ardupilot/ArduCopter/setup.pde
2013-03-03 23:02:36 +09:00

1395 lines
43 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if CLI_ENABLED == ENABLED
// Functions called from the setup menu
static int8_t setup_radio (uint8_t argc, const Menu::arg *argv);
static int8_t setup_motors (uint8_t argc, const Menu::arg *argv);
static int8_t setup_accel (uint8_t argc, const Menu::arg *argv);
static int8_t setup_accel_scale (uint8_t argc, const Menu::arg *argv);
static int8_t setup_frame (uint8_t argc, const Menu::arg *argv);
static int8_t setup_factory (uint8_t argc, const Menu::arg *argv);
static int8_t setup_erase (uint8_t argc, const Menu::arg *argv);
static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv);
static int8_t setup_batt_monitor (uint8_t argc, const Menu::arg *argv);
static int8_t setup_sonar (uint8_t argc, const Menu::arg *argv);
static int8_t setup_compass (uint8_t argc, const Menu::arg *argv);
static int8_t setup_compassmot (uint8_t argc, const Menu::arg *argv);
static int8_t setup_tune (uint8_t argc, const Menu::arg *argv);
static int8_t setup_range (uint8_t argc, const Menu::arg *argv);
//static int8_t setup_mag_offset (uint8_t argc, const Menu::arg *argv);
static int8_t setup_declination (uint8_t argc, const Menu::arg *argv);
static int8_t setup_optflow (uint8_t argc, const Menu::arg *argv);
#if FRAME_CONFIG == HELI_FRAME
static int8_t setup_heli (uint8_t argc, const Menu::arg *argv);
static int8_t setup_gyro (uint8_t argc, const Menu::arg *argv);
#endif
// Command/function table for the setup menu
const struct Menu::command setup_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"erase", setup_erase},
{"reset", setup_factory},
{"radio", setup_radio},
{"frame", setup_frame},
{"motors", setup_motors},
{"level", setup_accel},
{"accel", setup_accel_scale},
{"modes", setup_flightmodes},
{"battery", setup_batt_monitor},
{"sonar", setup_sonar},
{"compass", setup_compass},
{"compassmot", setup_compassmot},
{"tune", setup_tune},
{"range", setup_range},
// {"offsets", setup_mag_offset},
{"declination", setup_declination},
{"optflow", setup_optflow},
#if FRAME_CONFIG == HELI_FRAME
{"heli", setup_heli},
{"gyro", setup_gyro},
#endif
{"show", setup_show}
};
// Create the setup menu object.
MENU(setup_menu, "setup", setup_menu_commands);
// Called from the top-level menu to run the setup menu.
static int8_t
setup_mode(uint8_t argc, const Menu::arg *argv)
{
// Give the user some guidance
cliSerial->printf_P(PSTR("Setup Mode\n\n\n"));
//"\n"
//"IMPORTANT: if you have not previously set this system up, use the\n"
//"'reset' command to initialize the EEPROM to sensible default values\n"
//"and then the 'radio' command to configure for your radio.\n"
//"\n"));
if(g.rc_1.radio_min >= 1300) {
delay(1000);
cliSerial->printf_P(PSTR("\n!Warning, radio not configured!"));
delay(1000);
cliSerial->printf_P(PSTR("\n Type 'radio' now.\n\n"));
}
// Run the setup menu. When the menu exits, we will return to the main menu.
setup_menu.run();
return 0;
}
// Print the current configuration.
// Called by the setup menu 'show' command.
static int8_t
setup_show(uint8_t argc, const Menu::arg *argv)
{
// clear the area
print_blanks(8);
report_version();
report_radio();
report_frame();
report_batt_monitor();
report_sonar();
//report_gains();
//report_xtrack();
//report_throttle();
report_flight_modes();
report_ins();
report_compass();
report_optflow();
#if FRAME_CONFIG == HELI_FRAME
report_heli();
report_gyro();
#endif
AP_Param::show_all();
return(0);
}
// Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults).
// Called by the setup menu 'factoryreset' command.
static int8_t
setup_factory(uint8_t argc, const Menu::arg *argv)
{
int16_t c;
cliSerial->printf_P(PSTR("\n'Y' = factory reset, any other key to abort:\n"));
do {
c = cliSerial->read();
} while (-1 == c);
if (('y' != c) && ('Y' != c))
return(-1);
AP_Param::erase_all();
cliSerial->printf_P(PSTR("\nReboot APM"));
delay(1000);
//default_gains();
for (;; ) {
}
// note, cannot actually return here
return(0);
}
// Perform radio setup.
