ardupilot/ArduPlane/quadplane.cpp
skyscraper 7f29903287 ArduPlane: Fix up after refactoring RC_Channel class
Further to refactor of RC_Channel class which included
adding get_xx set_xx methods, change reads and writes to the public members
to calls to  get and set functionsss

old public member(int16_t)   get function -> int16_t     set function (int16_t)
(expression where c is an object of type RC_Channel)
c.radio_in                     c.get_radio_in()           c.set_radio_in(v)
c.control_in                   c.get_control_in()         c.set_control_in(v)
c.servo_out                    c.get_servo_out()          c.set_servo_out(v)
c.pwm_out                      c.get_pwm_out()            // use existing
c.radio_out                    c.get_radio_out()          c.set_radio_out(v)
c.radio_max                    c.get_radio_max()          c.set_radio_max(v)
c.radio_min                    c.get_radio_min()          c.set_radio_min(v)
c.radio_trim                   c.get_radio_trim()         c.set_radio_trim(v);

c.min_max_configured() // return true if min and max are configured

Because data members of RC_Channels are now private and so cannot be written directly
 some overloads are provided in the Plane classes to provide the old functionality

new overload Plane::stick_mix_channel(RC_Channel *channel)
which forwards to the previously existing
void stick_mix_channel(RC_Channel *channel, int16_t &servo_out);

new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const
which forwards to
(uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const;

Rename functions

 RC_Channel_aux::set_radio_trim(Aux_servo_function_t function)
    to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function)

 RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value)
    to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value)

 Rationale:

        RC_Channel is a complicated class, which combines
        several functionalities dealing with stick inputs
        in pwm and logical units, logical and actual actuator
        outputs, unit conversion etc, etc
        The intent of this PR is to clarify existing use of
        the class. At the basic level it should now be possible
        to grep all places where private variable is set by
        searching for the set_xx function.

        (The wider purpose is to provide a more generic and
        logically simpler method of output mixing. This is a small step)
2016-05-10 16:21:16 +10:00

1654 lines
55 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Plane.h"
const AP_Param::GroupInfo QuadPlane::var_info[] = {
// @Param: ENABLE
// @DisplayName: Enable QuadPlane
// @Description: This enables QuadPlane functionality, assuming multicopter motors start on output 5. If this is set to 2 then when starting AUTO mode it will initially be in VTOL AUTO mode.
// @Values: 0:Disable,1:Enable,2:Enable VTOL AUTO
// @User: Standard
AP_GROUPINFO_FLAGS("ENABLE", 1, QuadPlane, enable, 0, AP_PARAM_FLAG_ENABLE),
// @Group: M_
// @Path: ../libraries/AP_Motors/AP_MotorsMulticopter.cpp
AP_SUBGROUPPTR(motors, "M_", 2, QuadPlane, AP_MOTORS_CLASS),
// 3 ~ 8 were used by quadplane attitude control PIDs
// @Param: ANGLE_MAX
// @DisplayName: Angle Max
// @Description: Maximum lean angle in all VTOL flight modes
// @Units: Centi-degrees
// @Range: 1000 8000
// @User: Advanced
AP_GROUPINFO("ANGLE_MAX", 10, QuadPlane, aparm.angle_max, 3000),
// @Param: TRANSITION_MS
// @DisplayName: Transition time
// @Description: Transition time in milliseconds after minimum airspeed is reached
// @Units: milli-seconds
// @Range: 0 30000
// @User: Advanced
AP_GROUPINFO("TRANSITION_MS", 11, QuadPlane, transition_time_ms, 5000),
