorFramesToGo < 1.5f) {
|
||
states[i] = states[i] - Kfusion[i] * innovOptFlow[obsIndex];
|
||
} else {
|
||
flowIncrStateDelta[i] -= Kfusion[i] * innovOptFlow[obsIndex] * (flowUpdateCountMaxInv * float(flowUpdateCountMax) / minorFramesToGo);
|
||
}
|
||
}
|
||
// normalise the quaternion states
|
||
state.quat.normalize();
|
||
// correct the covariance P = (I - K*H)*P
|
||
// take advantage of the empty columns in KH to reduce the
|
||
// number of operations
|
||
for (uint8_t i = 0; i <= 21; i++)
|
||
{
|
||
for (uint8_t j = 0; j <= 6; j++)
|
||
{
|
||
KH[i][j] = Kfusion[i] * H_LOS[j];
|
||
}
|
||
for (uint8_t j = 7; j <= 8; j++)
|
||
{
|
||
KH[i][j] = 0.0f;
|
||
}
|
||
KH[i][9] = Kfusion[i] * H_LOS[9];
|
||
for (uint8_t j = 10; j <= 21; j++)
|
||
{
|
||
KH[i][j] = 0.0f;
|
||
}
|
||
}
|
||
for (uint8_t i = 0; i <= 21; i++)
|
||
{
|
||
for (uint8_t j = 0; j <= 21; j++)
|
||
{
|
||
KHP[i][j] = 0.0f;
|
||
for (uint8_t k = 0; k <= 6; k++)
|
||
{
|
||
KHP[i][j] = KHP[i][j] + KH[i][k] * P[k][j];
|
||
}
|
||
KHP[i][j] = KHP[i][j] + KH[i][9] * P[9][j];
|
||
}
|
||
}
|
||
for (uint8_t i = 0; i <= 21; i++)
|
||
{
|
||
for (uint8_t j = 0; j <= 21; j++)
|
||
{
|
||
P[i][j] = P[i][j] - KHP[i][j];
|
||
}
|
||
}
|
||
} else if (obsIndex == 0) {
|
||
// store the fact we have failed the X conponent so that a combined X and Y axis pass/fail can be calculated next time round
|
||
flowXfailed = true;
|
||
}
|
||
|
||
ForceSymmetry();
|
||
ConstrainVariances();
|
||
|
||
}
|
||
|
||
// fuse true airspeed measurements
|
||
void NavEKF::FuseAirspeed()
|
||
{
|
||
// start performance timer
|
||
hal.util->perf_begin(_perf_FuseAirspeed);
|
||
|
||
// declarations
|
||
float vn;
|
||
float ve;
|
||
float vd;
|
||
float vwn;
|
||
float vwe;
|
||
float EAS2TAS = _ahrs->get_EAS2TAS();
|
||
const float R_TAS = sq(constrain_float(_easNoise, 0.5f, 5.0f) * constrain_float(EAS2TAS, 0.9f, 10.0f));
|
||
Vector3f SH_TAS;
|
||
float SK_TAS;
|
||
Vector22 H_TAS;
|
||
float VtasPred;
|
||
|
||
// health is set bad until test passed
|
||
tasHealth = false;
|
||
|
||
// copy required states to local variable names
|
||
vn = statesAtVtasMeasTime.velocity.x;
|
||
ve = statesAtVtasMeasTime.velocity.y;
|
||
vd = statesAtVtasMeasTime.velocity.z;
|
||
vwn = statesAtVtasMeasTime.wind_vel.x;
|
||
vwe = statesAtVtasMeasTime.wind_vel.y;
|
||
|
||
// calculate the predicted airspeed, compensating for bias in GPS velocity when we are pulling a glitch offset back in
|
||
VtasPred = pythagorous3((ve - gpsVelGlitchOffset.y - vwe) , (vn - gpsVelGlitchOffset.x - vwn) , vd);
|
||
// perform fusion of True Airspeed measurement
|
||
if (VtasPred > 1.0f)
|
||
{
|
||
// calculate observation jacobians
|
||
SH_TAS[0] = 1.0f/VtasPred;
|
||
SH_TAS[1] = (SH_TAS[0]*(2*ve - 2*vwe))/2;
|
||
SH_TAS[2] = (SH_TAS[0]*(2*vn - 2*vwn))/2;
|
||
for (uint8_t i=0; i<=21; i++) H_TAS[i] = 0.0f;
|
||
H_TAS[4] = SH_TAS[2];
|
||
H_TAS[5] = SH_TAS[1];
|
||
H_TAS[6] = vd*SH_TAS[0];
|
||
H_TAS[14] = -SH_TAS[2];
|
||
H_TAS[15] = -SH_TAS[1];
|
||
|
||
// calculate Kalman gains
|
||
float temp = (R_TAS + SH_TAS[2]*(P[4][4]*SH_TAS[2] + P[5][4]*SH_TAS[1] - P[14][4]*SH_TAS[2] - P[15][4]*SH_TAS[1] + P[6][4]*vd*SH_TAS[0]) + SH_TAS[1]*(P[4][5]*SH_TAS[2] + P[5][5]*SH_TAS[1] - P[14][5]*SH_TAS[2] - P[15][5]*SH_TAS[1] + P[6][5]*vd*SH_TAS[0]) - SH_TAS[2]*(P[4][14]*SH_TAS[2] + P[5][14]*SH_TAS[1] - P[14][14]*SH_TAS[2] - P[15][14]*SH_TAS[1] + P[6][14]*vd*SH_TAS[0]) - SH_TAS[1]*(P[4][15]*SH_TAS[2] + P[5][15]*SH_TAS[1] - P[14][15]*SH_TAS[2] - P[15][15]*SH_TAS[1] + P[6][15]*vd*SH_TAS[0]) + vd*SH_TAS[0]*(P[4][6]*SH_TAS[2] + P[5][6]*SH_TAS[1] - P[14][6]*SH_TAS[2] - P[15][6]*SH_TAS[1] + P[6][6]*vd*SH_TAS[0]));
|
||
if (temp >= R_TAS) {
|
||
SK_TAS = 1.0f / temp;
|
||
faultStatus.bad_airspeed = false;
|
||
} else {
|
||
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
||
// we increase the wind state variances and try again next time
|
||
P[14][14] += 0.05f*R_TAS;
|
||
P[15][15] += 0.05f*R_TAS;
|
||
faultStatus.bad_airspeed = true;
|
||
return;
|
||
}
|
||
Kfusion[0] = SK_TAS*(P[0][4]*SH_TAS[2] - P[0][14]*SH_TAS[2] + P[0][5]*SH_TAS[1] - P[0][15]*SH_TAS[1] + P[0][6]*vd*SH_TAS[0]);
|
||
Kfusion[1] = SK_TAS*(P[1][4]*SH_TAS[2] - P[1][14]*SH_TAS[2] + P[1][5]*SH_TAS[1] - P[1][15]*SH_TAS[1] + P[1][6]*vd*SH_TAS[0]);
|
||
Kfusion[2] = SK_TAS*(P[2][4]*SH_TAS[2] - P[2][14]*SH_TAS[2] + P[2][5]*SH_TAS[1] - P[2][15]*SH_TAS[1] + P[2][6]*vd*SH_TAS[0]);
|
||
Kfusion[3] = SK_TAS*(P[3][4]*SH_TAS[2] - P[3][14]*SH_TAS[2] + P[3][5]*SH_TAS[1] - P[3][15]*SH_TAS[1] + P[3][6]*vd*SH_TAS[0]);
|
||
Kfusion[4] = SK_TAS*(P[4][4]*SH_TAS[2] - P[4][14]*SH_TAS[2] + P[4][5]*SH_TAS[1] - P[4][15]*SH_TAS[1] + P[4][6]*vd*SH_TAS[0]);
|
||
Kfusion[5] = SK_TAS*(P[5][4]*SH_TAS[2] - P[5][14]*SH_TAS[2] + P[5][5]*SH_TAS[1] - P[5][15]*SH_TAS[1] + P[5][6]*vd*SH_TAS[0]);
|
||
Kfusion[6] = SK_TAS*(P[6][4]*SH_TAS[2] - P[6][14]*SH_TAS[2] + P[6][5]*SH_TAS[1] - P[6][15]*SH_TAS[1] + P[6][6]*vd*SH_TAS[0]);
|
||
Kfusion[7] = SK_TAS*(P[7][4]*SH_TAS[2] - P[7][14]*SH_TAS[2] + P[7][5]*SH_TAS[1] - P[7][15]*SH_TAS[1] + P[7][6]*vd*SH_TAS[0]);
|
||
Kfusion[8] = SK_TAS*(P[8][4]*SH_TAS[2] - P[8][14]*SH_TAS[2] + P[8][5]*SH_TAS[1] - P[8][15]*SH_TAS[1] + P[8][6]*vd*SH_TAS[0]);
|
||
Kfusion[9] = SK_TAS*(P[9][4]*SH_TAS[2] - P[9][14]*SH_TAS[2] + P[9][5]*SH_TAS[1] - P[9][15]*SH_TAS[1] + P[9][6]*vd*SH_TAS[0]);
|
||
Kfusion[10] = SK_TAS*(P[10][4]*SH_TAS[2] - P[10][14]*SH_TAS[2] + P[10][5]*SH_TAS[1] - P[10][15]*SH_TAS[1] + P[10][6]*vd*SH_TAS[0]);
|
||
Kfusion[11] = SK_TAS*(P[11][4]*SH_TAS[2] - P[11][14]*SH_TAS[2] + P[11][5]*SH_TAS[1] - P[11][15]*SH_TAS[1] + P[11][6]*vd*SH_TAS[0]);
|
||
Kfusion[12] = SK_TAS*(P[12][4]*SH_TAS[2] - P[12][14]*SH_TAS[2] + P[12][5]*SH_TAS[1] - P[12][15]*SH_TAS[1] + P[12][6]*vd*SH_TAS[0]);
|
||
// this term has been zeroed to improve stability of the Z accel bias
|
||
Kfusion[13] = 0.0f;//SK_TAS*(P[13][4]*SH_TAS[2] - P[13][14]*SH_TAS[2] + P[13][5]*SH_TAS[1] - P[13][15]*SH_TAS[1] + P[13][6]*vd*SH_TAS[0]);
|
||
Kfusion[14] = SK_TAS*(P[14][4]*SH_TAS[2] - P[14][14]*SH_TAS[2] + P[14][5]*SH_TAS[1] - P[14][15]*SH_TAS[1] + P[14][6]*vd*SH_TAS[0]);
|
||
Kfusion[15] = SK_TAS*(P[15][4]*SH_TAS[2] - P[15][14]*SH_TAS[2] + P[15][5]*SH_TAS[1] - P[15][15]*SH_TAS[1] + P[15][6]*vd*SH_TAS[0]);
|
||
// zero Kalman gains to inhibit magnetic field state estimation
|
||
if (!inhibitMagStates) {
|
||
Kfusion[16] = SK_TAS*(P[16][4]*SH_TAS[2] - P[16][14]*SH_TAS[2] + P[16][5]*SH_TAS[1] - P[16][15]*SH_TAS[1] + P[16][6]*vd*SH_TAS[0]);
|
||
Kfusion[17] = SK_TAS*(P[17][4]*SH_TAS[2] - P[17][14]*SH_TAS[2] + P[17][5]*SH_TAS[1] - P[17][15]*SH_TAS[1] + P[17][6]*vd*SH_TAS[0]);
|
||
Kfusion[18] = SK_TAS*(P[18][4]*SH_TAS[2] - P[18][14]*SH_TAS[2] + P[18][5]*SH_TAS[1] - P[18][15]*SH_TAS[1] + P[18][6]*vd*SH_TAS[0]);
|
||
Kfusion[19] = SK_TAS*(P[19][4]*SH_TAS[2] - P[19][14]*SH_TAS[2] + P[19][5]*SH_TAS[1] - P[19][15]*SH_TAS[1] + P[19][6]*vd*SH_TAS[0]);
|
||
Kfusion[20] = SK_TAS*(P[20][4]*SH_TAS[2] - P[20][14]*SH_TAS[2] + P[20][5]*SH_TAS[1] - P[20][15]*SH_TAS[1] + P[20][6]*vd*SH_TAS[0]);
|
||
Kfusion[21] = SK_TAS*(P[21][4]*SH_TAS[2] - P[21][14]*SH_TAS[2] + P[21][5]*SH_TAS[1] - P[21][15]*SH_TAS[1] + P[21][6]*vd*SH_TAS[0]);
|
||
} else {
|
||
for (uint8_t i=16; i<=21; i++) {
|
||
Kfusion[i] = 0.0f;
|
||
}
|
||
}
|
||
|
||
// calculate measurement innovation variance
|
||
varInnovVtas = 1.0f/SK_TAS;
|
||
|
||
// calculate measurement innovation
|
||
innovVtas = VtasPred - VtasMeas;
|
||
|
||
// calculate the innovation consistency test ratio
|
||
tasTestRatio = sq(innovVtas) / (sq(_tasInnovGate) * varInnovVtas);
|
||
|
||
// fail if the ratio is > 1, but don't fail if bad IMU data
|
||
tasHealth = ((tasTestRatio < 1.0f) || badIMUdata);
|
||
tasTimeout = (imuSampleTime_ms - lastTasPassTime) > tasRetryTime;
|
||
|
||
// test the ratio before fusing data, forcing fusion if airspeed and position are timed out as we have no choice but to try and use airspeed to constrain error growth
|
||
if (tasHealth || (tasTimeout && posTimeout))
|
||
{
|
||
|
||
// restart the counter
|
||
lastTasPassTime = imuSampleTime_ms;
|
||
|
||
// correct the state vector
|
||
for (uint8_t j=0; j<=21; j++)
|
||
{
|
||
states[j] = states[j] - Kfusion[j] * innovVtas;
|
||
}
|
||
|
||
state.quat.normalize();
|
||
|
||
// correct the covariance P = (I - K*H)*P
|
||
// take advantage of the empty columns in H to reduce the number of operations
|
||
for (uint8_t i = 0; i<=21; i++)
|
||
{
|
||
for (uint8_t j = 0; j<=3; j++) KH[i][j] = 0.0f;
|
||
for (uint8_t j = 4; j<=6; j++)
|
||
{
|
||
KH[i][j] = Kfusion[i] * H_TAS[j];
|
||
}
|
||
for (uint8_t j = 7; j<=13; j++) KH[i][j] = 0.0f;
|
||
for (uint8_t j = 14; j<=15; j++)
|
||
{
|
||
KH[i][j] = Kfusion[i] * H_TAS[j];
|
||
}
|
||
for (uint8_t j = 16; j<=21; j++) KH[i][j] = 0.0f;
|
||
}
|
||
for (uint8_t i = 0; i<=21; i++)
|
||
{
|
||
for (uint8_t j = 0; j<=21; j++)
|
||
{
|
||
KHP[i][j] = 0;
|
||
for (uint8_t k = 4; k<=6; k++)
|
||
{
|
||
KHP[i][j] = KHP[i][j] + KH[i][k] * P[k][j];
|
||
}
|
||
for (uint8_t k = 14; k<=15; k++)
|
||
{
|
||
KHP[i][j] = KHP[i][j] + KH[i][k] * P[k][j];
|
||
}
|
||
}
|
||
}
|
||
for (uint8_t i = 0; i<=21; i++)
|
||
{
|
||
for (uint8_t j = 0; j<=21; j++)
|
||
{
|
||
P[i][j] = P[i][j] - KHP[i][j];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// force the covariance matrix to me symmetrical and limit the variances to prevent ill-condiioning.