// Called by the setup menu 'radio' command.
static int8_t
setup_radio(uint8_t argc, const Menu::arg *argv)
{
cliSerial->println_P(PSTR("\n\nRadio Setup:"));
uint8_t i;
for(i = 0; i < 100; i++) {
delay(20);
read_radio();
}
if(g.rc_1.radio_in < 500) {
while(1) {
//cliSerial->printf_P(PSTR("\nNo radio; Check connectors."));
delay(1000);
// stop here
}
}
g.rc_1.radio_min = g.rc_1.radio_in;
g.rc_2.radio_min = g.rc_2.radio_in;
g.rc_3.radio_min = g.rc_3.radio_in;
g.rc_4.radio_min = g.rc_4.radio_in;
g.rc_5.radio_min = g.rc_5.radio_in;
g.rc_6.radio_min = g.rc_6.radio_in;
g.rc_7.radio_min = g.rc_7.radio_in;
g.rc_8.radio_min = g.rc_8.radio_in;
g.rc_1.radio_max = g.rc_1.radio_in;
g.rc_2.radio_max = g.rc_2.radio_in;
g.rc_3.radio_max = g.rc_3.radio_in;
g.rc_4.radio_max = g.rc_4.radio_in;
g.rc_5.radio_max = g.rc_5.radio_in;
g.rc_6.radio_max = g.rc_6.radio_in;
g.rc_7.radio_max = g.rc_7.radio_in;
g.rc_8.radio_max = g.rc_8.radio_in;
g.rc_1.radio_trim = g.rc_1.radio_in;
g.rc_2.radio_trim = g.rc_2.radio_in;
g.rc_4.radio_trim = g.rc_4.radio_in;
// 3 is not trimed
g.rc_5.radio_trim = 1500;
g.rc_6.radio_trim = 1500;
g.rc_7.radio_trim = 1500;
g.rc_8.radio_trim = 1500;
cliSerial->printf_P(PSTR("\nMove all controls to extremes. Enter to save: "));
while(1) {
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
g.rc_1.update_min_max();
g.rc_2.update_min_max();
g.rc_3.update_min_max();
g.rc_4.update_min_max();
g.rc_5.update_min_max();
g.rc_6.update_min_max();
g.rc_7.update_min_max();
g.rc_8.update_min_max();
if(cliSerial->available() > 0) {
delay(20);
while (cliSerial->read() != -1); /* flush */
g.rc_1.save_eeprom();
g.rc_2.save_eeprom();
g.rc_3.save_eeprom();
g.rc_4.save_eeprom();
g.rc_5.save_eeprom();
g.rc_6.save_eeprom();
g.rc_7.save_eeprom();
g.rc_8.save_eeprom();
print_done();
break;
}
}
report_radio();
return(0);
}
static int8_t
setup_motors(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR(
"Connect battery for this test.\n"
"Motors will not spin in channel order (1,2,3,4) but by frame position order.\n"
"Front (& right of centerline) motor first, then in clockwise order around frame.\n"
"http://code.google.com/p/arducopter/wiki/AC2_Props_2 for demo video.\n"
"Remember to disconnect battery after this test.\n"
"Any key to exit.\n"));
while(1) {
delay(20);
read_radio();
motors.output_test();
if(cliSerial->available() > 0) {
g.esc_calibrate.set_and_save(0);
return(0);
}
}
}
static int8_t
setup_accel(uint8_t argc, const Menu::arg *argv)
{
ahrs.init();
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
flash_leds);
ins.init_accel(flash_leds);
ahrs.set_trim(Vector3f(0,0,0)); // clear out saved trim
report_ins();
return(0);
}
/*
handle full accelerometer calibration via user dialog
*/
static void setup_printf_P(const prog_char_t *fmt, ...)
{
va_list arg_list;
va_start(arg_list, fmt);
cliSerial->printf_P(fmt, arg_list);
va_end(arg_list);
}
static void setup_wait_key(void)
{
// wait for user input
while (!cliSerial->available()) {
delay(20);
}
// clear input buffer
while( cliSerial->available() ) {
cliSerial->read();
}
}
static int8_t
setup_accel_scale(uint8_t argc, const Menu::arg *argv)
{
float trim_roll, trim_pitch;
cliSerial->println_P(PSTR("Initialising gyros"));
ahrs.init();
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
flash_leds);
AP_InertialSensor_UserInteractStream interact(hal.console);
if(ins.calibrate_accel(flash_leds, &interact, trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
}
report_ins();
return(0);
}
static int8_t
setup_frame(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("x"))) {
g.frame_orientation.set_and_save(X_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("p"))) {
g.frame_orientation.set_and_save(PLUS_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("+"))) {
g.frame_orientation.set_and_save(PLUS_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("v"))) {
g.frame_orientation.set_and_save(V_FRAME);
}else{
cliSerial->printf_P(PSTR("\nOp:[x,+,v]\n"));
report_frame();
return 0;
}
report_frame();
return 0;
}
static int8_t
setup_flightmodes(uint8_t argc, const Menu::arg *argv)
{
uint8_t _switchPosition = 0;
uint8_t _oldSwitchPosition = 0;
int8_t mode = 0;
cliSerial->printf_P(PSTR("\nMode switch to edit, aileron: select modes, rudder: Simple on/off\n"));
print_hit_enter();
while(1) {
delay(20);
read_radio();
_switchPosition = readSwitch();
// look for control switch change
if (_oldSwitchPosition != _switchPosition) {
mode = flight_modes[_switchPosition];
mode = constrain(mode, 0, NUM_MODES-1);
// update the user
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
// Remember switch position
_oldSwitchPosition = _switchPosition;
}
// look for stick input