// @Param: PZ_P
// @DisplayName: Position (vertical) controller P gain
// @Description: Position (vertical) controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller
// @Range: 1.000 3.000
// @User: Standard
AP_SUBGROUPINFO(p_alt_hold, "PZ_", 12, QuadPlane, AC_P),
// @Param: PXY_P
// @DisplayName: Position (horizonal) controller P gain
// @Description: Loiter position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller
// @Range: 0.500 2.000
// @User: Standard
AP_SUBGROUPINFO(p_pos_xy, "PXY_", 13, QuadPlane, AC_P),
// @Param: VXY_P
// @DisplayName: Velocity (horizontal) P gain
// @Description: Velocity (horizontal) P gain. Converts the difference between desired velocity to a target acceleration
// @Range: 0.1 6.0
// @Increment: 0.1
// @User: Advanced
// @Param: VXY_I
// @DisplayName: Velocity (horizontal) I gain
// @Description: Velocity (horizontal) I gain. Corrects long-term difference in desired velocity to a target acceleration
// @Range: 0.02 1.00
// @Increment: 0.01
// @User: Advanced
// @Param: VXY_IMAX
// @DisplayName: Velocity (horizontal) integrator maximum
// @Description: Velocity (horizontal) integrator maximum. Constrains the target acceleration that the I gain will output
// @Range: 0 4500
// @Increment: 10
// @Units: cm/s/s
// @User: Advanced
AP_SUBGROUPINFO(pi_vel_xy, "VXY_", 14, QuadPlane, AC_PI_2D),
// @Param: VZ_P
// @DisplayName: Velocity (vertical) P gain
// @Description: Velocity (vertical) P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller
// @Range: 1.000 8.000
// @User: Standard
AP_SUBGROUPINFO(p_vel_z, "VZ_", 15, QuadPlane, AC_P),
// @Param: AZ_P
// @DisplayName: Throttle acceleration controller P gain
// @Description: Throttle acceleration controller P gain. Converts the difference between desired vertical acceleration and actual acceleration into a motor output
// @Range: 0.500 1.500
// @User: Standard
// @Param: AZ_I
// @DisplayName: Throttle acceleration controller I gain
// @Description: Throttle acceleration controller I gain. Corrects long-term difference in desired vertical acceleration and actual acceleration
// @Range: 0.000 3.000
// @User: Standard
// @Param: AZ_IMAX
// @DisplayName: Throttle acceleration controller I gain maximum
// @Description: Throttle acceleration controller I gain maximum. Constrains the maximum pwm that the I term will generate
// @Range: 0 1000
// @Units: Percent*10
// @User: Standard
// @Param: AZ_D
// @DisplayName: Throttle acceleration controller D gain
// @Description: Throttle acceleration controller D gain. Compensates for short-term change in desired vertical acceleration vs actual acceleration
// @Range: 0.000 0.400
// @User: Standard
// @Param: AZ_FILT_HZ
// @DisplayName: Throttle acceleration filter
// @Description: Filter applied to acceleration to reduce noise. Lower values reduce noise but add delay.
// @Range: 1.000 100.000
// @Units: Hz
// @User: Standard
AP_SUBGROUPINFO(pid_accel_z, "AZ_", 16, QuadPlane, AC_PID),
// @Group: P_
// @Path: ../libraries/AC_AttitudeControl/AC_PosControl.cpp
AP_SUBGROUPPTR(pos_control, "P", 17, QuadPlane, AC_PosControl),
// @Param: VELZ_MAX
// @DisplayName: Pilot maximum vertical speed
// @Description: The maximum vertical velocity the pilot may request in cm/s
// @Units: Centimeters/Second
// @Range: 50 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("VELZ_MAX", 18, QuadPlane, pilot_velocity_z_max, 250),
// @Param: ACCEL_Z
// @DisplayName: Pilot vertical acceleration
// @Description: The vertical acceleration used when pilot is controlling the altitude
// @Units: cm/s/s
// @Range: 50 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("ACCEL_Z", 19, QuadPlane, pilot_accel_z, 250),