|
||
ForceSymmetry();
|
||
ConstrainVariances();
|
||
|
||
// stop performance timer
|
||
hal.util->perf_end(_perf_FuseAirspeed);
|
||
}
|
||
|
||
// fuse sythetic sideslip measurement of zero
|
||
void NavEKF::FuseSideslip()
|
||
{
|
||
// start performance timer
|
||
hal.util->perf_begin(_perf_FuseSideslip);
|
||
|
||
// declarations
|
||
float q0;
|
||
float q1;
|
||
float q2;
|
||
float q3;
|
||
float vn;
|
||
float ve;
|
||
float vd;
|
||
float vwn;
|
||
float vwe;
|
||
const float R_BETA = 0.03f; // assume a sideslip angle RMS of ~10 deg
|
||
Vector13 SH_BETA;
|
||
Vector8 SK_BETA;
|
||
Vector3f vel_rel_wind;
|
||
Vector22 H_BETA;
|
||
float innovBeta;
|
||
|
||
// copy required states to local variable names
|
||
q0 = state.quat[0];
|
||
q1 = state.quat[1];
|
||
q2 = state.quat[2];
|
||
q3 = state.quat[3];
|
||
vn = state.velocity.x;
|
||
ve = state.velocity.y;
|
||
vd = state.velocity.z;
|
||
vwn = state.wind_vel.x;
|
||
vwe = state.wind_vel.y;
|
||
|
||
// calculate predicted wind relative velocity in NED, compensating for offset in velcity when we are pulling a GPS glitch offset back in
|
||
vel_rel_wind.x = vn - vwn - gpsVelGlitchOffset.x;
|
||
vel_rel_wind.y = ve - vwe - gpsVelGlitchOffset.y;
|
||
vel_rel_wind.z = vd;
|
||
|
||
// rotate into body axes
|
||
vel_rel_wind = prevTnb * vel_rel_wind;
|
||
|
||
// perform fusion of assumed sideslip = 0
|
||
if (vel_rel_wind.x > 5.0f)
|
||
{
|
||
// Calculate observation jacobians
|
||
SH_BETA[0] = (vn - vwn)*(sq(q0) + sq(q1) - sq(q2) - sq(q3)) - vd*(2*q0*q2 - 2*q1*q3) + (ve - vwe)*(2*q0*q3 + 2*q1*q2);
|
||
if (fabsf(SH_BETA[0]) <= 1e-9f) {
|
||
faultStatus.bad_sideslip = true;
|
||
return;
|
||
} else {
|
||
faultStatus.bad_sideslip = false;
|
||
}
|
||
SH_BETA[1] = (ve - vwe)*(sq(q0) - sq(q1) + sq(q2) - sq(q3)) + vd*(2*q0*q1 + 2*q2*q3) - (vn - vwn)*(2*q0*q3 - 2*q1*q2);
|
||
SH_BETA[2] = vn - vwn;
|
||
SH_BETA[3] = ve - vwe;
|
||
SH_BETA[4] = 1/sq(SH_BETA[0]);
|
||
SH_BETA[5] = 1/SH_BETA[0];
|
||
SH_BETA[6] = SH_BETA[5]*(sq(q0) - sq(q1) + sq(q2) - sq(q3));
|
||
SH_BETA[7] = sq(q0) + sq(q1) - sq(q2) - sq(q3);
|
||
SH_BETA[8] = 2*q0*SH_BETA[3] - 2*q3*SH_BETA[2] + 2*q1*vd;
|
||
SH_BETA[9] = 2*q0*SH_BETA[2] + 2*q3*SH_BETA[3] - 2*q2*vd;
|
||
SH_BETA[10] = 2*q2*SH_BETA[2] - 2*q1*SH_BETA[3] + 2*q0*vd;
|
||
SH_BETA[11] = 2*q1*SH_BETA[2] + 2*q2*SH_BETA[3] + 2*q3*vd;
|
||
SH_BETA[12] = 2*q0*q3;
|
||
for (uint8_t i=0; i<=21; i++) {
|
||
H_BETA[i] = 0.0f;
|
||
}
|
||
H_BETA[0] = SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9];
|
||
H_BETA[1] = SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11];
|
||
H_BETA[2] = SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10];
|
||
H_BETA[3] = - SH_BETA[5]*SH_BETA[9] - SH_BETA[1]*SH_BETA[4]*SH_BETA[8];
|
||
H_BETA[4] = - SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) - SH_BETA[1]*SH_BETA[4]*SH_BETA[7];
|
||
H_BETA[5] = SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2);
|
||
H_BETA[6] = SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3);
|
||
H_BETA[14] = SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7];
|
||
H_BETA[15] = SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2) - SH_BETA[6];
|
||
|
||
// Calculate Kalman gains
|
||
float temp = (R_BETA - (SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7])*(P[14][4]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P[4][4]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P[5][4]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) - P[15][4]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) + P[0][4]*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P[1][4]*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P[2][4]*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P[3][4]*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P[6][4]*(SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3))) + (SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7])*(P[14][14]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P[4][14]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P[5][14]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) - P[15][14]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) + P[0][14]*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P[1][14]*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P[2][14]*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P[3][14]*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P[6][14]*(SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3))) + (SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2))*(P[14][5]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P[4][5]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P[5][5]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) - P[15][5]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) + P[0][5]*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P[1][5]*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P[2][5]*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P[3][5]*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P[6][5]*(SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3))) - (SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2))*(P[14][15]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P[4][15]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P[5][15]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) - P[15][15]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) + P[0][15]*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P[1][15]*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P[2][15]*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P[3][15]*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P[6][15]*(SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3))) + (SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9])*(P[14][0]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P[4][0]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P[5][0]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) - P[15][0]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) + P[0][0]*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P[1][0]*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P[2][0]*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P[3][0]*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P[6][0]*(SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3))) + (SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11])*(P[14][1]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P[4][1]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P[5][1]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) - P[15][1]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) + P[0][1]*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P[1][1]*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P[2][1]*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P[3][1]*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P[6][1]*(SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3))) + (SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10])*(P[14][2]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P[4][2]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P[5][2]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) - P[15][2]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) + P[0][2]*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P[1][2]*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P[2][2]*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P[3][2]*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P[6][2]*(SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3))) - (SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8])*(P[14][3]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P[4][3]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P[5][3]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) - P[15][3]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) + P[0][3]*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P[1][3]*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P[2][3]*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P[3][3]*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P[6][3]*(SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3))) + (SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3))*(P[14][6]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P[4][6]*(SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P[5][6]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) - P[15][6]*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2)) + P[0][6]*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P[1][6]*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P[2][6]*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P[3][6]*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P[6][6]*(SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3))));
|
||
if (temp >= R_BETA) {
|
||
SK_BETA[0] = 1.0f / temp;
|
||
faultStatus.bad_sideslip = false;
|
||
} else {
|
||
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
||
faultStatus.bad_sideslip = true;
|
||
return;
|
||
}
|
||
SK_BETA[1] = SH_BETA[5]*(SH_BETA[12] - 2*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7];
|
||
SK_BETA[2] = SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2*q1*q2);
|
||
SK_BETA[3] = SH_BETA[5]*(2*q0*q1 + 2*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2*q0*q2 - 2*q1*q3);
|
||
SK_BETA[4] = SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11];
|
||
SK_BETA[5] = SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9];
|
||
SK_BETA[6] = SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10];
|
||
SK_BETA[7] = SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8];
|
||
Kfusion[0] = SK_BETA[0]*(P[0][0]*SK_BETA[5] + P[0][1]*SK_BETA[4] - P[0][4]*SK_BETA[1] + P[0][5]*SK_BETA[2] + P[0][2]*SK_BETA[6] + P[0][6]*SK_BETA[3] - P[0][3]*SK_BETA[7] + P[0][14]*SK_BETA[1] - P[0][15]*SK_BETA[2]);
|
||
Kfusion[1] = SK_BETA[0]*(P[1][0]*SK_BETA[5] + P[1][1]*SK_BETA[4] - P[1][4]*SK_BETA[1] + P[1][5]*SK_BETA[2] + P[1][2]*SK_BETA[6] + P[1][6]*SK_BETA[3] - P[1][3]*SK_BETA[7] + P[1][14]*SK_BETA[1] - P[1][15]*SK_BETA[2]);
|
||
Kfusion[2] = SK_BETA[0]*(P[2][0]*SK_BETA[5] + P[2][1]*SK_BETA[4] - P[2][4]*SK_BETA[1] + P[2][5]*SK_BETA[2] + P[2][2]*SK_BETA[6] + P[2][6]*SK_BETA[3] - P[2][3]*SK_BETA[7] + P[2][14]*SK_BETA[1] - P[2][15]*SK_BETA[2]);
|
||
Kfusion[3] = SK_BETA[0]*(P[3][0]*SK_BETA[5] + P[3][1]*SK_BETA[4] - P[3][4]*SK_BETA[1] + P[3][5]*SK_BETA[2] + P[3][2]*SK_BETA[6] + P[3][6]*SK_BETA[3] - P[3][3]*SK_BETA[7] + P[3][14]*SK_BETA[1] - P[3][15]*SK_BETA[2]);
|
||
Kfusion[4] = SK_BETA[0]*(P[4][0]*SK_BETA[5] + P[4][1]*SK_BETA[4] - P[4][4]*SK_BETA[1] + P[4][5]*SK_BETA[2] + P[4][2]*SK_BETA[6] + P[4][6]*SK_BETA[3] - P[4][3]*SK_BETA[7] + P[4][14]*SK_BETA[1] - P[4][15]*SK_BETA[2]);
|
||
Kfusion[5] = SK_BETA[0]*(P[5][0]*SK_BETA[5] + P[5][1]*SK_BETA[4] - P[5][4]*SK_BETA[1] + P[5][5]*SK_BETA[2] + P[5][2]*SK_BETA[6] + P[5][6]*SK_BETA[3] - P[5][3]*SK_BETA[7] + P[5][14]*SK_BETA[1] - P[5][15]*SK_BETA[2]);
|
||
Kfusion[6] = SK_BETA[0]*(P[6][0]*SK_BETA[5] + P[6][1]*SK_BETA[4] - P[6][4]*SK_BETA[1] + P[6][5]*SK_BETA[2] + P[6][2]*SK_BETA[6] + P[6][6]*SK_BETA[3] - P[6][3]*SK_BETA[7] + P[6][14]*SK_BETA[1] - P[6][15]*SK_BETA[2]);
|
||
Kfusion[7] = SK_BETA[0]*(P[7][0]*SK_BETA[5] + P[7][1]*SK_BETA[4] - P[7][4]*SK_BETA[1] + P[7][5]*SK_BETA[2] + P[7][2]*SK_BETA[6] + P[7][6]*SK_BETA[3] - P[7][3]*SK_BETA[7] + P[7][14]*SK_BETA[1] - P[7][15]*SK_BETA[2]);
|
||
Kfusion[8] = SK_BETA[0]*(P[8][0]*SK_BETA[5] + P[8][1]*SK_BETA[4] - P[8][4]*SK_BETA[1] + P[8][5]*SK_BETA[2] + P[8][2]*SK_BETA[6] + P[8][6]*SK_BETA[3] - P[8][3]*SK_BETA[7] + P[8][14]*SK_BETA[1] - P[8][15]*SK_BETA[2]);
|
||
Kfusion[9] = SK_BETA[0]*(P[9][0]*SK_BETA[5] + P[9][1]*SK_BETA[4] - P[9][4]*SK_BETA[1] + P[9][5]*SK_BETA[2] + P[9][2]*SK_BETA[6] + P[9][6]*SK_BETA[3] - P[9][3]*SK_BETA[7] + P[9][14]*SK_BETA[1] - P[9][15]*SK_BETA[2]);
|
||
Kfusion[10] = SK_BETA[0]*(P[10][0]*SK_BETA[5] + P[10][1]*SK_BETA[4] - P[10][4]*SK_BETA[1] + P[10][5]*SK_BETA[2] + P[10][2]*SK_BETA[6] + P[10][6]*SK_BETA[3] - P[10][3]*SK_BETA[7] + P[10][14]*SK_BETA[1] - P[10][15]*SK_BETA[2]);
|
||
Kfusion[11] = SK_BETA[0]*(P[11][0]*SK_BETA[5] + P[11][1]*SK_BETA[4] - P[11][4]*SK_BETA[1] + P[11][5]*SK_BETA[2] + P[11][2]*SK_BETA[6] + P[11][6]*SK_BETA[3] - P[11][3]*SK_BETA[7] + P[11][14]*SK_BETA[1] - P[11][15]*SK_BETA[2]);
|
||
Kfusion[12] = SK_BETA[0]*(P[12][0]*SK_BETA[5] + P[12][1]*SK_BETA[4] - P[12][4]*SK_BETA[1] + P[12][5]*SK_BETA[2] + P[12][2]*SK_BETA[6] + P[12][6]*SK_BETA[3] - P[12][3]*SK_BETA[7] + P[12][14]*SK_BETA[1] - P[12][15]*SK_BETA[2]);
|
||
// this term has been zeroed to improve stability of the Z accel bias
|
||
Kfusion[13] = 0.0f;//SK_BETA[0]*(P[13][0]*SK_BETA[5] + P[13][1]*SK_BETA[4] - P[13][4]*SK_BETA[1] + P[13][5]*SK_BETA[2] + P[13][2]*SK_BETA[6] + P[13][6]*SK_BETA[3] - P[13][3]*SK_BETA[7] + P[13][14]*SK_BETA[1] - P[13][15]*SK_BETA[2]);
|
||
Kfusion[14] = SK_BETA[0]*(P[14][0]*SK_BETA[5] + P[14][1]*SK_BETA[4] - P[14][4]*SK_BETA[1] + P[14][5]*SK_BETA[2] + P[14][2]*SK_BETA[6] + P[14][6]*SK_BETA[3] - P[14][3]*SK_BETA[7] + P[14][14]*SK_BETA[1] - P[14][15]*SK_BETA[2]);
|
||
Kfusion[15] = SK_BETA[0]*(P[15][0]*SK_BETA[5] + P[15][1]*SK_BETA[4] - P[15][4]*SK_BETA[1] + P[15][5]*SK_BETA[2] + P[15][2]*SK_BETA[6] + P[15][6]*SK_BETA[3] - P[15][3]*SK_BETA[7] + P[15][14]*SK_BETA[1] - P[15][15]*SK_BETA[2]);
|
||
// zero Kalman gains to inhibit magnetic field state estimation
|
||
if (!inhibitMagStates) {
|
||
Kfusion[16] = SK_BETA[0]*(P[16][0]*SK_BETA[5] + P[16][1]*SK_BETA[4] - P[16][4]*SK_BETA[1] + P[16][5]*SK_BETA[2] + P[16][2]*SK_BETA[6] + P[16][6]*SK_BETA[3] - P[16][3]*SK_BETA[7] + P[16][14]*SK_BETA[1] - P[16][15]*SK_BETA[2]);
|
||
Kfusion[17] = SK_BETA[0]*(P[17][0]*SK_BETA[5] + P[17][1]*SK_BETA[4] - P[17][4]*SK_BETA[1] + P[17][5]*SK_BETA[2] + P[17][2]*SK_BETA[6] + P[17][6]*SK_BETA[3] - P[17][3]*SK_BETA[7] + P[17][14]*SK_BETA[1] - P[17][15]*SK_BETA[2]);
|
||
Kfusion[18] = SK_BETA[0]*(P[18][0]*SK_BETA[5] + P[18][1]*SK_BETA[4] - P[18][4]*SK_BETA[1] + P[18][5]*SK_BETA[2] + P[18][2]*SK_BETA[6] + P[18][6]*SK_BETA[3] - P[18][3]*SK_BETA[7] + P[18][14]*SK_BETA[1] - P[18][15]*SK_BETA[2]);
|
||
Kfusion[19] = SK_BETA[0]*(P[19][0]*SK_BETA[5] + P[19][1]*SK_BETA[4] - P[19][4]*SK_BETA[1] + P[19][5]*SK_BETA[2] + P[19][2]*SK_BETA[6] + P[19][6]*SK_BETA[3] - P[19][3]*SK_BETA[7] + P[19][14]*SK_BETA[1] - P[19][15]*SK_BETA[2]);
|
||
Kfusion[20] = SK_BETA[0]*(P[20][0]*SK_BETA[5] + P[20][1]*SK_BETA[4] - P[20][4]*SK_BETA[1] + P[20][5]*SK_BETA[2] + P[20][2]*SK_BETA[6] + P[20][6]*SK_BETA[3] - P[20][3]*SK_BETA[7] + P[20][14]*SK_BETA[1] - P[20][15]*SK_BETA[2]);
|
||
Kfusion[21] = SK_BETA[0]*(P[21][0]*SK_BETA[5] + P[21][1]*SK_BETA[4] - P[21][4]*SK_BETA[1] + P[21][5]*SK_BETA[2] + P[21][2]*SK_BETA[6] + P[21][6]*SK_BETA[3] - P[21][3]*SK_BETA[7] + P[21][14]*SK_BETA[1] - P[21][15]*SK_BETA[2]);
|
||
} else {
|
||
for (uint8_t i=16; i<=21; i++) {
|
||
Kfusion[i] = 0.0f;
|
||
}
|
||
}
|
||
|
||
// calculate predicted sideslip angle and innovation using small angle approximation
|
||
innovBeta = vel_rel_wind.y / vel_rel_wind.x;
|
||
|
||
// reject measurement if greater than 3-sigma inconsistency
|
||
if (innovBeta > 0.5f) {
|
||
return;
|
||
}
|
||
|
||
// correct the state vector
|
||
for (uint8_t j=0; j<=21; j++)
|
||
{
|
||
states[j] = states[j] - Kfusion[j] * innovBeta;
|
||
}
|
||
|
||
state.quat.normalize();
|
||
|
||
// correct the covariance P = (I - K*H)*P
|
||
// take advantage of the empty columns in H to reduce the
|
||
// number of operations
|
||
for (uint8_t i = 0; i<=21; i++)
|
||
{
|
||
for (uint8_t j = 0; j<=6; j++)
|
||
{
|
||
KH[i][j] = Kfusion[i] * H_BETA[j];
|
||
}
|
||
for (uint8_t j = 7; j<=13; j++) KH[i][j] = 0.0f;
|
||
for (uint8_t j = 14; j<=15; j++)
|
||
{
|
||
KH[i][j] = Kfusion[i] * H_BETA[j];
|
||
}
|
||
for (uint8_t j = 16; j<=21; j++) KH[i][j] = 0.0f;
|
||
}
|
||
for (uint8_t i = 0; i<=21; i++)
|
||
{
|
||
for (uint8_t j = 0; j<=21; j++)
|
||
{
|
||
KHP[i][j] = 0;
|
||
for (uint8_t k = 0; k<=6; k++)
|
||
{
|
||
KHP[i][j] = KHP[i][j] + KH[i][k] * P[k][j];
|
||
}
|
||
for (uint8_t k = 14; k<=15; k++)
|
||
{
|
||
KHP[i][j] = KHP[i][j] + KH[i][k] * P[k][j];
|
||
}
|
||
}
|
||
}
|
||
for (uint8_t i = 0; i<=21; i++)
|
||
{
|
||
for (uint8_t j = 0; j<=21; j++)
|
||
{
|
||
P[i][j] = P[i][j] - KHP[i][j];
|
||
}
|
||
}
|
||
}
|
||
|
||
// force the covariance matrix to me symmetrical and limit the variances to prevent ill-condiioning.