if (abs(g.rc_1.control_in) > 3000) {
mode++;
if(mode >= NUM_MODES)
mode = 0;
// save new mode
flight_modes[_switchPosition] = mode;
// print new mode
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
delay(500);
}
// look for stick input
if (g.rc_4.control_in > 3000) {
g.simple_modes |= (1<<_switchPosition);
// print new mode
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
delay(500);
}
// look for stick input
if (g.rc_4.control_in < -3000) {
g.simple_modes &= ~(1<<_switchPosition);
// print new mode
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
delay(500);
}
// escape hatch
if(cliSerial->available() > 0) {
for (mode = 0; mode < 6; mode++)
flight_modes[mode].save();
g.simple_modes.save();
print_done();
report_flight_modes();
return (0);
}
}
}
static int8_t
setup_declination(uint8_t argc, const Menu::arg *argv)
{
compass.set_declination(radians(argv[1].f));
report_compass();
return 0;
}
static int8_t
setup_tune(uint8_t argc, const Menu::arg *argv)
{
g.radio_tuning.set_and_save(argv[1].i);
//g.radio_tuning_high.set_and_save(1000);
//g.radio_tuning_low.set_and_save(0);
report_tuning();
return 0;
}
static int8_t
setup_range(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("\nCH 6 Ranges are divided by 1000: [low, high]\n"));
g.radio_tuning_low.set_and_save(argv[1].i);
g.radio_tuning_high.set_and_save(argv[2].i);
report_tuning();
return 0;
}
static int8_t
setup_erase(uint8_t argc, const Menu::arg *argv)
{
zero_eeprom();
return 0;
}
static int8_t
setup_compass(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.compass_enabled.set_and_save(true);
init_compass();
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
clear_offsets();
g.compass_enabled.set_and_save(false);
}else{
cliSerial->printf_P(PSTR("\nOp:[on,off]\n"));
report_compass();
return 0;
}
g.compass_enabled.save();
report_compass();
return 0;
}
// setup_compassmot - sets compass's motor interference parameters
static int8_t
setup_compassmot(uint8_t argc, const Menu::arg *argv)
{
int8_t comp_type; // throttle or current based compensation
Vector3f compass_base; // compass vector when throttle is zero
Vector3f motor_impact; // impact of motors on compass vector
Vector3f motor_impact_scaled; // impact of motors on compass vector scaled with throttle
Vector3f motor_compensation; // final compensation to be stored to eeprom
float throttle_pct; // throttle as a percentage 0.0 ~ 1.0
uint32_t last_run_time;
uint8_t print_counter = 49;
bool updated = false; // have we updated the compensation vector at least once
// default compensation type to use current if possible
if( g.battery_monitoring == BATT_MONITOR_VOLTAGE_AND_CURRENT ) {
comp_type = AP_COMPASS_MOT_COMP_CURRENT;
}else{
comp_type = AP_COMPASS_MOT_COMP_THROTTLE;
}
// check if user wants throttle compensation
if( !strcmp_P(argv[1].str, PSTR("t")) || !strcmp_P(argv[1].str, PSTR("T")) ) {
comp_type = AP_COMPASS_MOT_COMP_THROTTLE;
}
// check if user wants current compensation
if( !strcmp_P(argv[1].str, PSTR("c")) || !strcmp_P(argv[1].str, PSTR("C")) ) {
comp_type = AP_COMPASS_MOT_COMP_CURRENT;
}
// check compass is enabled
if( !g.compass_enabled ) {
cliSerial->print_P(PSTR("compass disabled, exiting"));
return 0;
}
// check if we have a current monitor
if( comp_type == AP_COMPASS_MOT_COMP_CURRENT && g.battery_monitoring != BATT_MONITOR_VOLTAGE_AND_CURRENT ) {
cliSerial->print_P(PSTR("current monitor disabled, exiting"));
return 0;
}
// initialise compass
init_compass();
// disable motor compensation
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
compass.set_motor_compensation(Vector3f(0,0,0));
// print warning that motors will spin
// ask user to raise throttle
// inform how to stop test
cliSerial->print_P(PSTR("This setup records the impact on the compass of spinning up the motors. The motors will spin!\nHold throttle low, then raise as high as safely possible for 10 sec.\nAt any time you may press any key to exit.\nmeasuring compass vs "));
// inform what type of compensation we are attempting
if( comp_type == AP_COMPASS_MOT_COMP_CURRENT ) {
cliSerial->print_P(PSTR("CURRENT\n"));
}else{
cliSerial->print_P(PSTR("THROTTLE\n"));
}
// clear out user input
while( cliSerial->available() ) {
cliSerial->read();
}
// disable throttle and battery failsafe
g.failsafe_throttle = FS_THR_DISABLED;
g.failsafe_battery_enabled = false;
// read radio
read_radio();
// exit immediately if throttle is not zero
if( g.rc_3.control_in != 0 ) {
cliSerial->print_P(PSTR("throttle not zero, exiting"));
return 0;
}
// get some initial compass readings
last_run_time = millis();
while( millis() - last_run_time < 2000 ) {
compass.accumulate();
}
compass.read();