// @Group: WP_
// @Path: ../libraries/AC_WPNav/AC_WPNav.cpp
AP_SUBGROUPPTR(wp_nav, "WP_", 20, QuadPlane, AC_WPNav),
// @Param: RC_SPEED
// @DisplayName: RC output speed in Hz
// @Description: This is the PWM refresh rate in Hz for QuadPlane quad motors
// @Units: Hz
// @Range: 50 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RC_SPEED", 21, QuadPlane, rc_speed, 490),
// @Param: THR_MIN_PWM
// @DisplayName: Minimum PWM output
// @Description: This is the minimum PWM output for the quad motors
// @Units: Hz
// @Range: 800 2200
// @Increment: 1
// @User: Standard
AP_GROUPINFO("THR_MIN_PWM", 22, QuadPlane, thr_min_pwm, 1000),
// @Param: THR_MAX_PWM
// @DisplayName: Maximum PWM output
// @Description: This is the maximum PWM output for the quad motors
// @Units: Hz
// @Range: 800 2200
// @Increment: 1
// @User: Standard
AP_GROUPINFO("THR_MAX_PWM", 23, QuadPlane, thr_max_pwm, 2000),
// @Param: ASSIST_SPEED
// @DisplayName: Quadplane assistance speed
// @Description: This is the speed below which the quad motors will provide stability and lift assistance in fixed wing modes. Zero means no assistance except during transition
// @Units: m/s
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("ASSIST_SPEED", 24, QuadPlane, assist_speed, 0),
// @Param: YAW_RATE_MAX
// @DisplayName: Maximum yaw rate
// @Description: This is the maximum yaw rate in degrees/second
// @Units: degrees/second
// @Range: 50 500
// @Increment: 1
// @User: Standard
AP_GROUPINFO("YAW_RATE_MAX", 25, QuadPlane, yaw_rate_max, 100),
// @Param: LAND_SPEED
// @DisplayName: Land speed
// @Description: The descent speed for the final stage of landing in cm/s
// @Units: cm/s
// @Range: 30 200
// @Increment: 10
// @User: Standard
AP_GROUPINFO("LAND_SPEED", 26, QuadPlane, land_speed_cms, 50),
// @Param: LAND_FINAL_ALT
// @DisplayName: Land final altitude
// @Description: The altitude at which we should switch to Q_LAND_SPEED descent rate
// @Units: m
// @Range: 0.5 50
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("LAND_FINAL_ALT", 27, QuadPlane, land_final_alt, 6),
// @Param: THR_MID
// @DisplayName: Throttle Mid Position
// @Description: The throttle output (0 ~ 1000) when throttle stick is in mid position. Used to scale the manual throttle so that the mid throttle stick position is close to the throttle required to hover
// @User: Standard
// @Range: 300 700
// @Units: Percent*10
// @Increment: 10
AP_GROUPINFO("THR_MID", 28, QuadPlane, throttle_mid, 500),
// @Param: TRAN_PIT_MAX
// @DisplayName: Transition max pitch
// @Description: Maximum pitch during transition to auto fixed wing flight
// @User: Standard
// @Range: 0 30
// @Units: Degrees
// @Increment: 1
AP_GROUPINFO("TRAN_PIT_MAX", 29, QuadPlane, transition_pitch_max, 3),
// @Param: FRAME_CLASS
// @DisplayName: Frame Class
// @Description: Controls major frame class for multicopter component
// @Values: 0:Quad, 1:Hexa, 2:Octa, 3:OctaQuad, 4:Y6
// @User: Standard
AP_GROUPINFO("FRAME_CLASS", 30, QuadPlane, frame_class, 0),
// @Param: FRAME_TYPE
// @DisplayName: Frame Type (+, X or V)
// @Description: Controls motor mixing for multicopter component
// @Values: 0:Plus, 1:X, 2:V, 3:H, 4:V-Tail, 5:A-Tail, 10:Y6B
// @User: Standard
AP_GROUPINFO("FRAME_TYPE", 31, QuadPlane, frame_type, 1),
// @Param: VFWD_GAIN
// @DisplayName: Forward velocity hold gain
// @Description: Controls use of forward motor in vtol modes. If this is zero then the forward motor will not be used for position control in VTOL modes. A value of 0.1 is a good place to start if you want to use the forward motor for position control. No forward motor will be used in QSTABILIZE or QHOVER modes. Use QLOITER for position hold with the forward motor.