|
||
ForceSymmetry();
|
||
ConstrainVariances();
|
||
|
||
// stop the performance timer
|
||
hal.util->perf_end(_perf_FuseSideslip);
|
||
}
|
||
|
||
// zero specified range of rows in the state covariance matrix
|
||
void NavEKF::zeroRows(Matrix22 &covMat, uint8_t first, uint8_t last)
|
||
{
|
||
uint8_t row;
|
||
for (row=first; row<=last; row++)
|
||
{
|
||
memset(&covMat[row][0], 0, sizeof(covMat[0][0])*22);
|
||
}
|
||
}
|
||
|
||
// zero specified range of columns in the state covariance matrix
|
||
void NavEKF::zeroCols(Matrix22 &covMat, uint8_t first, uint8_t last)
|
||
{
|
||
uint8_t row;
|
||
for (row=0; row<=21; row++)
|
||
{
|
||
memset(&covMat[row][first], 0, sizeof(covMat[0][0])*(1+last-first));
|
||
}
|
||
}
|
||
|
||
// store states in a history array along with time stamp
|
||
void NavEKF::StoreStates()
|
||
{
|
||
// Don't need to store states more often than every 10 msec
|
||
if (imuSampleTime_ms - lastStateStoreTime_ms >= 10) {
|
||
lastStateStoreTime_ms = imuSampleTime_ms;
|
||
if (storeIndex > 49) {
|
||
storeIndex = 0;
|
||
}
|
||
storedStates[storeIndex] = state;
|
||
statetimeStamp[storeIndex] = lastStateStoreTime_ms;
|
||
storeIndex = storeIndex + 1;
|
||
}
|
||
}
|
||
|
||
// reset the stored state history and store the current state
|
||
void NavEKF::StoreStatesReset()
|
||
{
|
||
// clear stored state history
|
||
memset(&storedStates[0], 0, sizeof(storedStates));
|
||
memset(&statetimeStamp[0], 0, sizeof(statetimeStamp));
|
||
// store current state vector in first column
|
||
storeIndex = 0;
|
||
storedStates[storeIndex] = state;
|
||
statetimeStamp[storeIndex] = imuSampleTime_ms;
|
||
storeIndex = storeIndex + 1;
|
||
}
|
||
|
||
// recall state vector stored at closest time to the one specified by msec
|
||
void NavEKF::RecallStates(state_elements &statesForFusion, uint32_t msec)
|
||
{
|
||
uint32_t timeDelta;
|
||
uint32_t bestTimeDelta = 200;
|
||
uint8_t bestStoreIndex = 0;
|
||
for (uint8_t i=0; i<=49; i++)
|
||
{
|
||
timeDelta = msec - statetimeStamp[i];
|
||
if (timeDelta < bestTimeDelta)
|
||
{
|
||
bestStoreIndex = i;
|
||
bestTimeDelta = timeDelta;
|
||
}
|
||
}
|
||
if (bestTimeDelta < 200) // only output stored state if < 200 msec retrieval error
|
||
{
|
||
statesForFusion = storedStates[bestStoreIndex];
|
||
}
|
||
else // otherwise output current state
|
||
{
|
||
statesForFusion = state;
|
||
}
|
||
}
|
||
|
||
// recall omega (angular rate vector) average across the time interval from msecStart to msecEnd
|
||
void NavEKF::RecallOmega(Vector3f &omegaAvg, uint32_t msecStart, uint32_t msecEnd)
|
||
{
|
||
// calculate average angular rate vector over the time interval from msecStart to msecEnd
|
||
// if no values are inside the time window, return the current angular rate
|
||
omegaAvg.zero();
|
||
uint8_t numAvg = 0;
|
||
for (uint8_t i=0; i<=49; i++)
|
||
{
|
||
if (msecStart <= statetimeStamp[i] && msecEnd >= statetimeStamp[i])
|
||
{
|
||
omegaAvg += storedStates[i].omega;
|
||
numAvg += 1;
|
||
}
|
||
}
|
||
if (numAvg >= 1)
|
||
{
|
||
omegaAvg = omegaAvg / float(numAvg);
|
||
} else if (dtIMUactual > 0) {
|
||
omegaAvg = correctedDelAng / dtIMUactual;
|
||
} else {
|
||
omegaAvg.zero();
|
||
}
|
||
}
|
||
|
||
// calculate nav to body quaternions from body to nav rotation matrix
|
||
void NavEKF::quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const
|
||
{
|
||
// Calculate the body to nav cosine matrix
|
||
quat.rotation_matrix(Tbn);
|
||
}
|
||
|
||
// return the Euler roll, pitch and yaw angle in radians
|
||
void NavEKF::getEulerAngles(Vector3f &euler) const
|
||
{
|
||
state.quat.to_euler(euler.x, euler.y, euler.z);
|
||
euler = euler - _ahrs->get_trim();
|
||
}
|
||
|
||
// This returns the specific forces in the NED frame
|
||
void NavEKF::getAccelNED(Vector3f &accelNED) const {
|
||
accelNED = velDotNED;
|
||
accelNED.z -= GRAVITY_MSS;
|
||
}
|
||
|
||
// return NED velocity in m/s
|
||
//
|
||
void NavEKF::getVelNED(Vector3f &vel) const
|
||
{
|
||
vel = state.velocity;
|
||
}
|
||
|
||
// Return the rate of change of vertical position in the down diection (dPosD/dt) in m/s
|
||
float NavEKF::getPosDownDerivative(void) const
|
||
{
|
||
// return the value calculated from a complmentary filer applied to the EKF height and vertical acceleration
|
||
return posDownDerivative;
|
||
}
|
||
|
||
// Return the last calculated NED position relative to the reference point (m).
|
||
// if a calculated solution is not available, use the best available data and return false
|
||
bool NavEKF::getPosNED(Vector3f &pos) const
|
||
{
|
||
// The EKF always has a height estimate regardless of mode of operation
|
||
pos.z = state.position.z;
|
||
// There are three modes of operation, absolute position (GPS fusion), relative position (optical flow fusion) and constant position (no position estimate available)
|
||
nav_filter_status status;
|
||
getFilterStatus(status);
|
||
if (status.flags.horiz_pos_abs || status.flags.horiz_pos_rel) {
|
||
// This is the normal mode of operation where we can use the EKF position states
|
||
pos.x = state.position.x;
|
||
pos.y = state.position.y;
|
||
return true;
|
||
} else {
|
||
// In constant position mode the EKF position states are at the origin, so we cannot use them as a position estimate
|
||
if(validOrigin) {
|
||
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_2D)) {
|
||
// If the origin has been set and we have GPS, then return the GPS position relative to the origin
|
||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||
Vector2f tempPosNE = location_diff(EKF_origin, gpsloc);
|
||
pos.x = tempPosNE.x;
|
||
pos.y = tempPosNE.y;
|
||
return false;
|
||
} else {
|
||
// If no GPS fix is available, all we can do is provide the last known position
|
||
pos.x = state.position.x + lastKnownPositionNE.x;
|
||
pos.y = state.position.y + lastKnownPositionNE.y;
|
||
return false;
|
||
}
|
||
} else {
|
||
// If the origin has not been set, then we have no means of providing a relative position
|
||
pos.x = 0.0f;
|
||
pos.y = 0.0f;
|
||
return false;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// return body axis gyro bias estimates in rad/sec
|
||
void NavEKF::getGyroBias(Vector3f &gyroBias) const
|
||
{
|
||
if (dtIMUavg < 1e-6f) {
|
||
gyroBias.zero();
|
||
return;
|
||
}
|
||
gyroBias = state.gyro_bias / dtIMUavg;
|
||
}
|
||
|
||
// reset the body axis gyro bias states to zero and re-initialise the corresponding covariances
|
||
void NavEKF::resetGyroBias(void)
|
||
{
|
||
state.gyro_bias.zero();
|
||
zeroRows(P,10,12);
|
||
zeroCols(P,10,12);
|
||
P[10][10] = sq(radians(InitialGyroBiasUncertainty() * dtIMUavg));
|
||
P[11][11] = P[10][10];
|
||
P[12][12] = P[10][10];
|
||
|
||
}
|
||
|
||
// Reset the baro so that it reads zero at the current height
|
||
// Reset the EKF height to zero
|
||
// Adjust the EKf origin height so that the EKF height + origin height is the same as before
|
||
// Return true if the height datum reset has been performed
|
||
// If using a range finder for height do not reset and return false
|
||
bool NavEKF::resetHeightDatum(void)
|
||
{
|
||
// if we are using a range finder for height, return false
|
||
if (_altSource == 1) {
|
||
return false;
|
||
}
|
||
// record the old height estimate
|
||
float oldHgt = -state.position.z;
|
||
// reset the barometer so that it reads zero at the current height
|
||
_baro.update_calibration();
|
||
// reset the height state
|
||
state.position.z = 0.0f;
|
||
// reset the stored height states from previous time steps
|
||
for (uint8_t i=0; i<=49; i++){
|
||
storedStates[i].position.z = state.position.z;
|
||
}
|
||
// adjust the height of the EKF origin so that the origin plus baro height before and afer the reset is the same
|
||
if (validOrigin) {
|
||
EKF_origin.alt += oldHgt*100;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
// Commands the EKF to not use GPS.
|
||
// This command must be sent prior to arming
|
||
// This command is forgotten by the EKF each time the vehicle disarms
|
||
// Returns 0 if command rejected
|
||
// Returns 1 if attitude, vertical velocity and vertical position will be provided
|
||
// Returns 2 if attitude, 3D-velocity, vertical position and relative horizontal position will be provided
|
||
uint8_t NavEKF::setInhibitGPS(void)
|
||
{
|
||
if(!vehicleArmed) {
|
||
return 0;
|
||
}
|
||
if (optFlowDataPresent()) {
|
||
_fusionModeGPS = 3;
|
||
return 2;
|
||
} else {
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
// return the horizontal speed limit in m/s set by optical flow sensor limits
|
||
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
|
||
void NavEKF::getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const
|
||
{
|
||
if (PV_AidingMode == AID_RELATIVE) {
|
||
// allow 1.0 rad/sec margin for angular motion
|
||
ekfGndSpdLimit = max((_maxFlowRate - 1.0f), 0.0f) * max((terrainState - state.position[2]), rngOnGnd);
|
||
// use standard gains up to 5.0 metres height and reduce above that
|
||
ekfNavVelGainScaler = 4.0f / max((terrainState - state.position[2]),4.0f);
|
||
} else {
|
||
ekfGndSpdLimit = 400.0f; //return 80% of max filter speed
|
||
ekfNavVelGainScaler = 1.0f;
|
||
}
|
||
}
|
||
|
||
// return weighting of first IMU in blending function
|
||
void NavEKF::getIMU1Weighting(float &ret) const
|
||
{
|
||
ret = IMU1_weighting;
|
||
}
|
||
|
||
// return the individual Z-accel bias estimates in m/s^2
|
||
void NavEKF::getAccelZBias(float &zbias1, float &zbias2) const {
|
||
if (dtIMUavg > 0) {
|
||
zbias1 = state.accel_zbias1 / dtIMUavg;
|
||
zbias2 = state.accel_zbias2 / dtIMUavg;
|
||
} else {
|
||
zbias1 = 0;
|
||
zbias2 = 0;
|
||
}
|
||
}
|
||
|
||
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
|
||
void NavEKF::getWind(Vector3f &wind) const
|
||
{
|
||
wind.x = state.wind_vel.x;
|
||
wind.y = state.wind_vel.y;
|
||
wind.z = 0.0f; // currently don't estimate this
|
||
}
|
||
|
||
// return earth magnetic field estimates in measurement units / 1000
|
||
void NavEKF::getMagNED(Vector3f &magNED) const
|
||
{
|
||
magNED = state.earth_magfield * 1000.0f;
|
||
}
|
||
|
||
// return body magnetic field estimates in measurement units / 1000
|
||
void NavEKF::getMagXYZ(Vector3f &magXYZ) const
|
||
{
|
||
magXYZ = state.body_magfield*1000.0f;
|
||
}
|
||
|
||
// return magnetometer offsets
|
||
// return true if offsets are valid
|
||
bool NavEKF::getMagOffsets(Vector3f &magOffsets) const
|
||
{
|
||
// compass offsets are valid if we have finalised magnetic field initialisation and magnetic field learning is not prohibited and primary compass is valid
|
||
if (secondMagYawInit && (_magCal != 2) && _ahrs->get_compass()->healthy()) {
|
||
magOffsets = _ahrs->get_compass()->get_offsets() - state.body_magfield*1000.0f;
|
||
return true;
|
||
} else {
|
||
magOffsets = _ahrs->get_compass()->get_offsets();
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// Return the last calculated latitude, longitude and height in WGS-84
|
||
// If a calculated location isn't available, return a raw GPS measurement
|
||
// The status will return true if a calculation or raw measurement is available
|
||
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
|
||
bool NavEKF::getLLH(struct Location &loc) const
|
||
{
|
||
if(validOrigin) {
|
||
// Altitude returned is an absolute altitude relative to the WGS-84 spherioid
|
||
loc.alt = EKF_origin.alt - state.position.z*100;
|
||
loc.flags.relative_alt = 0;
|
||
loc.flags.terrain_alt = 0;
|
||
|
||
// there are three modes of operation, absolute position (GPS fusion), relative position (optical flow fusion) and constant position (no aiding)
|
||
nav_filter_status status;
|
||
getFilterStatus(status);
|
||
if (status.flags.horiz_pos_abs || status.flags.horiz_pos_rel) {
|
||
loc.lat = EKF_origin.lat;
|
||
loc.lng = EKF_origin.lng;
|
||
location_offset(loc, state.position.x, state.position.y);
|
||
return true;
|
||
} else {
|
||
// we could be in constant position mode becasue the vehicle has taken off without GPS, or has lost GPS
|
||
// in this mode we cannot use the EKF states to estimate position so will return the best available data
|
||
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_2D)) {
|
||
// we have a GPS position fix to return
|
||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||
loc.lat = gpsloc.lat;
|
||
loc.lng = gpsloc.lng;
|
||
return true;
|
||
} else {
|
||
// if no GPS fix, provide last known position before entering the mode
|
||
location_offset(loc, lastKnownPositionNE.x, lastKnownPositionNE.y);
|
||
return false;
|
||
}
|
||
}
|
||
} else {
|
||
// If no origin has been defined for the EKF, then we cannot use its position states so return a raw
|
||
// GPS reading if available and return false
|
||
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D)) {
|
||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||
loc = gpsloc;
|
||
loc.flags.relative_alt = 0;
|
||
loc.flags.terrain_alt = 0;
|
||
}
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// return the estimated height above ground level
|
||
bool NavEKF::getHAGL(float &HAGL) const
|
||
{
|
||
HAGL = terrainState - state.position.z;
|
||
// If we know the terrain offset and altitude, then we have a valid height above ground estimate
|
||
return !hgtTimeout && gndOffsetValid && healthy();
|
||
}
|
||
|
||
// return data for debugging optical flow fusion
|
||
void NavEKF::getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const
|
||
{
|
||
varFlow = max(flowTestRatio[0],flowTestRatio[1]);
|
||
gndOffset = terrainState;
|
||
flowInnovX = innovOptFlow[0];
|
||
flowInnovY = innovOptFlow[1];
|
||
auxInnov = auxFlowObsInnov;
|
||
HAGL = terrainState - state.position.z;
|
||
rngInnov = innovRng;
|
||
range = rngMea;
|
||
gndOffsetErr = sqrtf(Popt); // note Popt is constrained to be non-negative in EstimateTerrainOffset()
|
||
}
|
||
|
||
// calculate whether the flight vehicle is on the ground or flying from height, airspeed and GPS speed
|
||
void NavEKF::SetFlightAndFusionModes()
|
||
{
|
||
// determine if the vehicle is manoevring
|
||
if (accNavMagHoriz > 0.5f){
|
||
manoeuvring = true;
|
||
} else {
|
||
manoeuvring = false;
|
||
}
|
||
// if we are a fly forward type vehicle, then in-air mode can be determined through a combination of speed and height criteria
|
||
if (assume_zero_sideslip()) {
|
||