// exit immediately if the compass is not healthy
if( !compass.healthy ) {
cliSerial->print_P(PSTR("compass not healthy, exiting"));
return 0;
}
// store initial x,y,z compass values
compass_base.x = compass.mag_x;
compass_base.y = compass.mag_y;
compass_base.z = compass.mag_z;
// initialise motor compensation
motor_compensation = Vector3f(0,0,0);
// clear out any user input
while( cliSerial->available() ) {
cliSerial->read();
}
// enable motors and pass through throttle
motors.enable();
motors.armed(true);
motors.output_min();
// initialise run time
last_run_time = millis();
// main run while there is no user input and the compass is healthy
while(!cliSerial->available() && compass.healthy) {
// 50hz loop
if( millis() - last_run_time > 20 ) {
last_run_time = millis();
// read radio input
read_radio();
// pass through throttle to motors
motors.throttle_pass_through();
// read some compass values
compass.read();
// read current
read_battery();
// calculate scaling for throttle
throttle_pct = (float)g.rc_3.control_in / 1000.0f;
throttle_pct = constrain(throttle_pct,0.0f,1.0f);
// if throttle is zero, update base x,y,z values
if( throttle_pct == 0.0f ) {
compass_base.x = compass_base.x * 0.99f + (float)compass.mag_x * 0.01f;
compass_base.y = compass_base.y * 0.99f + (float)compass.mag_y * 0.01f;
compass_base.z = compass_base.z * 0.99f + (float)compass.mag_z * 0.01f;
// causing printing to happen as soon as throttle is lifted
print_counter = 49;
}else{
// calculate diff from compass base and scale with throttle
motor_impact.x = compass.mag_x - compass_base.x;
motor_impact.y = compass.mag_y - compass_base.y;
motor_impact.z = compass.mag_z - compass_base.z;
// throttle based compensation
if( comp_type == AP_COMPASS_MOT_COMP_THROTTLE ) {
// scale by throttle
motor_impact_scaled = motor_impact / throttle_pct;
// adjust the motor compensation to negate the impact
motor_compensation = motor_compensation * 0.99f - motor_impact_scaled * 0.01f;
updated = true;
}else{
// current based compensation if more than 3amps being drawn
motor_impact_scaled = motor_impact / current_amps1;
// adjust the motor compensation to negate the impact if drawing over 3amps
if( current_amps1 >= 3.0f ) {
motor_compensation = motor_compensation * 0.99f - motor_impact_scaled * 0.01f;
updated = true;
}
}
// display output at 1hz if throttle is above zero
print_counter++;
if(print_counter >= 50) {
print_counter = 0;
cliSerial->printf_P(PSTR("thr:%d cur:%4.2f mot x:%4.1f y:%4.1f z:%4.1f comp x:%4.2f y:%4.2f z:%4.2f\n"),(int)g.rc_3.control_in, (float)current_amps1, (float)motor_impact.x, (float)motor_impact.y, (float)motor_impact.z, (float)motor_compensation.x, (float)motor_compensation.y, (float)motor_compensation.z);
}
}
}else{
// grab some compass values
compass.accumulate();
}
}
// stop motors
motors.output_min();
motors.armed(false);
// clear out any user input
while( cliSerial->available() ) {
cliSerial->read();
}
// print one more time so the last thing printed matches what appears in the report_compass
cliSerial->printf_P(PSTR("thr:%d cur:%4.2f mot x:%4.1f y:%4.1f z:%4.1f comp x:%4.2f y:%4.2f z:%4.2f\n"),(int)g.rc_3.control_in, (float)current_amps1, (float)motor_impact.x, (float)motor_impact.y, (float)motor_impact.z, (float)motor_compensation.x, (float)motor_compensation.y, (float)motor_compensation.z);
// set and save motor compensation
if( updated ) {
compass.motor_compensation_type(comp_type);
compass.set_motor_compensation(motor_compensation);
compass.save_motor_compensation();
}else{
// compensation vector never updated, report failure
cliSerial->printf_P(PSTR("Failed! Compensation disabled. Did you forget to raise the throttle high enough?"));
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
}
// display new motor offsets and save
report_compass();
return 0;
}
static int8_t
setup_batt_monitor(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.battery_monitoring.set_and_save(0);
} else if(argv[1].i > 0 && argv[1].i <= 4) {
g.battery_monitoring.set_and_save(argv[1].i);
} else {
cliSerial->printf_P(PSTR("\nOp: off, 3-4"));
}
report_batt_monitor();
return 0;
}
static int8_t
setup_sonar(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.sonar_enabled.set_and_save(true);
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.sonar_enabled.set_and_save(false);
} else if (argc > 1 && (argv[1].i >= 0 && argv[1].i <= 3)) {
g.sonar_enabled.set_and_save(true); // if you set the sonar type, surely you want it on
g.sonar_type.set_and_save(argv[1].i);
}else{
cliSerial->printf_P(PSTR("\nOp:[on, off, 0-3]\n"));
report_sonar();
return 0;
}
report_sonar();
return 0;
}
#if FRAME_CONFIG == HELI_FRAME
// Perform heli setup.