// @Range: 0 0.5
// @Increment: 0.01
// @User: Standard
AP_GROUPINFO("VFWD_GAIN", 32, QuadPlane, vel_forward.gain, 0),
// @Param: WVANE_GAIN
// @DisplayName: Weathervaning gain
// @Description: This controls the tendency to yaw to face into the wind. A value of 0.4 is good for reasonably quick wind direction correction. The weathervaning works by turning into the direction of roll.
// @Range: 0 1
// @Increment: 0.01
// @User: Standard
AP_GROUPINFO("WVANE_GAIN", 33, QuadPlane, weathervane.gain, 0),
// @Param: WVANE_MINROLL
// @DisplayName: Weathervaning min roll
// @Description: This set the minimum roll in degrees before active weathervaning will start. This may need to be larger if your aircraft has bad roll trim.
// @Range: 0 10
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("WVANE_MINROLL", 34, QuadPlane, weathervane.min_roll, 1),
// @Param: RTL_ALT
// @DisplayName: QRTL return altitude
// @Description: The altitude which QRTL mode heads to initially
// @Units: m
// @Range: 1 200
// @Increment: 1
// @User: Standard
AP_GROUPINFO("RTL_ALT", 35, QuadPlane, qrtl_alt, 15),
// @Param: RTL_MODE
// @DisplayName: VTOL RTL mode
// @Description: If this is set to 1 then an RTL will change to QRTL when the loiter target is reached
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("RTL_MODE", 36, QuadPlane, rtl_mode, 0),
AP_GROUPEND
};
static const struct {
const char *name;
float value;
} defaults_table[] = {
{ "Q_A_RAT_RLL_P", 0.25 },
{ "Q_A_RAT_RLL_I", 0.25 },
{ "Q_A_RAT_RLL_FILT", 10.0 },
{ "Q_A_RAT_PIT_P", 0.25 },
{ "Q_A_RAT_PIT_I", 0.25 },
{ "Q_A_RAT_PIT_FILT", 10.0 },
};
QuadPlane::QuadPlane(AP_AHRS_NavEKF &_ahrs) :
ahrs(_ahrs)
{
AP_Param::setup_object_defaults(this, var_info);
}
// setup default motors for the frame class
void QuadPlane::setup_default_channels(uint8_t num_motors)
{
for (uint8_t i=0; i<num_motors; i++) {
RC_Channel_aux::set_aux_channel_default((RC_Channel_aux::Aux_servo_function_t)(RC_Channel_aux::k_motor1+i), CH_5+i);
}
}
bool QuadPlane::setup(void)
{
if (initialised) {
return true;
}
if (!enable || hal.util->get_soft_armed()) {
return false;
}
float loop_delta_t = 1.0 / plane.scheduler.get_loop_rate_hz();
if (hal.util->available_memory() <
4096 + sizeof(*motors) + sizeof(*attitude_control) + sizeof(*pos_control) + sizeof(*wp_nav)) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Not enough memory for quadplane");
goto failed;
}
#ifdef AP_MOTORS_FORCE_CLASS
RC_Channel_aux::set_aux_channel_default(RC_Channel_aux::k_motor1, CH_5);
RC_Channel_aux::set_aux_channel_default(RC_Channel_aux::k_motor2, CH_6);
RC_Channel_aux::set_aux_channel_default(RC_Channel_aux::k_motor4, CH_8);
RC_Channel_aux::set_aux_channel_default(RC_Channel_aux::k_motor7, CH_11);
motors = new AP_MOTORS_CLASS(plane.scheduler.get_loop_rate_hz());
#else
/*
dynamically allocate the key objects for quadplane. This ensures
that the objects don't affect the vehicle unless enabled and
also saves memory when not in use
*/
switch ((enum frame_class)frame_class.get()) {
case FRAME_CLASS_QUAD:
setup_default_channels(4);
motors = new AP_MotorsQuad(plane.scheduler.get_loop_rate_hz());
break;
case FRAME_CLASS_HEXA:
setup_default_channels(6);
motors = new AP_MotorsHexa(plane.scheduler.get_loop_rate_hz());
break;