// Evaluate a numerical score that defines the likelihood we are in the air
|
||
float gndSpdSq = sq(velNED[0]) + sq(velNED[1]);
|
||
bool highGndSpd = false;
|
||
bool highAirSpd = false;
|
||
bool largeHgtChange = false;
|
||
|
||
// trigger at 8 m/s airspeed
|
||
if (_ahrs->airspeed_sensor_enabled()) {
|
||
const AP_Airspeed *airspeed = _ahrs->get_airspeed();
|
||
if (airspeed->get_airspeed() * airspeed->get_EAS2TAS() > 10.0f) {
|
||
highAirSpd = true;
|
||
}
|
||
}
|
||
|
||
// trigger at 10 m/s GPS velocity, but not if GPS is reporting bad velocity errors
|
||
if (gndSpdSq > 100.0f && gpsSpdAccuracy < 1.0f) {
|
||
highGndSpd = true;
|
||
}
|
||
|
||
// trigger if more than 10m away from initial height
|
||
if (fabsf(hgtMea) > 10.0f) {
|
||
largeHgtChange = true;
|
||
}
|
||
|
||
// to go to in-air mode we also need enough GPS velocity to be able to calculate a reliable ground track heading and either a lerge height or airspeed change
|
||
if (onGround && highGndSpd && (highAirSpd || largeHgtChange)) {
|
||
onGround = false;
|
||
}
|
||
// if is possible we are in flight, set the time this condition was last detected
|
||
if (highGndSpd || highAirSpd || largeHgtChange) {
|
||
airborneDetectTime_ms = imuSampleTime_ms;
|
||
}
|
||
// after 5 seconds of not detecting a possible flight condition, we transition to on-ground mode
|
||
if(!onGround && ((imuSampleTime_ms - airborneDetectTime_ms) > 5000)) {
|
||
onGround = true;
|
||
}
|
||
// perform a yaw alignment check against GPS if exiting on-ground mode, bu tonly if we have enough ground speed
|
||
// this is done to protect against unrecoverable heading alignment errors due to compass faults
|
||
if (!onGround && prevOnGround) {
|
||
alignYawGPS();
|
||
}
|
||
// If we aren't using an airspeed sensor we set the wind velocity to the reciprocal
|
||
// of the velocity vector and scale states so that the wind speed is equal to 3m/s. This helps prevent gains
|
||
// being too high at the start of flight if launching into a headwind until the first turn when the EKF can form
|
||
// a wind speed estimate and also corrects bad initial wind estimates due to heading errors
|
||
if (!onGround && prevOnGround && !useAirspeed()) {
|
||
setWindVelStates();
|
||
}
|
||
}
|
||
// store current on-ground status for next time
|
||
prevOnGround = onGround;
|
||
// If we are on ground, or in constant position mode, or don't have the right vehicle and sensing to estimate wind, inhibit wind states
|
||
inhibitWindStates = ((!useAirspeed() && !assume_zero_sideslip()) || onGround || constPosMode);
|
||
// request mag calibration for both in-air and manoeuvre threshold options
|
||
bool magCalRequested = ((_magCal == 0) && !onGround) || ((_magCal == 1) && manoeuvring) || (_magCal == 3);
|
||
// deny mag calibration request if we aren't using the compass, are in the pre-arm constant position mode or it has been inhibited by the user
|
||
bool magCalDenied = !use_compass() || constPosMode || (_magCal == 2);
|
||
// inhibit the magnetic field calibration if not requested or denied
|
||
inhibitMagStates = (!magCalRequested || magCalDenied);
|
||
}
|
||
|
||
// initialise the covariance matrix
|
||
void NavEKF::CovarianceInit()
|
||
{
|
||
// zero the matrix
|
||
for (uint8_t i=1; i<=21; i++)
|
||
{
|
||
for (uint8_t j=0; j<=21; j++)
|
||
{
|
||
P[i][j] = 0.0f;
|
||
}
|
||
}
|
||
// quaternions - TODO better maths for initial quaternion covariances that uses roll, pitch and yaw
|
||
P[0][0] = 1.0e-9f;
|
||
P[1][1] = 0.25f*sq(radians(1.0f));
|
||
P[2][2] = 0.25f*sq(radians(1.0f));
|
||
P[3][3] = 0.25f*sq(radians(1.0f));
|
||
// velocities
|
||
P[4][4] = sq(0.7f);
|
||
P[5][5] = P[4][4];
|
||
P[6][6] = sq(0.7f);
|
||
// positions
|
||
P[7][7] = sq(15.0f);
|
||
P[8][8] = P[7][7];
|
||
P[9][9] = sq(_baroAltNoise);
|
||
// delta angle biases
|
||
P[10][10] = sq(radians(InitialGyroBiasUncertainty() * dtIMUavg));
|
||
P[11][11] = P[10][10];
|
||
P[12][12] = P[10][10];
|
||
// Z delta velocity bias
|
||
P[13][13] = sq(INIT_ACCEL_BIAS_UNCERTAINTY * dtIMUavg);
|
||
// wind velocities
|
||
P[14][14] = 0.0f;
|
||
P[15][15] = P[14][14];
|
||
// earth magnetic field
|
||
P[16][16] = 0.0f;
|
||
P[17][17] = P[16][16];
|
||
P[18][18] = P[16][16];
|
||
// body magnetic field
|
||
P[19][19] = 0.0f;
|
||
P[20][20] = P[19][19];
|
||
P[21][21] = P[19][19];
|
||
|
||
// optical flow ground height covariance
|
||
Popt = 0.25f;
|
||
|
||
}
|
||
|
||
// force symmetry on the covariance matrix to prevent ill-conditioning
|
||
void NavEKF::ForceSymmetry()
|
||
{
|
||
for (uint8_t i=1; i<=21; i++)
|
||
{
|
||
for (uint8_t j=0; j<=i-1; j++)
|
||
{
|
||
float temp = 0.5f*(P[i][j] + P[j][i]);
|
||
P[i][j] = temp;
|
||
P[j][i] = temp;
|
||
}
|
||
}
|
||
}
|
||
|
||
// copy covariances across from covariance prediction calculation and fix numerical errors
|
||
void NavEKF::CopyAndFixCovariances()
|
||
{
|
||
// copy predicted variances
|
||
for (uint8_t i=0; i<=21; i++) {
|
||
P[i][i] = nextP[i][i];
|
||
}
|
||
// copy predicted covariances and force symmetry
|
||
for (uint8_t i=1; i<=21; i++) {
|
||
for (uint8_t j=0; j<=i-1; j++)
|
||
{
|
||
P[i][j] = 0.5f*(nextP[i][j] + nextP[j][i]);
|
||
P[j][i] = P[i][j];
|
||
}
|
||
}
|
||
}
|
||
|
||
// constrain variances (diagonal terms) in the state covariance matrix to prevent ill-conditioning
|
||
void NavEKF::ConstrainVariances()
|
||
{
|
||
for (uint8_t i=0; i<=3; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0f); // quaternions
|
||
for (uint8_t i=4; i<=6; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e3f); // velocities
|
||
for (uint8_t i=7; i<=9; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e6f); // positions
|
||
for (uint8_t i=10; i<=12; i++) P[i][i] = constrain_float(P[i][i],0.0f,sq(0.175f * dtIMUavg)); // delta angle biases
|
||
P[13][13] = constrain_float(P[13][13],0.0f,sq(10.0f * dtIMUavg)); // delta velocity bias
|
||
for (uint8_t i=14; i<=15; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e3f); // earth magnetic field
|
||
for (uint8_t i=16; i<=21; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0f); // body magnetic field
|
||
}
|
||
|
||
// constrain states to prevent ill-conditioning
|
||
void NavEKF::ConstrainStates()
|
||
{
|
||
// quaternions are limited between +-1
|
||
for (uint8_t i=0; i<=3; i++) states[i] = constrain_float(states[i],-1.0f,1.0f);
|
||
// velocity limit 500 m/sec (could set this based on some multiple of max airspeed * EAS2TAS)
|
||
for (uint8_t i=4; i<=6; i++) states[i] = constrain_float(states[i],-5.0e2f,5.0e2f);
|
||
// position limit 1000 km - TODO apply circular limit
|
||
for (uint8_t i=7; i<=8; i++) states[i] = constrain_float(states[i],-1.0e6f,1.0e6f);
|
||
// height limit covers home alt on everest through to home alt at SL and ballon drop
|
||
state.position.z = constrain_float(state.position.z,-4.0e4f,1.0e4f);
|
||
// gyro bias limit ~6 deg/sec (this needs to be set based on manufacturers specs)
|
||
for (uint8_t i=10; i<=12; i++) states[i] = constrain_float(states[i],-0.1f*dtIMUavg,0.1f*dtIMUavg);
|
||
// when the vehicle arms we adjust the limits so that in flight the bias can change by the same amount in either direction
|
||
float delAngBiasLim = MAX_GYRO_BIAS*dtIMUavg;
|
||
state.gyro_bias.x = constrain_float(state.gyro_bias.x, (delAngBiasAtArming.x - delAngBiasLim), (delAngBiasAtArming.x + delAngBiasLim));
|
||
state.gyro_bias.y = constrain_float(state.gyro_bias.y, (delAngBiasAtArming.y - delAngBiasLim), (delAngBiasAtArming.y + delAngBiasLim));
|
||
state.gyro_bias.z = constrain_float(state.gyro_bias.z, (delAngBiasAtArming.z - delAngBiasLim), (delAngBiasAtArming.z + delAngBiasLim));
|
||
// Z accel bias limit 1.0 m/s^2 (this needs to be finalised from test data)
|
||
states[13] = constrain_float(states[13],-1.0f*dtIMUavg,1.0f*dtIMUavg);
|
||
states[22] = constrain_float(states[22],-1.0f*dtIMUavg,1.0f*dtIMUavg);
|
||
// wind velocity limit 100 m/s (could be based on some multiple of max airspeed * EAS2TAS) - TODO apply circular limit
|
||
for (uint8_t i=14; i<=15; i++) states[i] = constrain_float(states[i],-100.0f,100.0f);
|
||
// earth magnetic field limit
|
||
for (uint8_t i=16; i<=18; i++) states[i] = constrain_float(states[i],-1.0f,1.0f);
|
||
// body magnetic field limit
|
||
for (uint8_t i=19; i<=21; i++) states[i] = constrain_float(states[i],-0.5f,0.5f);
|
||
// constrain the terrain offset state
|
||
terrainState = max(terrainState, state.position.z + rngOnGnd);
|
||
}
|
||
|
||
bool NavEKF::readDeltaVelocity(uint8_t ins_index, Vector3f &dVel, float &dVel_dt) {
|
||
const AP_InertialSensor &ins = _ahrs->get_ins();
|
||
|
||
if (ins_index < ins.get_accel_count()) {
|
||
ins.get_delta_velocity(ins_index,dVel);
|
||
dVel_dt = ins.get_delta_velocity_dt(ins_index);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool NavEKF::readDeltaAngle(uint8_t ins_index, Vector3f &dAng) {
|
||
const AP_InertialSensor &ins = _ahrs->get_ins();
|
||
|
||
if (ins_index < ins.get_gyro_count()) {
|
||
ins.get_delta_angle(ins_index,dAng);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// update IMU delta angle and delta velocity measurements
|
||
void NavEKF::readIMUData()
|
||
{
|
||
const AP_InertialSensor &ins = _ahrs->get_ins();
|
||
|
||
dtIMUavg = 1.0f/ins.get_sample_rate();
|
||
dtIMUactual = max(ins.get_delta_time(),1.0e-4f);
|
||
|
||
// the imu sample time is used as a common time reference throughout the filter
|
||
imuSampleTime_ms = hal.scheduler->millis();
|
||
|
||
if (ins.use_accel(0) && ins.use_accel(1)) {
|
||
// dual accel mode
|
||
|
||
// read IMU1 delta velocity data
|
||
readDeltaVelocity(0, dVelIMU1, dtDelVel1);
|
||
|
||
// apply a peak hold 0.2 second time constant decaying envelope filter to the noise length on IMU1
|
||
float alpha = 1.0f - 5.0f*dtDelVel1;
|
||
imuNoiseFiltState1 = maxf(ins.get_vibration_levels(0).length(), alpha*imuNoiseFiltState1);
|
||
|
||
// read IMU2 delta velocity data
|
||
readDeltaVelocity(1, dVelIMU2, dtDelVel2);
|
||
|
||
// apply a peak hold 0.2 second time constant decaying envelope filter to the noise length on IMU2
|
||
alpha = 1.0f - 5.0f*dtDelVel2;
|
||
imuNoiseFiltState2 = maxf(ins.get_vibration_levels(1).length(), alpha*imuNoiseFiltState2);
|
||
|
||
// calculate the filtered difference between acceleration vectors from IMU1 and 2
|
||
// apply a LPF filter with a 1.0 second time constant
|
||
alpha = constrain_float(0.5f*(dtDelVel1 + dtDelVel2),0.0f,1.0f);
|
||
accelDiffFilt = (ins.get_accel(0) - ins.get_accel(1)) * alpha + accelDiffFilt * (1.0f - alpha);
|
||
float accelDiffLength = accelDiffFilt.length();
|
||
|
||
// Check the difference for excessive error and use the IMU with less noise
|
||
// Apply hysteresis to prevent rapid switching
|
||
if (accelDiffLength > 1.8f || (accelDiffLength > 1.2f && lastImuSwitchState != IMUSWITCH_MIXED)) {
|
||
if (lastImuSwitchState == IMUSWITCH_MIXED) {
|
||
// no previous fail so switch to the IMU with least noise
|
||
if (imuNoiseFiltState1 < imuNoiseFiltState2) {
|
||
lastImuSwitchState = IMUSWITCH_IMU0;
|
||
} else {
|
||
lastImuSwitchState = IMUSWITCH_IMU1;
|
||
}
|
||
} else if (lastImuSwitchState == IMUSWITCH_IMU0) {
|
||
// IMU1 previously failed so require 5 m/s/s less noise on IMU2 to switch across
|
||
if (imuNoiseFiltState1 - imuNoiseFiltState2 > 5.0f) {
|
||
// IMU2 is significantly less noisy, so switch
|
||
lastImuSwitchState = IMUSWITCH_IMU1;
|
||
}
|
||
} else {
|
||
// IMU2 previously failed so require 5 m/s/s less noise on IMU1 to switch across
|
||
if (imuNoiseFiltState2 - imuNoiseFiltState1 > 5.0f) {
|
||
// IMU1 is significantly less noisy, so switch
|
||
lastImuSwitchState = IMUSWITCH_IMU0;
|
||
}
|
||
}
|
||
} else {
|
||
lastImuSwitchState = IMUSWITCH_MIXED;
|
||
}
|
||
|
||
} else {
|
||
// single accel mode - one of the first two accelerometers are unhealthy, not available or de-selected by the user
|
||
// read good accelerometer into dVelIMU1 and copy to dVelIMU2
|
||
// set the switch state based on the IMU we are using to make the data source selection visible
|
||
if (ins.use_accel(0)) {
|
||
readDeltaVelocity(0, dVelIMU1, dtDelVel1);
|
||
lastImuSwitchState = IMUSWITCH_IMU0;
|
||
} else if (ins.use_accel(1)) {
|
||
readDeltaVelocity(1, dVelIMU1, dtDelVel1);
|
||
lastImuSwitchState = IMUSWITCH_IMU1;
|
||
} else {
|
||
readDeltaVelocity(ins.get_primary_accel(), dVelIMU1, dtDelVel1);
|
||
switch (ins.get_primary_accel()) {
|
||
case 0:
|
||
lastImuSwitchState = IMUSWITCH_IMU0;
|
||
break;
|
||
case 1:
|
||
lastImuSwitchState = IMUSWITCH_IMU1;
|
||
break;
|
||
default:
|
||
// we must be using IMU2 which can't be properly represented so we set to "mixed"
|
||
lastImuSwitchState = IMUSWITCH_MIXED;
|
||
break;
|
||
}
|
||
}
|
||
dtDelVel2 = dtDelVel1;
|
||
dVelIMU2 = dVelIMU1;
|
||
}
|
||
|
||
if (ins.use_gyro(0) && ins.use_gyro(1)) {
|
||
// dual gyro mode - average first two gyros
|
||
Vector3f dAng;
|
||
dAngIMU.zero();
|
||
readDeltaAngle(0, dAng);
|
||
dAngIMU += dAng;
|
||
readDeltaAngle(1, dAng);
|
||
dAngIMU += dAng;
|
||
dAngIMU *= 0.5f;
|
||
} else {
|
||
// single gyro mode - one of the first two gyros are unhealthy or don't exist
|
||
// just read primary gyro
|
||
readDeltaAngle(ins.get_primary_gyro(), dAngIMU);
|
||
}
|
||
}
|
||
|
||
// check for new valid GPS data and update stored measurement if available
|
||
void NavEKF::readGpsData()
|
||
{
|
||
// check for new GPS data
|
||
if (_ahrs->get_gps().last_message_time_ms() != lastFixTime_ms) {
|
||
if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) {
|
||
// report GPS fix status
|
||
gpsCheckStatus.bad_fix = false;
|
||
|
||
// store fix time from previous read
|
||
secondLastFixTime_ms = lastFixTime_ms;
|
||
|
||
// get current fix time
|
||
lastFixTime_ms = _ahrs->get_gps().last_message_time_ms();
|
||
|
||
// set flag that lets other functions know that new GPS data has arrived
|
||
newDataGps = true;
|
||
|
||
// get state vectors that were stored at the time that is closest to when the the GPS measurement
|
||
// time after accounting for measurement delays
|
||
RecallStates(statesAtVelTime, (imuSampleTime_ms - constrain_int16(_msecVelDelay, 0, 500)));
|
||
RecallStates(statesAtPosTime, (imuSampleTime_ms - constrain_int16(_msecPosDelay, 0, 500)));
|
||
|
||
// read the NED velocity from the GPS
|
||
velNED = _ahrs->get_gps().velocity();
|
||
|
||
// Use the speed accuracy from the GPS if available, otherwise set it to zero.