// Called by the setup menu 'radio' command.
static int8_t
setup_heli(uint8_t argc, const Menu::arg *argv)
{
uint8_t active_servo = 0;
int16_t value = 0;
int16_t temp;
int16_t state = 0; // 0 = set rev+pos, 1 = capture min/max
int16_t max_roll=0, max_pitch=0, min_collective=0, max_collective=0, min_tail=0, max_tail=0;
// initialise swash plate
motors.init_swash();
// source swash plate movements directly from radio
motors.servo_manual = true;
// display initial settings
report_heli();
// display help
cliSerial->printf_P(PSTR("Instructions:"));
print_divider();
cliSerial->printf_P(PSTR("\td\t\tdisplay settings\n"));
cliSerial->printf_P(PSTR("\t1~4\t\tselect servo\n"));
cliSerial->printf_P(PSTR("\ta or z\t\tmove mid up/down\n"));
cliSerial->printf_P(PSTR("\tc\t\tset coll when blade pitch zero\n"));
cliSerial->printf_P(PSTR("\tm\t\tset roll, pitch, coll min/max\n"));
cliSerial->printf_P(PSTR("\tp<angle>\tset pos (i.e. p0 = front, p90 = right)\n"));
cliSerial->printf_P(PSTR("\tr\t\treverse servo\n"));
cliSerial->printf_P(PSTR("\tu a|d\t\tupdate rate (a=analog servo, d=digital)\n"));
cliSerial->printf_P(PSTR("\tt<angle>\tset trim (-500 ~ 500)\n"));
cliSerial->printf_P(PSTR("\tx\t\texit & save\n"));
// start capturing
while( value != 'x' ) {
// read radio although we don't use it yet
read_radio();
// allow swash plate to move
motors.output_armed();
// record min/max
if( state == 1 ) {
if( abs(g.rc_1.control_in) > max_roll )
max_roll = abs(g.rc_1.control_in);
if( abs(g.rc_2.control_in) > max_pitch )
max_pitch = abs(g.rc_2.control_in);
if( g.rc_3.radio_out < min_collective )
min_collective = g.rc_3.radio_out;
if( g.rc_3.radio_out > max_collective )
max_collective = g.rc_3.radio_out;
min_tail = min(g.rc_4.radio_out, min_tail);
max_tail = max(g.rc_4.radio_out, max_tail);
}
if( cliSerial->available() ) {
value = cliSerial->read();
// process the user's input
switch( value ) {
case '1':
active_servo = CH_1;
break;
case '2':
active_servo = CH_2;
break;
case '3':
active_servo = CH_3;
break;
case '4':
active_servo = CH_4;
break;
case 'a':
case 'A':
heli_get_servo(active_servo)->radio_trim += 10;
break;
case 'c':
case 'C':
if( g.rc_3.radio_out >= 900 && g.rc_3.radio_out <= 2100 ) {
motors.collective_mid = g.rc_3.radio_out;
cliSerial->printf_P(PSTR("Collective when blade pitch at zero: %d\n"),(int)motors.collective_mid);
}
break;
case 'd':
case 'D':
// display settings
report_heli();
break;
case 'm':
case 'M':
if( state == 0 ) {
state = 1; // switch to capture min/max mode
cliSerial->printf_P(PSTR("Move coll, roll, pitch and tail to extremes, press 'm' when done\n"));
// reset servo ranges
motors.roll_max = motors.pitch_max = 4500;
motors.collective_min = 1000;
motors.collective_max = 2000;
motors._servo_4->radio_min = 1000;
motors._servo_4->radio_max = 2000;
// set sensible values in temp variables
max_roll = abs(g.rc_1.control_in);
max_pitch = abs(g.rc_2.control_in);
min_collective = 2000;
max_collective = 1000;
min_tail = max_tail = abs(g.rc_4.radio_out);
}else{
state = 0; // switch back to normal mode
// double check values aren't totally terrible
if( max_roll <= 1000 || max_pitch <= 1000 || (max_collective - min_collective < 200) || (max_tail - min_tail < 200) || min_tail < 1000 || max_tail > 2000 )
cliSerial->printf_P(PSTR("Invalid min/max captured roll:%d, pitch:%d, collective min: %d max: %d, tail min:%d max:%d\n"),max_roll,max_pitch,min_collective,max_collective,min_tail,max_tail);
else{
motors.roll_max = max_roll;
motors.pitch_max = max_pitch;
motors.collective_min = min_collective;
motors.collective_max = max_collective;
motors._servo_4->radio_min = min_tail;
motors._servo_4->radio_max = max_tail;
// reinitialise swash
motors.init_swash();
// display settings
report_heli();
}
}
break;
case 'p':
case 'P':
temp = read_num_from_serial();
if( temp >= -360 && temp <= 360 ) {
if( active_servo == CH_1 )
motors.servo1_pos = temp;
if( active_servo == CH_2 )
motors.servo2_pos = temp;
if( active_servo == CH_3 )
motors.servo3_pos = temp;
motors.init_swash();
cliSerial->printf_P(PSTR("Servo %d\t\tpos:%d\n"),active_servo+1, temp);
}
break;
case 'r':
case 'R':
heli_get_servo(active_servo)->set_reverse(!heli_get_servo(active_servo)->get_reverse());