case FRAME_CLASS_OCTA:
setup_default_channels(8);
motors = new AP_MotorsOcta(plane.scheduler.get_loop_rate_hz());
break;
case FRAME_CLASS_OCTAQUAD:
setup_default_channels(8);
motors = new AP_MotorsOctaQuad(plane.scheduler.get_loop_rate_hz());
break;
case FRAME_CLASS_Y6:
setup_default_channels(7);
motors = new AP_MotorsY6(plane.scheduler.get_loop_rate_hz());
break;
default:
hal.console->printf("Unknown frame class %u\n", (unsigned)frame_class.get());
goto failed;
}
#endif // AP_MOTORS_CLASS
if (!motors) {
hal.console->printf("Unable to allocate motors\n");
goto failed;
}
AP_Param::load_object_from_eeprom(motors, motors->var_info);
attitude_control = new AC_AttitudeControl_Multi(ahrs, aparm, *motors, loop_delta_t);
if (!attitude_control) {
hal.console->printf("Unable to allocate attitude_control\n");
goto failed;
}
AP_Param::load_object_from_eeprom(attitude_control, attitude_control->var_info);
pos_control = new AC_PosControl(ahrs, inertial_nav, *motors, *attitude_control,
p_alt_hold, p_vel_z, pid_accel_z,
p_pos_xy, pi_vel_xy);
if (!pos_control) {
hal.console->printf("Unable to allocate pos_control\n");
goto failed;
}
AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info);
wp_nav = new AC_WPNav(inertial_nav, ahrs, *pos_control, *attitude_control);
if (!pos_control) {
hal.console->printf("Unable to allocate wp_nav\n");
goto failed;
}
AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info);
motors->set_frame_orientation(frame_type);
motors->Init();
motors->set_throttle_range(100, thr_min_pwm, thr_max_pwm);
motors->set_hover_throttle(throttle_mid);
motors->set_update_rate(rc_speed);
motors->set_interlock(true);
pid_accel_z.set_dt(loop_delta_t);
pos_control->set_dt(loop_delta_t);
// setup the trim of any motors used by AP_Motors so px4io
// failsafe will disable motors
for (uint8_t i=0; i<8; i++) {
RC_Channel_aux::set_servo_failsafe_pwm((RC_Channel_aux::Aux_servo_function_t)(RC_Channel_aux::k_motor1+i),
thr_min_pwm);
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
// redo failsafe mixing on px4
plane.setup_failsafe_mixing();
#endif
transition_state = TRANSITION_DONE;
setup_defaults();
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "QuadPlane initialised");
initialised = true;
return true;
failed:
initialised = false;
enable.set(0);
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "QuadPlane setup failed");
return false;
}
/*
setup default parameters from defaults_table
*/
void QuadPlane::setup_defaults(void)
{
for (uint8_t i=0; i<ARRAY_SIZE(defaults_table); i++) {
if (!AP_Param::set_default_by_name(defaults_table[i].name, defaults_table[i].value)) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "QuadPlane setup failure for %s",
defaults_table[i].name);
AP_HAL::panic("quadplane bad default %s", defaults_table[i].name);
}
}
}
// init quadplane stabilize mode
void QuadPlane::init_stabilize(void)
{
throttle_wait = false;
}
// hold in stabilize with given throttle
void QuadPlane::hold_stabilize(float throttle_in)
{
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw_smooth(plane.nav_roll_cd,
plane.nav_pitch_cd,
get_desired_yaw_rate_cds(),
smoothing_gain);
if (throttle_in <= 0) {
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
attitude_control->set_throttle_out_unstabilized(0, true, 0);