|
||
// Apply a decaying envelope filter with a 5 second time constant to the raw speed accuracy data
|
||
float alpha = constrain_float(0.0002f * (lastFixTime_ms - secondLastFixTime_ms),0.0f,1.0f);
|
||
gpsSpdAccuracy *= (1.0f - alpha);
|
||
float gpsSpdAccRaw;
|
||
if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) {
|
||
gpsSpdAccuracy = 0.0f;
|
||
} else {
|
||
gpsSpdAccuracy = max(gpsSpdAccuracy,gpsSpdAccRaw);
|
||
}
|
||
|
||
// check if we have enough GPS satellites and increase the gps noise scaler if we don't
|
||
if (_ahrs->get_gps().num_sats() >= 6 && !constPosMode) {
|
||
gpsNoiseScaler = 1.0f;
|
||
} else if (_ahrs->get_gps().num_sats() == 5 && !constPosMode) {
|
||
gpsNoiseScaler = 1.4f;
|
||
} else { // <= 4 satellites or in constant position mode
|
||
gpsNoiseScaler = 2.0f;
|
||
}
|
||
|
||
// Check if GPS can output vertical velocity and set GPS fusion mode accordingly
|
||
if (_ahrs->get_gps().have_vertical_velocity() && _fusionModeGPS == 0) {
|
||
useGpsVertVel = true;
|
||
} else {
|
||
useGpsVertVel = false;
|
||
}
|
||
|
||
// Monitor quality of the GPS velocity data for alignment
|
||
gpsGoodToAlign = calcGpsGoodToAlign();
|
||
|
||
// Monitor qulaity of GPS data inflight
|
||
calcGpsGoodForFlight();
|
||
|
||
// read latitutde and longitude from GPS and convert to local NE position relative to the stored origin
|
||
// If we don't have an origin, then set it to the current GPS coordinates
|
||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||
if (validOrigin) {
|
||
gpsPosNE = location_diff(EKF_origin, gpsloc);
|
||
} else if (gpsGoodToAlign){
|
||
// Set the NE origin to the current GPS position
|
||
setOrigin();
|
||
// Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly
|
||
alignMagStateDeclination();
|
||
// Set the height of the NED origin to ‘height of baro height datum relative to GPS height datum'
|
||
EKF_origin.alt = gpsloc.alt - hgtMea;
|
||
// We are by definition at the origin at the instant of alignment so set NE position to zero
|
||
gpsPosNE.zero();
|
||
// If the vehicle is in flight (use arm status to determine) and GPS useage isn't explicitly prohibited, we switch to absolute position mode
|
||
if (vehicleArmed && _fusionModeGPS != 3) {
|
||
constPosMode = false;
|
||
PV_AidingMode = AID_ABSOLUTE;
|
||
gpsNotAvailable = false;
|
||
// Initialise EKF position and velocity states
|
||
ResetPosition();
|
||
ResetVelocity();
|
||
}
|
||
}
|
||
|
||
// calculate a position offset which is applied to NE position and velocity wherever it is used throughout code to allow GPS position jumps to be accommodated gradually
|
||
decayGpsOffset();
|
||
} else {
|
||
// report GPS fix status
|
||
gpsCheckStatus.bad_fix = true;
|
||
}
|
||
}
|
||
|
||
|
||
// If no previous GPS lock or told not to use it, or EKF origin not set, we declare the GPS unavailable for use
|
||
if ((_ahrs->get_gps().status() < AP_GPS::GPS_OK_FIX_3D) || _fusionModeGPS == 3 || !validOrigin) {
|
||
gpsNotAvailable = true;
|
||
} else {
|
||
gpsNotAvailable = false;
|
||
}
|
||
}
|
||
|
||
// check for new altitude measurement data and update stored measurement if available
|
||
void NavEKF::readHgtData()
|
||
{
|
||
// check to see if baro measurement has changed so we know if a new measurement has arrived
|
||
if (_baro.healthy() && _baro.get_last_update() != lastHgtMeasTime) {
|
||
// Don't use Baro height if operating in optical flow mode as we use range finder instead
|
||
if (_fusionModeGPS == 3 && _altSource == 1) {
|
||
if ((imuSampleTime_ms - rngValidMeaTime_ms) < 2000) {
|
||
// adjust range finder measurement to allow for effect of vehicle tilt and height of sensor
|
||
hgtMea = max(rngMea * Tnb_flow.c.z, rngOnGnd);
|
||
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
||
statesAtHgtTime = statesAtFlowTime;
|
||
// calculate offset to baro data that enables baro to be used as a backup
|
||
// filter offset to reduce effect of baro noise and other transient errors on estimate
|
||
baroHgtOffset = 0.1f * (_baro.get_altitude() + state.position.z) + 0.9f * baroHgtOffset;
|
||
} else if (vehicleArmed && takeOffDetected) {
|
||
// use baro measurement and correct for baro offset - failsafe use only as baro will drift
|
||
hgtMea = max(_baro.get_altitude() - baroHgtOffset, rngOnGnd);
|
||
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
||
RecallStates(statesAtHgtTime, (imuSampleTime_ms - msecHgtDelay));
|
||
} else {
|
||
// If we are on ground and have no range finder reading, assume the nominal on-ground height
|
||
hgtMea = rngOnGnd;
|
||
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
||
statesAtHgtTime = state;
|
||
// calculate offset to baro data that enables baro to be used as a backup
|
||
// filter offset to reduce effect of baro noise and other transient errors on estimate
|
||
baroHgtOffset = 0.1f * (_baro.get_altitude() + state.position.z) + 0.9f * baroHgtOffset;
|
||
}
|
||
} else {
|
||
// use baro measurement and correct for baro offset
|
||
hgtMea = _baro.get_altitude();
|
||
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
||
RecallStates(statesAtHgtTime, (imuSampleTime_ms - msecHgtDelay));
|
||
}
|
||
|
||
// filtered baro data used to provide a reference for takeoff
|
||
// it is is reset to last height measurement on disarming in performArmingChecks()
|
||
if (!getTakeoffExpected()) {
|
||
static const float gndHgtFiltTC = 0.5f;
|
||
static const float dtBaro = msecHgtAvg*1.0e-3f;
|
||
float alpha = constrain_float(dtBaro / (dtBaro+gndHgtFiltTC),0.0f,1.0f);
|
||
meaHgtAtTakeOff += (hgtMea-meaHgtAtTakeOff)*alpha;
|
||
} else if (vehicleArmed && getTakeoffExpected()) {
|
||
// If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff
|
||
// This prevents negative baro disturbances due to copter downwash corrupting the EKF altitude during initial ascent
|
||
hgtMea = max(hgtMea, meaHgtAtTakeOff);
|
||
}
|
||
|
||
// set flag to let other functions know new data has arrived
|
||
newDataHgt = true;
|
||
// time stamp used to check for new measurement
|
||
lastHgtMeasTime = _baro.get_last_update();
|
||
} else {
|
||
newDataHgt = false;
|
||
}
|
||
}
|
||
|
||
// check for new magnetometer data and update store measurements if available
|
||
void NavEKF::readMagData()
|
||
{
|
||
if (use_compass() && _ahrs->get_compass()->last_update_usec() != lastMagUpdate) {
|
||
// store time of last measurement update
|
||
lastMagUpdate = _ahrs->get_compass()->last_update_usec();
|
||
|
||
// read compass data and scale to improve numerical conditioning
|
||
magData = _ahrs->get_compass()->get_field() * 0.001f;
|
||
|
||
// check for consistent data between magnetometers
|
||
consistentMagData = _ahrs->get_compass()->consistent();
|
||
|
||
// get states stored at time closest to measurement time after allowance for measurement delay
|
||
RecallStates(statesAtMagMeasTime, (imuSampleTime_ms - msecMagDelay));
|
||
|
||
// let other processes know that new compass data has arrived
|
||
newDataMag = true;
|
||
|
||
// check if compass offsets have ben changed and adjust EKF bias states to maintain consistent innovations
|
||
if (_ahrs->get_compass()->healthy()) {
|
||
Vector3f nowMagOffsets = _ahrs->get_compass()->get_offsets();
|
||
bool changeDetected = (!is_equal(nowMagOffsets.x,lastMagOffsets.x) || !is_equal(nowMagOffsets.y,lastMagOffsets.y) || !is_equal(nowMagOffsets.z,lastMagOffsets.z));
|
||
// Ignore bias changes before final mag field and yaw initialisation, as there may have been a compass calibration
|
||
if (changeDetected && secondMagYawInit) {
|
||
state.body_magfield.x += (nowMagOffsets.x - lastMagOffsets.x) * 0.001f;
|
||
state.body_magfield.y += (nowMagOffsets.y - lastMagOffsets.y) * 0.001f;
|
||
state.body_magfield.z += (nowMagOffsets.z - lastMagOffsets.z) * 0.001f;
|
||
}
|
||
lastMagOffsets = nowMagOffsets;
|
||
}
|
||
} else {
|
||
newDataMag = false;
|
||
}
|
||
}
|
||
|
||
// check for new airspeed data and update stored measurements if available
|
||
void NavEKF::readAirSpdData()
|
||
{
|
||
// if airspeed reading is valid and is set by the user to be used and has been updated then
|
||
// we take a new reading, convert from EAS to TAS and set the flag letting other functions
|
||
// know a new measurement is available
|
||
const AP_Airspeed *aspeed = _ahrs->get_airspeed();
|
||
if (aspeed &&
|
||
aspeed->use() &&
|
||
aspeed->last_update_ms() != lastAirspeedUpdate) {
|
||
VtasMeas = aspeed->get_airspeed() * aspeed->get_EAS2TAS();
|
||
lastAirspeedUpdate = aspeed->last_update_ms();
|
||
newDataTas = true;
|
||
RecallStates(statesAtVtasMeasTime, (imuSampleTime_ms - msecTasDelay));
|
||
} else {
|
||
newDataTas = false;
|
||
}
|
||
}
|
||
|
||
// write the raw optical flow measurements
|
||
// this needs to be called externally.
|
||
void NavEKF::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas)
|
||
{
|
||
// The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update
|
||
// The PX4Flow sensor outputs flow rates with the following axis and sign conventions:
|
||
// A positive X rate is produced by a positive sensor rotation about the X axis
|
||
// A positive Y rate is produced by a positive sensor rotation about the Y axis
|
||
// This filter uses a different definition of optical flow rates to the sensor with a positive optical flow rate produced by a
|
||
// negative rotation about that axis. For example a positive rotation of the flight vehicle about its X (roll) axis would produce a negative X flow rate
|
||
flowMeaTime_ms = imuSampleTime_ms;
|
||
flowQuality = rawFlowQuality;
|
||
// recall angular rates averaged across flow observation period allowing for processing, transmission and intersample delays
|
||
RecallOmega(omegaAcrossFlowTime, imuSampleTime_ms - flowTimeDeltaAvg_ms - _msecFLowDelay, imuSampleTime_ms - _msecFLowDelay);
|
||
// calculate bias errors on flow sensor gyro rates, but protect against spikes in data
|
||
flowGyroBias.x = 0.99f * flowGyroBias.x + 0.01f * constrain_float((rawGyroRates.x - omegaAcrossFlowTime.x),-0.1f,0.1f);
|
||
flowGyroBias.y = 0.99f * flowGyroBias.y + 0.01f * constrain_float((rawGyroRates.y - omegaAcrossFlowTime.y),-0.1f,0.1f);
|
||
// check for takeoff if relying on optical flow and zero measurements until takeoff detected
|
||
// if we haven't taken off - constrain position and velocity states
|
||
if (_fusionModeGPS == 3) {
|
||
detectOptFlowTakeoff();
|
||
}
|
||
// recall vehicle states at mid sample time for flow observations allowing for delays
|
||
RecallStates(statesAtFlowTime, imuSampleTime_ms - _msecFLowDelay - flowTimeDeltaAvg_ms/2);
|
||
// calculate rotation matrices at mid sample time for flow observations
|
||
statesAtFlowTime.quat.rotation_matrix(Tbn_flow);
|
||
Tnb_flow = Tbn_flow.transposed();
|
||
// don't use data with a low quality indicator or extreme rates (helps catch corrupt sensor data)
|
||
if ((rawFlowQuality > 0) && rawFlowRates.length() < 4.2f && rawGyroRates.length() < 4.2f) {
|
||
// correct flow sensor rates for bias
|
||
omegaAcrossFlowTime.x = rawGyroRates.x - flowGyroBias.x;
|
||
omegaAcrossFlowTime.y = rawGyroRates.y - flowGyroBias.y;
|
||
// write uncorrected flow rate measurements that will be used by the focal length scale factor estimator
|
||
// note correction for different axis and sign conventions used by the px4flow sensor
|
||
flowRadXY[0] = - rawFlowRates.x; // raw (non motion compensated) optical flow angular rate about the X axis (rad/sec)
|
||
flowRadXY[1] = - rawFlowRates.y; // raw (non motion compensated) optical flow angular rate about the Y axis (rad/sec)
|
||
// write flow rate measurements corrected for body rates
|
||
flowRadXYcomp[0] = flowRadXY[0] + omegaAcrossFlowTime.x;
|
||
flowRadXYcomp[1] = flowRadXY[1] + omegaAcrossFlowTime.y;
|
||
// set flag that will trigger observations
|
||
newDataFlow = true;
|
||
flowValidMeaTime_ms = imuSampleTime_ms;
|
||
} else {
|
||
newDataFlow = false;
|
||
}
|
||
}
|
||
|
||
// calculate the NED earth spin vector in rad/sec
|
||
void NavEKF::calcEarthRateNED(Vector3f &omega, int32_t latitude) const
|
||
{
|
||
float lat_rad = radians(latitude*1.0e-7f);
|
||
omega.x = earthRate*cosf(lat_rad);
|
||
omega.y = 0;
|
||
omega.z = -earthRate*sinf(lat_rad);
|
||
}
|
||
|
||
// initialise the earth magnetic field states using declination, suppled roll/pitch
|
||
// and magnetometer measurements and return initial attitude quaternion
|
||
// if no magnetometer data, do not update magnetic field states and assume zero yaw angle
|
||
Quaternion NavEKF::calcQuatAndFieldStates(float roll, float pitch)
|
||
{
|
||
// declare local variables required to calculate initial orientation and magnetic field
|
||
float yaw;
|
||
Matrix3f Tbn;
|
||
Vector3f initMagNED;
|
||
Quaternion initQuat;
|
||
|
||
if (use_compass()) {
|
||
// calculate rotation matrix from body to NED frame
|
||
Tbn.from_euler(roll, pitch, 0.0f);
|
||
|
||
// read the magnetometer data
|
||
readMagData();
|
||
|
||
// rotate the magnetic field into NED axes
|
||
initMagNED = Tbn * magData;
|
||
|
||
// calculate heading of mag field rel to body heading
|
||
float magHeading = atan2f(initMagNED.y, initMagNED.x);
|
||
|
||
// get the magnetic declination
|
||
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
|
||
|
||
// calculate yaw angle rel to true north
|
||
yaw = magDecAng - magHeading;
|
||
yawAligned = true;
|
||
// calculate initial filter quaternion states using yaw from magnetometer if mag heading healthy
|
||
// otherwise use existing heading
|
||
if (!badMag) {
|
||
// store the yaw change so that it can be retrieved externally for use by the control loops to prevent yaw disturbances following a reset
|
||
Vector3f tempEuler;
|
||
state.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z);
|
||
// this check ensures we accumulate the resets that occur within a single iteration of the EKF
|
||
if (imuSampleTime_ms != lastYawReset_ms) {
|
||
yawResetAngle = 0.0f;
|
||
}
|
||
yawResetAngle += wrap_PI(yaw - tempEuler.z);
|
||
lastYawReset_ms = imuSampleTime_ms;
|
||
// calculate an initial quaternion using the new yaw value
|
||
initQuat.from_euler(roll, pitch, yaw);
|
||
} else {
|
||
initQuat = state.quat;
|
||
}
|
||
|
||
// calculate initial Tbn matrix and rotate Mag measurements into NED
|
||
// to set initial NED magnetic field states
|
||
initQuat.rotation_matrix(Tbn);
|
||
state.earth_magfield = Tbn * magData;
|
||
|
||
// align the NE earth magnetic field states with the published declination
|
||
alignMagStateDeclination();
|
||
|
||
// clear bad magnetometer status
|
||
badMag = false;
|
||
} else {
|
||
initQuat.from_euler(roll, pitch, 0.0f);
|
||
yawAligned = false;
|
||
}
|
||
|
||
// return attitude quaternion
|
||
return initQuat;
|
||
}
|
||
|
||
// this function is used to do a forced alignment of the yaw angle to align with the horizontal velocity
|
||
// vector from GPS. It is used to align the yaw angle after launch or takeoff.
|
||
void NavEKF::alignYawGPS()
|
||
{
|
||
if ((sq(velNED[0]) + sq(velNED[1])) > 25.0f) {
|
||
float roll;
|
||
float pitch;
|
||
float oldYaw;
|
||
float newYaw;
|
||
float yawErr;
|
||
// get quaternion from existing filter states and calculate roll, pitch and yaw angles
|
||
state.quat.to_euler(roll, pitch, oldYaw);
|
||
// calculate course yaw angle
|
||
oldYaw = atan2f(state.velocity.y,state.velocity.x);
|
||
// calculate yaw angle from GPS velocity
|
||
newYaw = atan2f(velNED[1],velNED[0]);
|
||
// estimate the yaw error
|
||
yawErr = wrap_PI(newYaw - oldYaw);
|
||
// If the inertial course angle disagrees with the GPS by more than 45 degrees, we declare the compass as bad
|
||
badMag = (fabsf(yawErr) > 0.7854f);
|
||
// correct yaw angle using GPS ground course compass failed or if not previously aligned
|
||
if (badMag || !yawAligned) {
|
||
// correct the yaw angle
|
||
newYaw = oldYaw + yawErr;
|
||
// calculate new filter quaternion states from Euler angles
|
||
state.quat.from_euler(roll, pitch, newYaw);
|
||
// the yaw angle is now aligned so update its status
|
||
yawAligned = true;
|
||
// reset the position and velocity states
|
||
ResetPosition();
|
||
ResetVelocity();
|
||
// reset the covariance for the quaternion, velocity and position states
|
||
// zero the matrix entries
|
||
zeroRows(P,0,9);
|
||
zeroCols(P,0,9);
|
||
// quaternions - TODO maths that sets them based on different roll, yaw and pitch uncertainties
|
||
P[0][0] = 1.0e-9f;
|
||
P[1][1] = 0.25f*sq(radians(1.0f));
|
||
P[2][2] = 0.25f*sq(radians(1.0f));
|
||
P[3][3] = 0.25f*sq(radians(1.0f));
|
||
// velocities - we could have a big error coming out of constant position mode due to GPS lag
|
||
P[4][4] = 400.0f;
|
||
P[5][5] = P[4][4];
|
||
P[6][6] = sq(0.7f);
|
||
// positions - we could have a big error coming out of constant position mode due to GPS lag
|
||
P[7][7] = 400.0f;
|
||
P[8][8] = P[7][7];
|
||
P[9][9] = sq(5.0f);
|
||
}
|
||
// Update magnetic field states if the magnetometer is bad
|
||
if (badMag) {
|
||
Vector3f eulerAngles;
|
||
getEulerAngles(eulerAngles);
|
||
calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
|
||
}
|
||
}
|
||
}
|
||
|
||
// This function is used to do a forced alignment of the wind velocity
|
||
// states so that they are set to the reciprocal of the ground speed
|
||
// and scaled to STARTUP_WIND_SPEED m/s. This is used when launching a
|
||
// fly-forward vehicle without an airspeed sensor on the assumption
|
||
// that launch will be into wind and STARTUP_WIND_SPEED is
|
||
// representative of typical launch wind
|
||
void NavEKF::setWindVelStates()
|
||
{
|
||
float gndSpd = pythagorous2(state.velocity.x, state.velocity.y);
|
||
if (gndSpd > 4.0f) {
|
||
// set the wind states to be the reciprocal of the velocity and scale
|
||
float scaleFactor = STARTUP_WIND_SPEED / gndSpd;
|
||
state.wind_vel.x = - state.velocity.x * scaleFactor;
|
||
state.wind_vel.y = - state.velocity.y * scaleFactor;
|
||
// reinitialise the wind state covariances
|
||
zeroRows(P,14,15);
|
||
zeroCols(P,14,15);
|
||
P[14][14] = 64.0f;
|
||
P[15][15] = P[14][14];
|
||
}
|
||
}
|
||
|
||
// return the transformation matrix from XYZ (body) to NED axes
|
||
void NavEKF::getRotationBodyToNED(Matrix3f &mat) const
|
||
{
|
||
Vector3f trim = _ahrs->get_trim();
|
||
state.quat.rotation_matrix(mat);
|
||
mat.rotateXYinv(trim);
|
||
}
|
||
|
||
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
|
||
void NavEKF::getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov) const
|
||
{
|
||
velInnov.x = innovVelPos[0];
|
||
velInnov.y = innovVelPos[1];
|
||
velInnov.z = innovVelPos[2];
|
||
posInnov.x = innovVelPos[3];
|
||
posInnov.y = innovVelPos[4];
|
||
posInnov.z = innovVelPos[5];
|
||
magInnov.x = 1e3f*innovMag[0]; // Convert back to sensor units
|
||
magInnov.y = 1e3f*innovMag[1]; // Convert back to sensor units
|
||
magInnov.z = 1e3f*innovMag[2]; // Convert back to sensor units
|
||
tasInnov = innovVtas;
|
||
}
|
||
|
||
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
|
||
// this indicates the amount of margin available when tuning the various error traps
|
||
// also return the current offsets applied to the GPS position measurements
|
||
void NavEKF::getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const
|
||
{
|
||
velVar = sqrtf(velTestRatio);
|
||
posVar = sqrtf(posTestRatio);
|
||
hgtVar = sqrtf(hgtTestRatio);
|
||
magVar.x = sqrtf(magTestRatio.x);
|
||
magVar.y = sqrtf(magTestRatio.y);
|
||
magVar.z = sqrtf(magTestRatio.z);
|
||
tasVar = sqrtf(tasTestRatio);
|
||
offset = gpsPosGlitchOffsetNE;
|
||
}
|
||
|
||
// Use a function call rather than a constructor to initialise variables because it enables the filter to be re-started in flight if necessary.