break;
case 't':
case 'T':
temp = read_num_from_serial();
if( temp > 1000 )
temp -= 1500;
if( temp > -500 && temp < 500 ) {
heli_get_servo(active_servo)->radio_trim = 1500 + temp;
motors.init_swash();
cliSerial->printf_P(PSTR("Servo %d\t\ttrim:%d\n"),active_servo+1, 1500 + temp);
}
break;
case 'u':
case 'U':
temp = 0;
// delay up to 2 seconds for servo type from user
while( !cliSerial->available() && temp < 20 ) {
temp++;
delay(100);
}
if( cliSerial->available() ) {
value = cliSerial->read();
if( value == 'a' || value == 'A' ) {
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS);
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately
cliSerial->printf_P(PSTR("Analog Servo %dhz\n"),(int)g.rc_speed);
}
if( value == 'd' || value == 'D' ) {
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS);
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately
cliSerial->printf_P(PSTR("Digital Servo %dhz\n"),(int)g.rc_speed);
}
}
break;
case 'z':
case 'Z':
heli_get_servo(active_servo)->radio_trim -= 10;
break;
}
}
delay(20);
}
// display final settings
report_heli();
// save to eeprom
motors._servo_1->save_eeprom();
motors._servo_2->save_eeprom();
motors._servo_3->save_eeprom();
motors._servo_4->save_eeprom();
motors.servo1_pos.save();
motors.servo2_pos.save();
motors.servo3_pos.save();
motors.roll_max.save();
motors.pitch_max.save();
motors.collective_min.save();
motors.collective_max.save();
motors.collective_mid.save();
// return swash plate movements to attitude controller
motors.servo_manual = false;
return(0);
}
// setup for external tail gyro (for heli only)
static int8_t
setup_gyro(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
motors.ext_gyro_enabled.set_and_save(true);
// optionally capture the gain
if( argc >= 2 && argv[2].i >= 1000 && argv[2].i <= 2000 ) {
motors.ext_gyro_gain = argv[2].i;
motors.ext_gyro_gain.save();
}
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
motors.ext_gyro_enabled.set_and_save(false);
// capture gain if user simply provides a number
} else if( argv[1].i >= 1000 && argv[1].i <= 2000 ) {
motors.ext_gyro_enabled.set_and_save(true);
motors.ext_gyro_gain = argv[1].i;
motors.ext_gyro_gain.save();
}else{
cliSerial->printf_P(PSTR("\nOp:[on, off] gain\n"));
}
report_gyro();
return 0;
}
#endif // FRAME_CONFIG == HELI
static void clear_offsets()
{
Vector3f _offsets(0.0,0.0,0.0);
compass.set_offsets(_offsets);
compass.save_offsets();
}
static int8_t
setup_optflow(uint8_t argc, const Menu::arg *argv)
{
#if OPTFLOW == ENABLED
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.optflow_enabled = true;
init_optflow();
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.optflow_enabled = false;
}else{
cliSerial->printf_P(PSTR("\nOp:[on, off]\n"));
report_optflow();
return 0;
}
g.optflow_enabled.save();
report_optflow();
#endif // OPTFLOW == ENABLED
return 0;
}
/***************************************************************************/
// CLI reports
/***************************************************************************/
static void report_batt_monitor()
{
cliSerial->printf_P(PSTR("\nBatt Mon:\n"));
print_divider();
if(g.battery_monitoring == BATT_MONITOR_DISABLED) print_enabled(false);
if(g.battery_monitoring == BATT_MONITOR_VOLTAGE_ONLY) cliSerial->printf_P(PSTR("volts"));
if(g.battery_monitoring == BATT_MONITOR_VOLTAGE_AND_CURRENT) cliSerial->printf_P(PSTR("volts and cur"));
print_blanks(2);
}
static void report_wp(uint8_t index = 255)
{
if(index == 255) {
for(uint8_t i = 0; i < g.command_total; i++) {
struct Location temp = get_cmd_with_index(i);
print_wp(&temp, i);
}
}else{
struct Location temp = get_cmd_with_index(index);
print_wp(&temp, index);
}
}
static void report_sonar()
{
cliSerial->printf_P(PSTR("Sonar\n"));
print_divider();
print_enabled(g.sonar_enabled.get());
cliSerial->printf_P(PSTR("Type: %d (0=XL, 1=LV, 2=XLL, 3=HRLV)"), (int)g.sonar_type);
print_blanks(2);
}
static void report_frame()
{
cliSerial->printf_P(PSTR("Frame\n"));
print_divider();
#if FRAME_CONFIG == QUAD_FRAME
cliSerial->printf_P(PSTR("Quad frame\n"));
#elif FRAME_CONFIG == TRI_FRAME
cliSerial->printf_P(PSTR("TRI frame\n"));