} else {
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
attitude_control->set_throttle_out(throttle_in, true, 0);
}
}
// quadplane stabilize mode
void QuadPlane::control_stabilize(void)
{
float pilot_throttle_scaled = plane.channel_throttle->get_control_in() / 100.0f;
hold_stabilize(pilot_throttle_scaled);
}
// init quadplane hover mode
void QuadPlane::init_hover(void)
{
// initialize vertical speeds and leash lengths
pos_control->set_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max);
pos_control->set_accel_z(pilot_accel_z);
// initialise position and desired velocity
pos_control->set_alt_target(inertial_nav.get_altitude());
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
init_throttle_wait();
}
/*
hold hover with target climb rate
*/
void QuadPlane::hold_hover(float target_climb_rate)
{
// motors use full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// initialize vertical speeds and acceleration
pos_control->set_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max);
pos_control->set_accel_z(pilot_accel_z);
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw_smooth(plane.nav_roll_cd,
plane.nav_pitch_cd,
get_desired_yaw_rate_cds(),
smoothing_gain);
// call position controller
pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, plane.G_Dt, false);
pos_control->update_z_controller();
}
/*
control QHOVER mode
*/
void QuadPlane::control_hover(void)
{
if (throttle_wait) {
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
attitude_control->set_throttle_out_unstabilized(0, true, 0);
pos_control->relax_alt_hold_controllers(0);
} else {
hold_hover(get_pilot_desired_climb_rate_cms());
}
}
void QuadPlane::init_loiter(void)
{
// set target to current position
wp_nav->init_loiter_target();
// initialize vertical speed and acceleration
pos_control->set_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max);
pos_control->set_accel_z(pilot_accel_z);
// initialise position and desired velocity
pos_control->set_alt_target(inertial_nav.get_altitude());
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
init_throttle_wait();
}
void QuadPlane::init_land(void)
{
init_loiter();
throttle_wait = false;
land.state = QLAND_DESCEND;
motors_lower_limit_start_ms = 0;
}
// helper for is_flying()
bool QuadPlane::is_flying(void)
{
if (!available()) {
return false;
}
if (motors->get_throttle() > 0.2 && !motors->limit.throttle_lower) {
return true;
}
return false;
}
// crude landing detector to prevent tipover
bool QuadPlane::should_relax(void)
{
bool motor_at_lower_limit = motors->limit.throttle_lower && motors->is_throttle_mix_min();
if (motors->get_throttle() < 0.01) {
motor_at_lower_limit = true;
}
if (!motor_at_lower_limit) {
motors_lower_limit_start_ms = 0;
}
if (motor_at_lower_limit && motors_lower_limit_start_ms == 0) {
motors_lower_limit_start_ms = millis();
}
bool relax_loiter = motors_lower_limit_start_ms != 0 && (millis() - motors_lower_limit_start_ms) > 1000;
return relax_loiter;
}
// see if we are flying in vtol
bool QuadPlane::is_flying_vtol(void)
{
if (in_vtol_mode() && millis() - motors_lower_limit_start_ms > 5000) {
return true;
}
return false;
}
/*
smooth out descent rate for landing to prevent a jerk as we get to
land_final_alt.