|
||
void NavEKF::InitialiseVariables()
|
||
{
|
||
if (_perf_UpdateFilter == nullptr) {
|
||
// only allocate perf variables once
|
||
_perf_UpdateFilter = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EKF_UpdateFilter");
|
||
_perf_CovariancePrediction = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EKF_CovariancePrediction");
|
||
_perf_FuseVelPosNED = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EKF_FuseVelPosNED");
|
||
_perf_FuseMagnetometer = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EKF_FuseMagnetometer");
|
||
_perf_FuseAirspeed = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EKF_FuseAirspeed");
|
||
_perf_FuseSideslip = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EKF_FuseSideslip");
|
||
_perf_OpticalFlowEKF = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EKF_FuseOptFlow");
|
||
}
|
||
|
||
// initialise time stamps
|
||
imuSampleTime_ms = hal.scheduler->millis();
|
||
lastHealthyMagTime_ms = imuSampleTime_ms;
|
||
TASmsecPrev = imuSampleTime_ms;
|
||
BETAmsecPrev = imuSampleTime_ms;
|
||
lastMagUpdate = 0;
|
||
lastHgtMeasTime = imuSampleTime_ms;
|
||
lastAirspeedUpdate = 0;
|
||
lastVelPassTime = imuSampleTime_ms;
|
||
lastPosPassTime = imuSampleTime_ms;
|
||
lastPosFailTime = 0;
|
||
lastHgtPassTime = imuSampleTime_ms;
|
||
lastTasPassTime = imuSampleTime_ms;
|
||
lastStateStoreTime_ms = imuSampleTime_ms;
|
||
lastFixTime_ms = 0;
|
||
secondLastFixTime_ms = 0;
|
||
lastDecayTime_ms = imuSampleTime_ms;
|
||
timeAtLastAuxEKF_ms = imuSampleTime_ms;
|
||
flowValidMeaTime_ms = imuSampleTime_ms;
|
||
rngValidMeaTime_ms = imuSampleTime_ms;
|
||
flowMeaTime_ms = 0;
|
||
prevFlowFuseTime_ms = imuSampleTime_ms;
|
||
gndHgtValidTime_ms = 0;
|
||
ekfStartTime_ms = imuSampleTime_ms;
|
||
lastGpsVelFail_ms = 0;
|
||
lastGpsAidBadTime_ms = 0;
|
||
magYawResetTimer_ms = imuSampleTime_ms;
|
||
timeAtDisarm_ms = 0;
|
||
lastConstPosFuseTime_ms = imuSampleTime_ms;
|
||
|
||
// initialise other variables
|
||
gpsNoiseScaler = 1.0f;
|
||
hgtTimeout = true;
|
||
magTimeout = true;
|
||
tasTimeout = true;
|
||
badMag = false;
|
||
badIMUdata = false;
|
||
firstArmComplete = false;
|
||
firstMagYawInit = false;
|
||
secondMagYawInit = false;
|
||
storeIndex = 0;
|
||
dtIMUavg = 0.0025f;
|
||
dtIMUactual = 0.0025f;
|
||
dt = 0;
|
||
hgtMea = 0;
|
||
storeIndex = 0;
|
||
lastGyroBias.zero();
|
||
lastAngRate.zero();
|
||
lastAccel1.zero();
|
||
lastAccel2.zero();
|
||
velDotNEDfilt.zero();
|
||
summedDelAng.zero();
|
||
summedDelVel.zero();
|
||
velNED.zero();
|
||
gpsPosGlitchOffsetNE.zero();
|
||
lastKnownPositionNE.zero();
|
||
gpsPosNE.zero();
|
||
prevTnb.zero();
|
||
memset(&P[0][0], 0, sizeof(P));
|
||
memset(&nextP[0][0], 0, sizeof(nextP));
|
||
memset(&processNoise[0], 0, sizeof(processNoise));
|
||
memset(&storedStates[0], 0, sizeof(storedStates));
|
||
memset(&statetimeStamp[0], 0, sizeof(statetimeStamp));
|
||
memset(&gpsIncrStateDelta[0], 0, sizeof(gpsIncrStateDelta));
|
||
memset(&hgtIncrStateDelta[0], 0, sizeof(hgtIncrStateDelta));
|
||
memset(&magIncrStateDelta[0], 0, sizeof(magIncrStateDelta));
|
||
memset(&flowIncrStateDelta[0], 0, sizeof(flowIncrStateDelta));
|
||
newDataFlow = false;
|
||
flowDataValid = false;
|
||
newDataRng = false;
|
||
flowFusePerformed = false;
|
||
fuseOptFlowData = false;
|
||
Popt = 0.0f;
|
||
terrainState = 0.0f;
|
||
prevPosN = gpsPosNE.x;
|
||
prevPosE = gpsPosNE.y;
|
||
fuseRngData = false;
|
||
inhibitGndState = true;
|
||
flowGyroBias.x = 0;
|
||
flowGyroBias.y = 0;
|
||
constVelMode = false;
|
||
lastConstVelMode = false;
|
||
heldVelNE.zero();
|
||
PV_AidingMode = AID_NONE;
|
||
posTimeout = true;
|
||
velTimeout = true;
|
||
gpsVelGlitchOffset.zero();
|
||
vehicleArmed = false;
|
||
prevVehicleArmed = false;
|
||
constPosMode = true;
|
||
memset(&faultStatus, 0, sizeof(faultStatus));
|
||
hgtRate = 0.0f;
|
||
mag_state.q0 = 1;
|
||
mag_state.DCM.identity();
|
||
IMU1_weighting = 0.5f;
|
||
onGround = true;
|
||
manoeuvring = false;
|
||
yawAligned = false;
|
||
inhibitWindStates = true;
|
||
inhibitMagStates = true;
|
||
gndOffsetValid = false;
|
||
flowXfailed = false;
|
||
validOrigin = false;
|
||
takeoffExpectedSet_ms = 0;
|
||
expectGndEffectTakeoff = false;
|
||
touchdownExpectedSet_ms = 0;
|
||
expectGndEffectTouchdown = false;
|
||
gpsSpdAccuracy = 0.0f;
|
||
baroHgtOffset = 0.0f;
|
||
gpsAidingBad = false;
|
||
highYawRate = false;
|
||
yawRateFilt = 0.0f;
|
||
yawResetAngle = 0.0f;
|
||
lastYawReset_ms = 0;
|
||
imuNoiseFiltState1 = 0.0f;
|
||
imuNoiseFiltState2 = 0.0f;
|
||
lastImuSwitchState = IMUSWITCH_MIXED;
|
||
gpsAccuracyGood = false;
|
||
gpsDriftNE = 0.0f;
|
||
gpsVertVelFilt = 0.0f;
|
||
gpsHorizVelFilt = 0.0f;
|
||
memset(&gpsCheckStatus, 0, sizeof(gpsCheckStatus));
|
||
posDownDerivative = 0.0f;
|
||
posDown = 0.0f;
|
||
delAngBiasAtArming.zero();
|
||
}
|
||
|
||
// return true if we should use the airspeed sensor
|
||
bool NavEKF::useAirspeed(void) const
|
||
{
|
||
return _ahrs->airspeed_sensor_enabled();
|
||
}
|
||
|
||
// return true if we should use the range finder sensor
|
||
bool NavEKF::useRngFinder(void) const
|
||
{
|
||
// TO-DO add code to set this based in setting of optical flow use parameter and presence of sensor
|
||
return true;
|
||
}
|
||
|
||
// return true if optical flow data is available
|
||
bool NavEKF::optFlowDataPresent(void) const
|
||
{
|
||
if (imuSampleTime_ms - flowMeaTime_ms < 5000) {
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// return true if the vehicle is requesting the filter to be ready for flight
|
||
bool NavEKF::getVehicleArmStatus(void) const
|
||
{
|
||
return hal.util->get_soft_armed() || _ahrs->get_correct_centrifugal();
|
||
}
|
||
|
||
// return true if we should use the compass
|
||
bool NavEKF::use_compass(void) const
|
||
{
|
||
return _ahrs->get_compass() && _ahrs->get_compass()->use_for_yaw();
|
||
}
|
||
|
||
// decay GPS horizontal position offset to close to zero at a rate of 1 m/s for copters and 5 m/s for planes
|
||
// limit radius to a maximum of 50m
|
||
void NavEKF::decayGpsOffset()
|
||
{
|
||
float offsetDecaySpd;
|
||
if (assume_zero_sideslip()) {
|
||
offsetDecaySpd = 5.0f;
|
||
} else {
|
||
offsetDecaySpd = 1.0f;
|
||
}
|
||
float lapsedTime = 0.001f*float(imuSampleTime_ms - lastDecayTime_ms);
|
||
lastDecayTime_ms = imuSampleTime_ms;
|
||
float offsetRadius = pythagorous2(gpsPosGlitchOffsetNE.x, gpsPosGlitchOffsetNE.y);
|
||
// decay radius if larger than offset decay speed multiplied by lapsed time (plus a margin to prevent divide by zero)
|
||
if (offsetRadius > (offsetDecaySpd * lapsedTime + 0.1f)) {
|
||
// Calculate the GPS velocity offset required. This is necessary to prevent the position measurement being rejected for inconsistency when the radius is being pulled back in.
|
||
gpsVelGlitchOffset = -gpsPosGlitchOffsetNE*offsetDecaySpd/offsetRadius;
|
||
// calculate scale factor to be applied to both offset components
|
||
float scaleFactor = constrain_float((offsetRadius - offsetDecaySpd * lapsedTime), 0.0f, 50.0f) / offsetRadius;
|
||
gpsPosGlitchOffsetNE.x *= scaleFactor;
|
||
gpsPosGlitchOffsetNE.y *= scaleFactor;
|
||
} else {
|
||
gpsVelGlitchOffset.zero();
|
||
gpsPosGlitchOffsetNE.zero();
|
||
}
|
||
}
|
||
|
||
/*
|
||
should we assume zero sideslip?
|
||
*/
|
||
bool NavEKF::assume_zero_sideslip(void) const
|
||
{
|
||
// we don't assume zero sideslip for ground vehicles as EKF could
|
||
// be quite sensitive to a rapid spin of the ground vehicle if
|
||
// traction is lost
|
||
return _ahrs->get_fly_forward() && _ahrs->get_vehicle_class() != AHRS_VEHICLE_GROUND;
|
||
}
|
||
|
||
|
||
/*
|
||
vehicle specific initial gyro bias uncertainty
|
||
*/
|
||
float NavEKF::InitialGyroBiasUncertainty(void) const
|
||
{
|
||
switch (_ahrs->get_ins().get_sample_rate()) {
|
||
case AP_InertialSensor::RATE_50HZ:
|
||
return 1.0f;
|
||
default:
|
||
return 0.1f;
|
||
}
|
||
}
|
||
|
||
/*
|
||
return the filter fault status as a bitmasked integer
|
||
0 = quaternions are NaN
|
||
1 = velocities are NaN
|
||
2 = badly conditioned X magnetometer fusion
|
||
3 = badly conditioned Y magnetometer fusion
|
||
4 = badly conditioned Z magnetometer fusion
|
||
5 = badly conditioned airspeed fusion
|
||
6 = badly conditioned synthetic sideslip fusion
|
||
7 = filter is not initialised
|
||
*/
|
||
void NavEKF::getFilterFaults(uint8_t &faults) const
|
||
{
|
||
faults = (state.quat.is_nan()<<0 |
|
||
state.velocity.is_nan()<<1 |
|
||
faultStatus.bad_xmag<<2 |
|
||
faultStatus.bad_ymag<<3 |
|
||
faultStatus.bad_zmag<<4 |
|
||
faultStatus.bad_airspeed<<5 |
|
||
faultStatus.bad_sideslip<<6 |
|
||
!statesInitialised<<7);
|
||
}
|
||
|
||
/*
|
||
return filter timeout status as a bitmasked integer
|
||
0 = position measurement timeout
|
||
1 = velocity measurement timeout
|
||
2 = height measurement timeout
|
||
3 = magnetometer measurement timeout
|
||
4 = true airspeed measurement timeout
|
||
5 = unassigned
|
||
6 = unassigned
|
||
7 = unassigned
|
||
*/
|
||
void NavEKF::getFilterTimeouts(uint8_t &timeouts) const
|
||
{
|
||
timeouts = (posTimeout<<0 |
|
||
velTimeout<<1 |
|
||
hgtTimeout<<2 |
|
||
magTimeout<<3 |
|
||
tasTimeout<<4);
|
||
}
|
||
|
||
/*
|
||
return filter gps quality check status
|
||
*/
|
||
void NavEKF::getFilterGpsStatus(nav_gps_status &faults) const
|
||
{
|
||
// init return value
|
||
faults.value = 0;
|
||
|
||
// set individual flags
|
||
faults.flags.bad_sAcc = gpsCheckStatus.bad_sAcc; // reported speed accuracy is insufficient
|
||
faults.flags.bad_hAcc = gpsCheckStatus.bad_hAcc; // reported horizontal position accuracy is insufficient
|
||
faults.flags.bad_yaw = gpsCheckStatus.bad_yaw; // EKF heading accuracy is too large for GPS use
|
||
faults.flags.bad_sats = gpsCheckStatus.bad_sats; // reported number of satellites is insufficient
|
||
faults.flags.bad_VZ = gpsCheckStatus.bad_VZ; // GPS vertical velocity is inconsistent with the IMU and Baro measurements
|
||
faults.flags.bad_horiz_drift = gpsCheckStatus.bad_horiz_drift; // GPS horizontal drift is too large to start using GPS (check assumes vehicle is static)
|
||
faults.flags.bad_hdop = gpsCheckStatus.bad_hdop; // reported HDoP is too large to start using GPS
|
||
faults.flags.bad_vert_vel = gpsCheckStatus.bad_vert_vel; // GPS vertical speed is too large to start using GPS (check assumes vehicle is static)
|
||
faults.flags.bad_fix = gpsCheckStatus.bad_fix; // The GPS cannot provide the 3D fix required
|
||
faults.flags.bad_horiz_vel = gpsCheckStatus.bad_horiz_vel; // The GPS horizontal speed is excessive (check assumes the vehicle is static)
|
||
}
|
||
|
||
/*
|
||
return filter function status as a bitmasked integer
|
||
0 = attitude estimate valid
|
||
1 = horizontal velocity estimate valid
|
||
2 = vertical velocity estimate valid
|
||
3 = relative horizontal position estimate valid
|
||
4 = absolute horizontal position estimate valid
|
||
5 = vertical position estimate valid
|
||
6 = terrain height estimate valid
|
||
7 = constant position mode
|
||
*/
|
||
void NavEKF::getFilterStatus(nav_filter_status &status) const
|
||
{
|
||
// init return value
|
||
status.value = 0;
|
||
|
||
bool doingFlowNav = (PV_AidingMode == AID_RELATIVE) && flowDataValid;
|
||
bool doingWindRelNav = !tasTimeout && assume_zero_sideslip();
|
||
bool doingNormalGpsNav = !posTimeout && (PV_AidingMode == AID_ABSOLUTE);
|
||
bool notDeadReckoning = !constVelMode && !constPosMode;
|
||
bool someVertRefData = (!velTimeout && useGpsVertVel) || !hgtTimeout;
|
||
bool someHorizRefData = !(velTimeout && posTimeout && tasTimeout) || doingFlowNav;
|
||
bool optFlowNavPossible = flowDataValid && (_fusionModeGPS == 3);
|
||
bool gpsNavPossible = !gpsNotAvailable && (_fusionModeGPS <= 2) && gpsGoodToAlign;
|
||
bool filterHealthy = healthy();
|
||
bool gyroHealthy = checkGyroHealthPreFlight();
|
||
|
||
// set individual flags
|
||
status.flags.attitude = !state.quat.is_nan() && filterHealthy && gyroHealthy; // attitude valid (we need a better check)
|
||
status.flags.horiz_vel = someHorizRefData && notDeadReckoning && filterHealthy; // horizontal velocity estimate valid
|
||
status.flags.vert_vel = someVertRefData && filterHealthy; // vertical velocity estimate valid
|
||
status.flags.horiz_pos_rel = ((doingFlowNav && gndOffsetValid) || doingWindRelNav || doingNormalGpsNav) && notDeadReckoning && filterHealthy; // relative horizontal position estimate valid
|
||
status.flags.horiz_pos_abs = !gpsAidingBad && doingNormalGpsNav && notDeadReckoning && filterHealthy; // absolute horizontal position estimate valid
|
||
status.flags.vert_pos = !hgtTimeout && filterHealthy; // vertical position estimate valid
|
||
status.flags.terrain_alt = gndOffsetValid && filterHealthy; // terrain height estimate valid
|
||
status.flags.const_pos_mode = constPosMode && filterHealthy; // constant position mode
|
||
status.flags.pred_horiz_pos_rel = (optFlowNavPossible || gpsNavPossible) && filterHealthy && gyroHealthy; // we should be able to estimate a relative position when we enter flight mode
|
||
status.flags.pred_horiz_pos_abs = gpsNavPossible && filterHealthy && gyroHealthy; // we should be able to estimate an absolute position when we enter flight mode
|
||
status.flags.takeoff_detected = takeOffDetected; // takeoff for optical flow navigation has been detected
|
||
status.flags.takeoff = expectGndEffectTakeoff; // The EKF has been told to expect takeoff and is in a ground effect mitigation mode
|
||
status.flags.touchdown = expectGndEffectTouchdown; // The EKF has been told to detect touchdown and is in a ground effect mitigation mode
|
||
status.flags.using_gps = (imuSampleTime_ms - lastPosPassTime) < 4000;
|
||
status.flags.gps_glitching = !gpsAccuracyGood; // The GPS is glitching
|
||
}
|
||
|
||
// send an EKF_STATUS message to GCS
|
||
void NavEKF::send_status_report(mavlink_channel_t chan)
|
||
{
|
||
// get filter status
|
||
nav_filter_status filt_state;
|
||
getFilterStatus(filt_state);
|
||
|
||
// prepare flags
|
||
uint16_t flags = 0;
|
||
if (filt_state.flags.attitude) { flags |= EKF_ATTITUDE; }
|
||
if (filt_state.flags.horiz_vel) { flags |= EKF_VELOCITY_HORIZ; }
|
||
if (filt_state.flags.vert_vel) { flags |= EKF_VELOCITY_VERT; }
|
||
if (filt_state.flags.horiz_pos_rel) { flags |= EKF_POS_HORIZ_REL; }
|
||
if (filt_state.flags.horiz_pos_abs) { flags |= EKF_POS_HORIZ_ABS; }
|
||
if (filt_state.flags.vert_pos) { flags |= EKF_POS_VERT_ABS; }
|
||
if (filt_state.flags.terrain_alt) { flags |= EKF_POS_VERT_AGL; }
|
||
if (filt_state.flags.const_pos_mode) { flags |= EKF_CONST_POS_MODE; }
|
||
if (filt_state.flags.pred_horiz_pos_rel) { flags |= EKF_PRED_POS_HORIZ_REL; }
|
||
if (filt_state.flags.pred_horiz_pos_abs) { flags |= EKF_PRED_POS_HORIZ_ABS; }
|
||
|
||
// get variances
|
||
float velVar, posVar, hgtVar, tasVar;
|
||
Vector3f magVar;
|
||
Vector2f offset;
|
||
getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
|
||
|
||
// send message
|
||
mavlink_msg_ekf_status_report_send(chan, flags, velVar, posVar, hgtVar, magVar.length(), tasVar);
|
||
|
||
}
|
||
|
||
// Check arm status and perform required checks and mode changes
|
||
void NavEKF::performArmingChecks()
|
||
{
|
||
// determine vehicle arm status and don't allow filter to arm until it has been running for long enough to stabilise
|
||
prevVehicleArmed = vehicleArmed;
|
||
vehicleArmed = (getVehicleArmStatus() && (imuSampleTime_ms - ekfStartTime_ms) > 1000);
|
||
|
||
// check to see if arm status has changed and reset states if it has
|
||
if (vehicleArmed != prevVehicleArmed) {
|
||
// only reset the magnetic field and heading on the first arm. This prevents in-flight learning being forgotten for vehicles that do multiple short flights and disarm in-between.