#elif FRAME_CONFIG == HEXA_FRAME
cliSerial->printf_P(PSTR("Hexa frame\n"));
#elif FRAME_CONFIG == Y6_FRAME
cliSerial->printf_P(PSTR("Y6 frame\n"));
#elif FRAME_CONFIG == OCTA_FRAME
cliSerial->printf_P(PSTR("Octa frame\n"));
#elif FRAME_CONFIG == HELI_FRAME
cliSerial->printf_P(PSTR("Heli frame\n"));
#endif
#if FRAME_CONFIG != HELI_FRAME
if(g.frame_orientation == X_FRAME)
cliSerial->printf_P(PSTR("X mode\n"));
else if(g.frame_orientation == PLUS_FRAME)
cliSerial->printf_P(PSTR("+ mode\n"));
else if(g.frame_orientation == V_FRAME)
cliSerial->printf_P(PSTR("V mode\n"));
#endif
print_blanks(2);
}
static void report_radio()
{
cliSerial->printf_P(PSTR("Radio\n"));
print_divider();
// radio
print_radio_values();
print_blanks(2);
}
static void report_ins()
{
cliSerial->printf_P(PSTR("INS\n"));
print_divider();
print_gyro_offsets();
print_accel_offsets_and_scaling();
print_blanks(2);
}
static void report_compass()
{
cliSerial->printf_P(PSTR("Compass\n"));
print_divider();
print_enabled(g.compass_enabled);
// mag declination
cliSerial->printf_P(PSTR("Mag Dec: %4.4f\n"),
degrees(compass.get_declination()));
Vector3f offsets = compass.get_offsets();
// mag offsets
cliSerial->printf_P(PSTR("Mag off: %4.4f, %4.4f, %4.4f\n"),
offsets.x,
offsets.y,
offsets.z);
// motor compensation
cliSerial->print_P(PSTR("Motor Comp: "));
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_DISABLED ) {
cliSerial->print_P(PSTR("Off\n"));
}else{
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_THROTTLE ) {
cliSerial->print_P(PSTR("Throttle"));
}
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_CURRENT ) {
cliSerial->print_P(PSTR("Current"));
}
Vector3f motor_compensation = compass.get_motor_compensation();
cliSerial->printf_P(PSTR("\nComp Vec: %4.2f, %4.2f, %4.2f\n"),
motor_compensation.x,
motor_compensation.y,
motor_compensation.z);
}
print_blanks(1);
}
static void report_flight_modes()
{
cliSerial->printf_P(PSTR("Flight modes\n"));
print_divider();
for(int16_t i = 0; i < 6; i++ ) {
print_switch(i, flight_modes[i], (g.simple_modes & (1<<i)));
}
print_blanks(2);
}
void report_optflow()
{
#if OPTFLOW == ENABLED
cliSerial->printf_P(PSTR("OptFlow\n"));
print_divider();
print_enabled(g.optflow_enabled);
// field of view
//cliSerial->printf_P(PSTR("FOV: %4.0f\n"),
// degrees(g.optflow_fov));
print_blanks(2);
#endif // OPTFLOW == ENABLED
}
#if FRAME_CONFIG == HELI_FRAME
static void report_heli()
{
cliSerial->printf_P(PSTR("Heli\n"));
print_divider();
// main servo settings
cliSerial->printf_P(PSTR("Servo \tpos \tmin \tmax \trev\n"));
cliSerial->printf_P(PSTR("1:\t%d \t%d \t%d \t%d\n"),(int)motors.servo1_pos, (int)motors._servo_1->radio_min, (int)motors._servo_1->radio_max, (int)motors._servo_1->get_reverse());
cliSerial->printf_P(PSTR("2:\t%d \t%d \t%d \t%d\n"),(int)motors.servo2_pos, (int)motors._servo_2->radio_min, (int)motors._servo_2->radio_max, (int)motors._servo_2->get_reverse());
cliSerial->printf_P(PSTR("3:\t%d \t%d \t%d \t%d\n"),(int)motors.servo3_pos, (int)motors._servo_3->radio_min, (int)motors._servo_3->radio_max, (int)motors._servo_3->get_reverse());
cliSerial->printf_P(PSTR("tail:\t\t%d \t%d \t%d\n"), (int)motors._servo_4->radio_min, (int)motors._servo_4->radio_max, (int)motors._servo_4->get_reverse());
cliSerial->printf_P(PSTR("roll max: \t%d\n"), (int)motors.roll_max);
cliSerial->printf_P(PSTR("pitch max: \t%d\n"), (int)motors.pitch_max);
cliSerial->printf_P(PSTR("coll min:\t%d\t mid:%d\t max:%d\n"),(int)motors.collective_min, (int)motors.collective_mid, (int)motors.collective_max);
// calculate and print servo rate
cliSerial->printf_P(PSTR("servo rate:\t%d hz\n"),(int)g.rc_speed);
print_blanks(2);
}
static void report_gyro()
{
cliSerial->printf_P(PSTR("Gyro:\n"));
print_divider();
print_enabled( motors.ext_gyro_enabled );
if( motors.ext_gyro_enabled )
cliSerial->printf_P(PSTR("gain: %d"),(int)motors.ext_gyro_gain);
print_blanks(2);
}
#endif // FRAME_CONFIG == HELI_FRAME
/***************************************************************************/
// CLI utilities
/***************************************************************************/
/*static void
* print_PID(PI * pid)
* {