*/
float QuadPlane::landing_descent_rate_cms(float height_above_ground)
{
float ret = linear_interpolate(land_speed_cms, wp_nav->get_speed_down(),
height_above_ground,
land_final_alt, land_final_alt+3);
return ret;
}
// run quadplane loiter controller
void QuadPlane::control_loiter()
{
if (throttle_wait) {
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
attitude_control->set_throttle_out_unstabilized(0, true, 0);
pos_control->relax_alt_hold_controllers(0);
wp_nav->init_loiter_target();
return;
}
if (should_relax()) {
wp_nav->loiter_soften_for_landing();
}
if (millis() - last_loiter_ms > 500) {
wp_nav->init_loiter_target();
}
last_loiter_ms = millis();
// motors use full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// initialize vertical speed and acceleration
pos_control->set_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max);
pos_control->set_accel_z(pilot_accel_z);
// process pilot's roll and pitch input
wp_nav->set_pilot_desired_acceleration(plane.channel_roll->get_control_in(),
plane.channel_pitch->get_control_in());
// Update EKF speed limit - used to limit speed when we are using optical flow
float ekfGndSpdLimit, ekfNavVelGainScaler;
ahrs.getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
// run loiter controller
wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(),
wp_nav->get_pitch(),
get_desired_yaw_rate_cds());
// nav roll and pitch are controller by loiter controller
plane.nav_roll_cd = wp_nav->get_roll();
plane.nav_pitch_cd = wp_nav->get_pitch();
if (plane.control_mode == QLAND) {
float height_above_ground;
if (plane.g.rangefinder_landing && plane.rangefinder_state.in_range) {
height_above_ground = plane.rangefinder_state.height_estimate;
} else {
height_above_ground = plane.adjusted_relative_altitude_cm() * 0.01;
}
if (height_above_ground < land_final_alt && land.state < QLAND_FINAL) {
land.state = QLAND_FINAL;
}
float descent_rate = (land.state == QLAND_FINAL)? land_speed_cms:landing_descent_rate_cms(height_above_ground);
pos_control->set_alt_target_from_climb_rate(-descent_rate, plane.G_Dt, true);
check_land_complete();
} else {
// update altitude target and call position controller
pos_control->set_alt_target_from_climb_rate_ff(get_pilot_desired_climb_rate_cms(), plane.G_Dt, false);
}
pos_control->update_z_controller();
}
/*
get pilot input yaw rate in cd/s
*/
float QuadPlane::get_pilot_input_yaw_rate_cds(void)
{
if (plane.channel_throttle->get_control_in() <= 0 && !plane.auto_throttle_mode) {
// the user may be trying to disarm
return 0;
}
// add in rudder input
return plane.channel_rudder->norm_input() * 100 * yaw_rate_max;
}
/*
get overall desired yaw rate in cd/s
*/
float QuadPlane::get_desired_yaw_rate_cds(void)
{
float yaw_cds = 0;
if (assisted_flight) {
// use bank angle to get desired yaw rate
yaw_cds += desired_auto_yaw_rate_cds();
}
if (plane.channel_throttle->get_control_in() <= 0 && !plane.auto_throttle_mode) {
// the user may be trying to disarm
return 0;
}
// add in pilot input
yaw_cds += get_pilot_input_yaw_rate_cds();
// add in weathervaning
yaw_cds += get_weathervane_yaw_rate_cds();
return yaw_cds;
}
// get pilot desired climb rate in cm/s
float QuadPlane::get_pilot_desired_climb_rate_cms(void)
{
if (plane.failsafe.ch3_failsafe || plane.failsafe.ch3_counter > 0) {
// descend at 0.5m/s for now
return -50;
}
uint16_t dead_zone = plane.channel_throttle->get_dead_zone();
uint16_t trim = (plane.channel_throttle->get_radio_max() + plane.channel_throttle->get_radio_min())/2;
return pilot_velocity_z_max * plane.channel_throttle->pwm_to_angle_dz_trim(dead_zone, trim) / 100.0f;
}
/*
initialise throttle_wait based on throttle and is_flying()
*/
void QuadPlane::init_throttle_wait(void)
{
if (plane.channel_throttle->get_control_in() >= 10 ||
plane.is_flying()) {
throttle_wait = false;
} else {
throttle_wait = true;
}
}
// set motor arming
void QuadPlane::set_armed(bool armed)
{
if (!initialised) {
return;
}
motors->armed(armed);
if (armed) {
motors->enable();
}
}
/*
estimate desired climb rate for assistance (in cm/s)
*/
float QuadPlane::assist_climb_rate_cms(void)
{
float climb_rate;