|
||
if (vehicleArmed && !firstArmComplete) {
|
||
firstArmComplete = true;
|
||
Vector3f eulerAngles;
|
||
getEulerAngles(eulerAngles);
|
||
state.quat = calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
|
||
}
|
||
// store vertical position at arming to use as a reference for ground relative cehcks
|
||
if (vehicleArmed) {
|
||
posDownAtArming = state.position.z;
|
||
// save the gyro bias so that the in-flight gyro bias state limits can be adjusted to provide the same amount of offset change in either direction
|
||
delAngBiasAtArming = state.gyro_bias;
|
||
}
|
||
// zero stored velocities used to do dead-reckoning
|
||
heldVelNE.zero();
|
||
// reset the flag that indicates takeoff for use by optical flow navigation
|
||
takeOffDetected = false;
|
||
// set various useage modes based on the condition at arming. These are then held until the vehicle is disarmed.
|
||
if (!vehicleArmed) {
|
||
PV_AidingMode = AID_NONE; // When dis-armed, we only estimate orientation & height using the constant position mode
|
||
posTimeout = true;
|
||
velTimeout = true;
|
||
constPosMode = true;
|
||
constVelMode = false; // always clear constant velocity mode if constant position mode is active
|
||
lastConstVelMode = false;
|
||
// store the current position to be used to keep reporting the last known position when disarmed
|
||
lastKnownPositionNE.x = state.position.x;
|
||
lastKnownPositionNE.y = state.position.y;
|
||
// initialise filtered altitude used to provide a takeoff reference to current baro on disarm
|
||
// this reduces the time required for the filter to settle before the estimate can be used
|
||
meaHgtAtTakeOff = hgtMea;
|
||
// reset the vertical position state to faster recover from baro errors experienced during touchdown
|
||
state.position.z = -hgtMea;
|
||
// record the time we disarmed
|
||
timeAtDisarm_ms = imuSampleTime_ms;
|
||
// if the GPS is not glitching when we land, we reset the timer used to check GPS quality
|
||
// timer is not set to zero to avoid triggering an automatic fail
|
||
if (gpsAccuracyGood) {
|
||
lastGpsVelFail_ms = 1;
|
||
gpsGoodToAlign = true;
|
||
}
|
||
// we reset the GPS drift checks when disarming as the vehicle has been moving during flight
|
||
gpsDriftNE = 0.0f;
|
||
gpsVertVelFilt = 0.0f;
|
||
gpsHorizVelFilt = 0.0f;
|
||
} else if (_fusionModeGPS == 3) { // arming when GPS useage has been prohibited
|
||
if (optFlowDataPresent()) {
|
||
PV_AidingMode = AID_RELATIVE; // we have optical flow data and can estimate all vehicle states
|
||
posTimeout = true;
|
||
velTimeout = true;
|
||
constPosMode = false;
|
||
constVelMode = false;
|
||
} else {
|
||
PV_AidingMode = AID_NONE; // we don't have optical flow data and will only be able to estimate orientation and height
|
||
posTimeout = true;
|
||
velTimeout = true;
|
||
constPosMode = true;
|
||
constVelMode = false; // always clear constant velocity mode if constant position mode is active
|
||
}
|
||
// Reset the last valid flow measurement time
|
||
flowValidMeaTime_ms = imuSampleTime_ms;
|
||
// Reset the last valid flow fusion time
|
||
prevFlowFuseTime_ms = imuSampleTime_ms;
|
||
// this avoids issues casued by the time delay associated with arming that can trigger short timeouts
|
||
rngValidMeaTime_ms = imuSampleTime_ms;
|
||
// store the range finder measurement which will be used as a reference to detect when we have taken off
|
||
rangeAtArming = rngMea;
|
||
// set the time at which we arm to assist with takeoff detection
|
||
timeAtArming_ms = imuSampleTime_ms;
|
||
} else { // arming when GPS useage is allowed
|
||
if (gpsNotAvailable) {
|
||
PV_AidingMode = AID_NONE; // we don't have have GPS data and will only be able to estimate orientation and height
|
||
posTimeout = true;
|
||
velTimeout = true;
|
||
constPosMode = true;
|
||
constVelMode = false; // always clear constant velocity mode if constant position mode is active
|
||
} else {
|
||
PV_AidingMode = AID_ABSOLUTE; // we have GPS data and can estimate all vehicle states
|
||
posTimeout = false;
|
||
velTimeout = false;
|
||
constPosMode = false;
|
||
constVelMode = false;
|
||
// we need to reset the GPS timers to prevent GPS timeout logic being invoked on entry into GPS aiding
|
||
// this is becasue the EKF can be interrupted for an arbitrary amount of time during vehicle arming checks
|
||
lastFixTime_ms = imuSampleTime_ms;
|
||
secondLastFixTime_ms = imuSampleTime_ms;
|
||
// reset the last valid position fix time to prevent unwanted activation of GPS glitch logic
|
||
lastPosPassTime = imuSampleTime_ms;
|
||
// reset the fail time to prevent premature reporting of loss of position accruacy
|
||
lastPosFailTime = 0;
|
||
}
|
||
}
|
||
if (vehicleArmed) {
|
||
// Reset filter position to GPS when transitioning into flight mode
|
||
// We need to do this becasue the vehicle may have moved since the EKF origin was set
|
||
ResetPosition();
|
||
StoreStatesReset();
|
||
} else {
|
||
// Reset all position and velocity states when transitioning out of flight mode
|
||
// We need to do this becasue we are going into a mode that assumes zero position and velocity
|
||
ResetVelocity();
|
||
ResetPosition();
|
||
StoreStatesReset();
|
||
}
|
||
|
||
} else if (vehicleArmed && !firstMagYawInit && (state.position.z - posDownAtArming) < -1.5f && !assume_zero_sideslip()) {
|
||
// Do the first in-air yaw and earth mag field initialisation when the vehicle has gained 1.5m of altitude after arming if it is a non-fly forward vehicle (vertical takeoff)
|
||
// This is done to prevent magnetic field distoration from steel roofs and adjacent structures causing bad earth field and initial yaw values
|
||
Vector3f eulerAngles;
|
||
getEulerAngles(eulerAngles);
|
||
state.quat = calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
|
||
firstMagYawInit = true;
|
||
} else if (vehicleArmed && !secondMagYawInit && (state.position.z - posDownAtArming) < -5.0f && !assume_zero_sideslip()) {
|
||
// Do the second and final yaw and earth mag field initialisation when the vehicle has gained 5.0m of altitude after arming if it is a non-fly forward vehicle (vertical takeoff)
|
||
// This second and final correction is needed for flight from large metal structures where the magnetic field distortion can extend up to 5m
|
||
Vector3f eulerAngles;
|
||
getEulerAngles(eulerAngles);
|
||
state.quat = calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
|
||
secondMagYawInit = true;
|
||
}
|
||
|
||
// Always turn aiding off when the vehicle is disarmed
|
||
if (!vehicleArmed) {
|
||
PV_AidingMode = AID_NONE;
|
||
posTimeout = true;
|
||
velTimeout = true;
|
||
// set constant position mode if aiding is inhibited
|
||
constPosMode = true;
|
||
constVelMode = false; // always clear constant velocity mode if constant position mode is active
|
||
lastConstVelMode = false;
|
||
}
|
||
|
||
}
|
||
|
||
// Set the NED origin to be used until the next filter reset
|
||
void NavEKF::setOrigin()
|
||
{
|
||
EKF_origin = _ahrs->get_gps().location();
|
||
validOrigin = true;
|
||
}
|
||
|
||
// return the LLH location of the filters NED origin
|
||
bool NavEKF::getOriginLLH(struct Location &loc) const
|
||
{
|
||
if (validOrigin) {
|
||
loc = EKF_origin;
|
||
}
|
||
return validOrigin;
|
||
}
|
||
|
||
// set the LLH location of the filters NED origin
|
||
bool NavEKF::setOriginLLH(struct Location &loc)
|
||
{
|
||
if (vehicleArmed) {
|
||
return false;
|
||
}
|
||
EKF_origin = loc;
|
||
validOrigin = true;
|
||
return true;
|
||
}
|
||
|
||
// determine if a takeoff is expected so that we can compensate for expected barometer errors due to ground effect
|
||
bool NavEKF::getTakeoffExpected()
|
||
{
|
||
if (expectGndEffectTakeoff && imuSampleTime_ms - takeoffExpectedSet_ms > gndEffectTimeout_ms) {
|
||
expectGndEffectTakeoff = false;
|
||
}
|
||
|
||
return expectGndEffectTakeoff;
|
||
}
|
||
|
||
// called by vehicle code to specify that a takeoff is happening
|
||
// causes the EKF to compensate for expected barometer errors due to ground effect
|
||
void NavEKF::setTakeoffExpected(bool val)
|
||
{
|
||
takeoffExpectedSet_ms = imuSampleTime_ms;
|
||
expectGndEffectTakeoff = val;
|
||
}
|
||
|
||
|
||
// determine if a touchdown is expected so that we can compensate for expected barometer errors due to ground effect
|
||
bool NavEKF::getTouchdownExpected()
|
||
{
|
||
if (expectGndEffectTouchdown && imuSampleTime_ms - touchdownExpectedSet_ms > gndEffectTimeout_ms) {
|
||
expectGndEffectTouchdown = false;
|
||
}
|
||
|
||
return expectGndEffectTouchdown;
|
||
}
|
||
|
||
// called by vehicle code to specify that a touchdown is expected to happen
|
||
// causes the EKF to compensate for expected barometer errors due to ground effect
|
||
void NavEKF::setTouchdownExpected(bool val)
|
||
{
|
||
touchdownExpectedSet_ms = imuSampleTime_ms;
|
||
expectGndEffectTouchdown = val;
|
||
}
|
||
|
||
/*
|
||
Monitor GPS data to see if quality is good enough to initialise the EKF
|
||
Monitor magnetometer innovations to to see if the heading is good enough to use GPS
|
||
Return true if all criteria pass for 10 seconds
|
||
Once we have set the origin and are operating in GPS mode the status is set to true to avoid a race conditon with remote useage
|
||
If we have landed with good GPS, then the status is assumed good for 5 seconds to allow transients to settle
|
||
|
||
We also record the failure reason so that prearm_failure_reason() can give a good report to the user on why arming is failing
|
||
*/
|
||
bool NavEKF::calcGpsGoodToAlign(void)
|
||
{
|
||
static struct Location gpsloc_prev; // LLH location of previous GPS measurement
|
||
|
||
// calculate absolute difference between GPS vert vel and inertial vert vel
|
||
float velDiffAbs;
|
||
if (_ahrs->get_gps().have_vertical_velocity()) {
|
||
velDiffAbs = fabsf(velNED.z - state.velocity.z);
|
||
} else {
|
||
velDiffAbs = 0.0f;
|
||
}
|
||
|
||
// fail if velocity difference or reported speed accuracy greater than threshold
|
||
bool gpsVelFail = ((velDiffAbs > 1.0f) || (gpsSpdAccuracy > 1.0f)) && (_gpsCheck & MASK_GPS_SPD_ERR);
|
||
|
||
if (velDiffAbs > 1.0f) {
|
||
hal.util->snprintf(prearm_fail_string,
|
||
sizeof(prearm_fail_string),
|
||
"GPS vert vel error %.1f", (double)velDiffAbs);
|
||
gpsCheckStatus.bad_VZ = true;
|
||
} else {
|
||
gpsCheckStatus.bad_VZ = false;
|
||
}
|
||
if (gpsSpdAccuracy > 1.0f) {
|
||
hal.util->snprintf(prearm_fail_string,
|
||
sizeof(prearm_fail_string),
|
||
"GPS speed error %.1f", (double)gpsSpdAccuracy);
|
||
gpsCheckStatus.bad_sAcc = true;
|
||
} else {
|
||
gpsCheckStatus.bad_sAcc = false;
|
||
}
|
||
|
||
// fail if not enough sats
|
||
bool numSatsFail = (_ahrs->get_gps().num_sats() < 6) && (_gpsCheck & MASK_GPS_NSATS);
|
||
if (numSatsFail) {
|
||
hal.util->snprintf(prearm_fail_string, sizeof(prearm_fail_string),
|
||
"GPS numsats %u (needs 6)", _ahrs->get_gps().num_sats());
|
||
gpsCheckStatus.bad_sats = true;
|
||
} else {
|
||
gpsCheckStatus.bad_sats = false;
|
||
}
|
||
|
||
// fail if satellite geometry is poor
|
||
bool hdopFail = (_ahrs->get_gps().get_hdop() > 250) && (_gpsCheck & MASK_GPS_HDOP);
|
||
if (hdopFail) {
|
||
hal.util->snprintf(prearm_fail_string, sizeof(prearm_fail_string),
|
||
"GPS HDOP %.1f (needs 2.5)", (double)(0.01f * _ahrs->get_gps().get_hdop()));
|
||
gpsCheckStatus.bad_hdop = true;
|
||
} else {
|
||
gpsCheckStatus.bad_hdop = false;
|
||
}
|
||
|
||
// fail if horiziontal position accuracy not sufficient
|
||
float hAcc = 0.0f;
|
||
bool hAccFail;
|
||
if (_ahrs->get_gps().horizontal_accuracy(hAcc)) {
|
||
hAccFail = (hAcc > 5.0f) && (_gpsCheck & MASK_GPS_POS_ERR);
|
||
} else {
|
||
hAccFail = false;
|
||
}
|
||
if (hAccFail) {
|
||
hal.util->snprintf(prearm_fail_string,
|
||
sizeof(prearm_fail_string),
|
||
"GPS horiz error %.1f", (double)hAcc);
|
||
gpsCheckStatus.bad_hAcc = true;
|
||
} else {
|
||
gpsCheckStatus.bad_hAcc = false;
|
||
}
|
||
|
||
// If we have good magnetometer consistency and bad innovations for longer than 5 seconds then we reset heading and field states
|
||
// This enables us to handle large changes to the external magnetic field environment that occur before arming
|
||
if ((magTestRatio.x <= 1.0f && magTestRatio.y <= 1.0f) || !consistentMagData) {
|
||
magYawResetTimer_ms = imuSampleTime_ms;
|
||
}
|
||
if (imuSampleTime_ms - magYawResetTimer_ms > 5000) {
|
||
// reset heading and field states
|
||
Vector3f eulerAngles;
|
||
getEulerAngles(eulerAngles);
|
||
state.quat = calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
|
||
// reset timer to ensure that bad magnetometer data cannot cause a heading reset more often than every 5 seconds
|
||
magYawResetTimer_ms = imuSampleTime_ms;
|
||
}
|
||
|
||
// fail if magnetometer innovations are outside limits indicating bad yaw
|
||
// with bad yaw we are unable to use GPS
|
||
bool yawFail;
|
||
if ((magTestRatio.x > 1.0f || magTestRatio.y > 1.0f) && (_gpsCheck & MASK_GPS_YAW_ERR)) {
|
||
yawFail = true;
|
||