* cliSerial->printf_P(PSTR("P: %4.2f, I:%4.2f, IMAX:%ld\n"),
* pid->kP(),
* pid->kI(),
* (long)pid->imax());
* }
*/
static void
print_radio_values()
{
cliSerial->printf_P(PSTR("CH1: %d | %d\n"), (int)g.rc_1.radio_min, (int)g.rc_1.radio_max);
cliSerial->printf_P(PSTR("CH2: %d | %d\n"), (int)g.rc_2.radio_min, (int)g.rc_2.radio_max);
cliSerial->printf_P(PSTR("CH3: %d | %d\n"), (int)g.rc_3.radio_min, (int)g.rc_3.radio_max);
cliSerial->printf_P(PSTR("CH4: %d | %d\n"), (int)g.rc_4.radio_min, (int)g.rc_4.radio_max);
cliSerial->printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max);
cliSerial->printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max);
cliSerial->printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max);
//cliSerial->printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max);
}
static void
print_switch(uint8_t p, uint8_t m, bool b)
{
cliSerial->printf_P(PSTR("Pos %d:\t"),p);
print_flight_mode(m);
cliSerial->printf_P(PSTR(",\t\tSimple: "));
if(b)
cliSerial->printf_P(PSTR("ON\n"));
else
cliSerial->printf_P(PSTR("OFF\n"));
}
static void
print_done()
{
cliSerial->printf_P(PSTR("\nSaved\n"));
}
static void zero_eeprom(void)
{
cliSerial->printf_P(PSTR("\nErasing EEPROM\n"));
for (uint16_t i = 0; i < EEPROM_MAX_ADDR; i++) {
hal.storage->write_byte(i, 0);
}
cliSerial->printf_P(PSTR("done\n"));
}
static void
print_accel_offsets_and_scaling(void)
{
Vector3f accel_offsets = ins.get_accel_offsets();
Vector3f accel_scale = ins.get_accel_scale();
cliSerial->printf_P(PSTR("A_off: %4.2f, %4.2f, %4.2f\tA_scale: %4.2f, %4.2f, %4.2f\n"),
(float)accel_offsets.x, // Pitch
(float)accel_offsets.y, // Roll
(float)accel_offsets.z, // YAW
(float)accel_scale.x, // Pitch
(float)accel_scale.y, // Roll
(float)accel_scale.z); // YAW
}
static void
print_gyro_offsets(void)
{
Vector3f gyro_offsets = ins.get_gyro_offsets();
cliSerial->printf_P(PSTR("G_off: %4.2f, %4.2f, %4.2f\n"),
(float)gyro_offsets.x,
(float)gyro_offsets.y,
(float)gyro_offsets.z);
}
#if FRAME_CONFIG == HELI_FRAME
static RC_Channel *
heli_get_servo(int16_t servo_num){
if( servo_num == CH_1 )
return motors._servo_1;
if( servo_num == CH_2 )
return motors._servo_2;
if( servo_num == CH_3 )
return motors._servo_3;
if( servo_num == CH_4 )
return motors._servo_4;
return NULL;
}
// Used to read integer values from the serial port
static int16_t read_num_from_serial() {
uint8_t index = 0;
uint8_t timeout = 0;
char data[5] = "";
do {
if (cliSerial->available() == 0) {
delay(10);
timeout++;
}else{
data[index] = cliSerial->read();
timeout = 0;
index++;
}
} while (timeout < 5 && index < 5);
return atoi(data);
}
#endif
#endif // CLI_ENABLED
static void
print_blanks(int16_t num)
{
while(num > 0) {
num--;
cliSerial->println("");
}
}
static void
print_divider(void)
{
for (int i = 0; i < 40; i++) {
cliSerial->print_P(PSTR("-"));
}
cliSerial->println();
}
static void print_enabled(bool b)
{
if(b)
cliSerial->print_P(PSTR("en"));
else
cliSerial->print_P(PSTR("dis"));
cliSerial->print_P(PSTR("abled\n"));
}
static void
init_esc()
{
// reduce update rate to motors to 50Hz
motors.set_update_rate(50);
motors.enable();
motors.armed(true);
while(1) {
read_radio();
delay(100);
dancing_light();
motors.throttle_pass_through();
}
}
static void print_wp(struct Location *cmd, uint8_t index)
{
//float t1 = (float)cmd->lat / t7;
//float t2 = (float)cmd->lng / t7;
cliSerial->printf_P(PSTR("cmd#: %d | %d, %d, %d, %ld, %ld, %ld\n"),
index,
cmd->id,
cmd->options,
cmd->p1,
cmd->alt,
cmd->lat,
cmd->lng);
/*
cliSerial->printf_P(PSTR("cmd#: %d id:%d op:%d p1:%d p2:%ld p3:%4.7f p4:%4.7f \n"),
(int)index,
(int)cmd->id,
(int)cmd->options,
(int)cmd->p1,
(long)cmd->alt,
t1,
t2);
*/
}
static void report_version()
{
cliSerial->printf_P(PSTR("FW Ver: %d\n"),(int)g.k_format_version);
print_divider();
print_blanks(2);
}
static void report_tuning()
{
cliSerial->printf_P(PSTR("\nTUNE:\n"));
print_divider();
if (g.radio_tuning == 0) {
print_enabled(g.radio_tuning.get());
}else{
float low = (float)g.radio_tuning_low.get() / 1000;
float high = (float)g.radio_tuning_high.get() / 1000;
cliSerial->printf_P(PSTR(" %d, Low:%1.4f, High:%1.4f\n"),(int)g.radio_tuning.get(), low, high);
}
print_blanks(2);
}