} else {
|
||
yawFail = false;
|
||
}
|
||
if (yawFail) {
|
||
hal.util->snprintf(prearm_fail_string,
|
||
sizeof(prearm_fail_string),
|
||
"Mag yaw error x=%.1f y=%.1f",
|
||
(double)magTestRatio.x,
|
||
(double)magTestRatio.y);
|
||
gpsCheckStatus.bad_yaw = true;
|
||
} else {
|
||
gpsCheckStatus.bad_yaw = false;
|
||
}
|
||
|
||
// Check for significant change in GPS position if disarmed which indicates bad GPS
|
||
// Note: this assumes we are not flying from a moving vehicle, eg boat
|
||
const struct Location &gpsloc = _ahrs->get_gps().location(); // Current location
|
||
const float posFiltTimeConst = 10.0f; // time constant used to decay position drift
|
||
// calculate time lapsesd since last GPS fix and limit to prevent numerical errors
|
||
float deltaTime = constrain_float(float(lastFixTime_ms - secondLastFixTime_ms)*0.001f,0.01f,posFiltTimeConst);
|
||
// Sum distance moved
|
||
gpsDriftNE += location_diff(gpsloc_prev, gpsloc).length();
|
||
gpsloc_prev = gpsloc;
|
||
// Decay distance moved exponentially to zero
|
||
gpsDriftNE *= (1.0f - deltaTime/posFiltTimeConst);
|
||
// Clamp the fiter state to prevent excessive persistence of large transients
|
||
gpsDriftNE = min(gpsDriftNE,10.0f);
|
||
// Fail if more than 3 metres drift after filtering whilst pre-armed when the vehicle is supposed to be stationary
|
||
// This corresponds to a maximum acceptable average drift rate of 0.3 m/s or single glitch event of 3m
|
||
bool gpsDriftFail = (gpsDriftNE > 3.0f) && !vehicleArmed && (_gpsCheck & MASK_GPS_POS_DRIFT);
|
||
if (gpsDriftFail) {
|
||
hal.util->snprintf(prearm_fail_string,
|
||
sizeof(prearm_fail_string),
|
||
"GPS drift %.1fm (needs 3.0)", (double)gpsDriftNE);
|
||
gpsCheckStatus.bad_horiz_drift = true;
|
||
} else {
|
||
gpsCheckStatus.bad_horiz_drift = false;
|
||
}
|
||
|
||
// Check that the vertical GPS vertical velocity is reasonable after noise filtering
|
||
bool gpsVertVelFail;
|
||
if (_ahrs->get_gps().have_vertical_velocity() && !vehicleArmed) {
|
||
// check that the average vertical GPS velocity is close to zero
|
||
gpsVertVelFilt = 0.1f * velNED.z + 0.9f * gpsVertVelFilt;
|
||
gpsVertVelFilt = constrain_float(gpsVertVelFilt,-10.0f,10.0f);
|
||
gpsVertVelFail = (fabsf(gpsVertVelFilt) > 0.3f) && (_gpsCheck & MASK_GPS_VERT_SPD);
|
||
} else if ((_fusionModeGPS == 0) && !_ahrs->get_gps().have_vertical_velocity()) {
|
||
// If the EKF settings require vertical GPS velocity and the receiver is not outputting it, then fail
|
||
gpsVertVelFail = true;
|
||
} else {
|
||
gpsVertVelFail = false;
|
||
}
|
||
if (gpsVertVelFail) {
|
||
hal.util->snprintf(prearm_fail_string,
|
||
sizeof(prearm_fail_string),
|
||
"GPS vertical speed %.2fm/s (needs 0.30)", (double)fabsf(gpsVertVelFilt));
|
||
gpsCheckStatus.bad_vert_vel = true;
|
||
} else {
|
||
gpsCheckStatus.bad_vert_vel = false;
|
||
}
|
||
|
||
// Check that the horizontal GPS vertical velocity is reasonable after noise filtering
|
||
bool gpsHorizVelFail;
|
||
if (!vehicleArmed) {
|
||
gpsHorizVelFilt = 0.1f * pythagorous2(velNED.x,velNED.y) + 0.9f * gpsHorizVelFilt;
|
||
gpsHorizVelFilt = constrain_float(gpsHorizVelFilt,-10.0f,10.0f);
|
||
gpsHorizVelFail = (fabsf(gpsHorizVelFilt) > 0.3f) && (_gpsCheck & MASK_GPS_HORIZ_SPD);
|
||
} else {
|
||
gpsHorizVelFail = false;
|
||
}
|
||
if (gpsHorizVelFail) {
|
||
hal.util->snprintf(prearm_fail_string,
|
||
sizeof(prearm_fail_string),
|
||
"GPS horizontal speed %.2fm/s (needs 0.30)", (double)gpsDriftNE);
|
||
gpsCheckStatus.bad_horiz_vel = true;
|
||
} else {
|
||
gpsCheckStatus.bad_horiz_vel = false;
|
||
}
|
||
|
||
// return healthy if we already have an origin and are inflight to prevent a race condition when checking the status on the ground after landing
|
||
// return healthy for a few seconds after landing so that filter disturbances don't fail the GPS
|
||
static bool usingInFlight = false;
|
||
usingInFlight = (vehicleArmed && validOrigin && !constPosMode) || (!vehicleArmed && usingInFlight && (imuSampleTime_ms - timeAtDisarm_ms) < 5000 && gpsAccuracyGood);
|
||
|
||
if (usingInFlight) {
|
||
return true;
|
||
}
|
||
|
||
if (lastGpsVelFail_ms == 0) {
|
||
// first time through, start with a failure
|
||
hal.util->snprintf(prearm_fail_string, sizeof(prearm_fail_string), "EKF warmup");
|
||
lastGpsVelFail_ms = imuSampleTime_ms;
|
||
}
|
||
|
||
// record time of fail
|
||
if (gpsVelFail || numSatsFail || hdopFail || hAccFail || yawFail || gpsDriftFail || gpsVertVelFail || gpsHorizVelFail) {
|
||
lastGpsVelFail_ms = imuSampleTime_ms;
|
||
}
|
||
|
||
// continuous period without fail required to return healthy
|
||
if (imuSampleTime_ms - lastGpsVelFail_ms > 10000) {
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// report the reason for why the backend is refusing to initialise
|
||
const char *NavEKF::prearm_failure_reason(void) const
|
||
{
|
||
if (imuSampleTime_ms - lastGpsVelFail_ms > 10000) {
|
||
// we are not failing
|
||
return nullptr;
|
||
}
|
||
return prearm_fail_string;
|
||
}
|
||
|
||
// Read the range finder and take new measurements if available
|
||
// Read at 20Hz and apply a median filter
|
||
void NavEKF::readRangeFinder(void)
|
||
{
|
||
static float storedRngMeas[3];
|
||
static uint32_t storedRngMeasTime_ms[3];
|
||
static uint32_t lastRngMeasTime_ms = 0;
|
||
static uint8_t rngMeasIndex = 0;
|
||
uint8_t midIndex;
|
||
uint8_t maxIndex;
|
||
uint8_t minIndex;
|
||
// get theoretical correct range when the vehicle is on the ground
|
||
rngOnGnd = _rng.ground_clearance_cm() * 0.01f;
|
||
if (_rng.status() == RangeFinder::RangeFinder_Good && (imuSampleTime_ms - lastRngMeasTime_ms) > 50) {
|
||
// store samples and sample time into a ring buffer
|
||
rngMeasIndex ++;
|
||
if (rngMeasIndex > 2) {
|
||
rngMeasIndex = 0;
|
||
}
|
||
storedRngMeasTime_ms[rngMeasIndex] = imuSampleTime_ms;
|
||
storedRngMeas[rngMeasIndex] = _rng.distance_cm() * 0.01f;
|
||
// check for three fresh samples and take median
|
||
bool sampleFresh[3];
|
||
for (uint8_t index = 0; index <= 2; index++) {
|
||
sampleFresh[index] = (imuSampleTime_ms - storedRngMeasTime_ms[index]) < 500;
|
||
}
|
||
if (sampleFresh[0] && sampleFresh[1] && sampleFresh[2]) {
|
||
if (storedRngMeas[0] > storedRngMeas[1]) {
|
||
minIndex = 1;
|
||
maxIndex = 0;
|
||
} else {
|
||
maxIndex = 0;
|
||
minIndex = 1;
|
||
}
|
||
if (storedRngMeas[2] > storedRngMeas[maxIndex]) {
|
||
midIndex = maxIndex;
|
||
} else if (storedRngMeas[2] < storedRngMeas[minIndex]) {
|
||
midIndex = minIndex;
|
||
} else {
|
||
midIndex = 2;
|
||
}
|
||
rngMea = max(storedRngMeas[midIndex],rngOnGnd);
|
||
newDataRng = true;
|
||
rngValidMeaTime_ms = imuSampleTime_ms;
|
||
// recall vehicle states at mid sample time for range finder
|
||
RecallStates(statesAtRngTime, storedRngMeasTime_ms[midIndex] - 25);
|
||
} else if (!vehicleArmed) {
|
||
// if not armed and no return, we assume on ground range
|
||
rngMea = rngOnGnd;
|
||
newDataRng = true;
|
||
rngValidMeaTime_ms = imuSampleTime_ms;
|
||
// assume synthetic measurement is at current time (no delay)
|
||
statesAtRngTime = state;
|
||
} else {
|
||
newDataRng = false;
|
||
}
|
||
lastRngMeasTime_ms = imuSampleTime_ms;
|
||
}
|
||
}
|
||
|
||
// Detect takeoff for optical flow navigation
|
||
void NavEKF::detectOptFlowTakeoff(void)
|
||
{
|
||
if (vehicleArmed && !takeOffDetected && (imuSampleTime_ms - timeAtArming_ms) > 1000) {
|
||
takeOffDetected = (takeOffDetected || (rngMea > (rangeAtArming + 0.1f)));
|
||
}
|
||
}
|
||
|
||
// provides the height limit to be observed by the control loops
|
||
// returns false if no height limiting is required
|
||
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
|
||
bool NavEKF::getHeightControlLimit(float &height) const
|
||
{
|
||
// only ask for limiting if we are doing optical flow navigation
|
||
if (_fusionModeGPS == 3) {
|
||
// If are doing optical flow nav, ensure the height above ground is within range finder limits after accounting for vehicle tilt and control errors
|
||
height = max(float(_rng.max_distance_cm()) * 0.007f - 1.0f, 1.0f);
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// return the quaternions defining the rotation from NED to XYZ (body) axes
|
||
void NavEKF::getQuaternion(Quaternion& ret) const
|
||
{
|
||
ret = state.quat;
|
||
}
|
||
|
||
// align the NE earth magnetic field states with the published declination
|
||
void NavEKF::alignMagStateDeclination()
|
||
{
|
||
// get the magnetic declination
|
||
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
|
||
|
||
// rotate the NE values so that the declination matches the published value
|
||
Vector3f initMagNED = state.earth_magfield;
|
||
float magLengthNE = pythagorous2(initMagNED.x,initMagNED.y);
|
||
state.earth_magfield.x = magLengthNE * cosf(magDecAng);
|
||
state.earth_magfield.y = magLengthNE * sinf(magDecAng);
|
||
}
|
||
|
||
// return the amount of yaw angle change due to the last yaw angle reset in radians
|
||
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
|
||
uint32_t NavEKF::getLastYawResetAngle(float &yawAng)
|
||
{
|
||
yawAng = yawResetAngle;
|
||
return lastYawReset_ms;
|
||
}
|
||
|
||
// Check for signs of bad gyro health before flight
|
||
bool NavEKF::checkGyroHealthPreFlight(void) const
|
||
{
|
||
bool retVar;
|
||
if (hal.util->get_soft_armed()) {
|
||
// Always return true if we are flying (use arm status as a surrogate for flying)
|
||
retVar = true;
|
||
} else if
|
||
(state.gyro_bias.x < 0.5f*MAX_GYRO_BIAS*dtIMUavg &&
|
||
state.gyro_bias.y < 0.5f*MAX_GYRO_BIAS*dtIMUavg &&
|
||
state.gyro_bias.z < 0.5f*MAX_GYRO_BIAS*dtIMUavg &&
|
||
posTestRatio < 0.1f) {
|
||
// If the synthetic position innovations are too high or the estimated gyro bias exceeds 50% of the available adjustment we declare the gyro as unhealthy
|
||
// this condition is likely caused by excessive gyro bias and the operator should be prompted to perform a gyro calibration and reset.
|
||
retVar = true;
|
||
} else {
|
||
retVar = false;
|
||
}
|
||
return retVar;
|
||
}
|
||
|
||
// returns true of the EKF thinks the GPS is glitching or unavailable
|
||
bool NavEKF::getGpsGlitchStatus(void) const
|
||
{
|
||
return !gpsAccuracyGood;
|
||
}
|
||
|
||
// update inflight calculaton that determines if GPS data is good enough for reliable navigation
|
||
void NavEKF::calcGpsGoodForFlight(void)
|
||
{
|
||
// use a simple criteria based on the GPS receivers claimed speed accuracy and the EKF innovation consistency checks
|
||
static bool gpsSpdAccPass = false;
|
||
static bool ekfInnovationsPass = false;
|
||
|
||
// set up varaibles and constants used by filter that is applied to GPS speed accuracy
|
||
const float alpha1 = 0.2f; // coefficient for first stage LPF applied to raw speed accuracy data
|
||
const float tau = 10.0f; // time constant (sec) of peak hold decay
|
||
static float lpfFilterState = 0.0f; // first stage LPF filter state
|
||
static float peakHoldFilterState = 0.0f; // peak hold with exponential decay filter state
|
||
static uint32_t lastTime_ms = 0;
|
||
if (lastTime_ms == 0) {
|
||
lastTime_ms = imuSampleTime_ms;
|
||
}
|
||
float dtLPF = (imuSampleTime_ms - lastTime_ms) * 1e-3f;
|
||
lastTime_ms = imuSampleTime_ms;
|
||
float alpha2 = constrain_float(dtLPF/tau,0.0f,1.0f);
|
||
|
||
// get the receivers reported speed accuracy
|
||
float gpsSpdAccRaw;
|
||
if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) {
|
||
gpsSpdAccRaw = 0.0f;
|
||
}
|
||
|
||
// filter the raw speed accuracy using a LPF
|
||
lpfFilterState = constrain_float((alpha1 * gpsSpdAccRaw + (1.0f - alpha1) * lpfFilterState),0.0f,10.0f);
|
||
|
||
// apply a peak hold filter to the LPF output
|
||
peakHoldFilterState = max(lpfFilterState,((1.0f - alpha2) * peakHoldFilterState));
|
||
|
||
// Apply a threshold test with hysteresis to the filtered GPS speed accuracy data
|
||
if (peakHoldFilterState > 1.5f ) {
|
||
gpsSpdAccPass = false;
|
||
} else if(peakHoldFilterState < 1.0f) {
|
||
gpsSpdAccPass = true;
|
||
}
|
||
|
||
// Apply a threshold test with hysteresis to the normalised position and velocity innovations
|
||
// Require a fail for one second and a pass for 10 seconds to transition
|
||
static uint32_t lastInnovPassTime_ms = 0;
|
||
static uint32_t lastInnovFailTime_ms = 0;
|
||
if (lastInnovFailTime_ms == 0) {
|
||
lastInnovFailTime_ms = imuSampleTime_ms;
|
||
lastInnovPassTime_ms = imuSampleTime_ms;
|
||
}
|
||
if (velTestRatio < 1.0f && posTestRatio < 1.0f) {
|
||
lastInnovPassTime_ms = imuSampleTime_ms;
|
||
} else if (velTestRatio > 0.7f || posTestRatio > 0.7f) {
|
||
lastInnovFailTime_ms = imuSampleTime_ms;
|
||
}
|
||
if ((imuSampleTime_ms - lastInnovPassTime_ms) > 1000) {
|
||
ekfInnovationsPass = false;
|
||
} else if ((imuSampleTime_ms - lastInnovFailTime_ms) > 10000) {
|
||
ekfInnovationsPass = true;
|
||
}
|
||
|
||
// both GPS speed accuracy and EKF innovations must pass
|
||
gpsAccuracyGood = gpsSpdAccPass && ekfInnovationsPass;
|
||
}
|
||
|
||
#endif // HAL_CPU_CLASS
|