if (plane.auto_throttle_mode) {
// use altitude_error_cm, spread over 10s interval
climb_rate = plane.altitude_error_cm / 10;
} else {
// otherwise estimate from pilot input
climb_rate = plane.g.flybywire_climb_rate * (plane.nav_pitch_cd/(float)plane.aparm.pitch_limit_max_cd);
climb_rate *= plane.channel_throttle->get_control_in();
}
climb_rate = constrain_float(climb_rate, -wp_nav->get_speed_down(), wp_nav->get_speed_up());
return climb_rate;
}
/*
calculate desired yaw rate for assistance
*/
float QuadPlane::desired_auto_yaw_rate_cds(void)
{
float aspeed;
if (!ahrs.airspeed_estimate(&aspeed) || aspeed < plane.aparm.airspeed_min) {
aspeed = plane.aparm.airspeed_min;
}
if (aspeed < 1) {
aspeed = 1;
}
float yaw_rate = degrees(GRAVITY_MSS * tanf(radians(plane.nav_roll_cd*0.01f))/aspeed) * 100;
return yaw_rate;
}
/*
update for transition from quadplane to fixed wing mode
*/
void QuadPlane::update_transition(void)
{
if (plane.control_mode == MANUAL ||
plane.control_mode == ACRO ||
plane.control_mode == TRAINING) {
// in manual modes quad motors are always off
motors->set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
motors->output();
transition_state = TRANSITION_DONE;
return;
}
float aspeed;
bool have_airspeed = ahrs.airspeed_estimate(&aspeed);
/*
see if we should provide some assistance
*/
if (have_airspeed && aspeed < assist_speed &&
(plane.auto_throttle_mode ||
plane.channel_throttle->get_control_in()>0 ||
plane.is_flying())) {
// the quad should provide some assistance to the plane
transition_state = TRANSITION_AIRSPEED_WAIT;
transition_start_ms = millis();
assisted_flight = true;
} else {
assisted_flight = false;
}
if (transition_state < TRANSITION_TIMER) {
// set a single loop pitch limit in TECS
plane.TECS_controller.set_pitch_max_limit(transition_pitch_max);
} else if (transition_state < TRANSITION_DONE) {
plane.TECS_controller.set_pitch_max_limit((transition_pitch_max+1)*2);
}
switch (transition_state) {
case TRANSITION_AIRSPEED_WAIT: {
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// we hold in hover until the required airspeed is reached
if (transition_start_ms == 0) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Transition airspeed wait");
transition_start_ms = millis();
}
if (have_airspeed && aspeed > plane.aparm.airspeed_min && !assisted_flight) {
transition_start_ms = millis();
transition_state = TRANSITION_TIMER;
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Transition airspeed reached %.1f", (double)aspeed);
}
assisted_flight = true;
hold_hover(assist_climb_rate_cms());
attitude_control->rate_controller_run();
motors_output();
last_throttle = motors->get_throttle();
break;
}
case TRANSITION_TIMER: {
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// after airspeed is reached we degrade throttle over the
// transition time, but continue to stabilize
if (millis() - transition_start_ms > (unsigned)transition_time_ms) {
transition_state = TRANSITION_DONE;
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Transition done");
}
float throttle_scaled = last_throttle * (transition_time_ms - (millis() - transition_start_ms)) / (float)transition_time_ms;
if (throttle_scaled < 0) {
throttle_scaled = 0;
}
assisted_flight = true;
hold_stabilize(throttle_scaled);
attitude_control->rate_controller_run();
motors_output();
break;
}
case TRANSITION_DONE:
motors->set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
motors->output();
break;
}
}
/*
update motor output for quadplane
*/
void QuadPlane::update(void)
{
if (!setup()) {
return;
}
if (motor_test.running) {
motor_test_output();
return;
}
if (!in_vtol_mode()) {
update_transition();
} else {
assisted_flight = false;
// run low level rate controllers
attitude_control->rate_controller_run();
// output to motors
motors_output();
transition_start_ms = 0;
if (throttle_wait && !plane.is_flying()) {
transition_state = TRANSITION_DONE;
} else {
transition_state = TRANSITION_AIRSPEED_WAIT;
}
last_throttle = motors->get_throttle();
}
// disable throttle_wait when throttle rises above 10%
if (throttle_wait &&
(plane.channel_throttle->get_control_in() > 10 ||
plane.failsafe.ch3_failsafe ||
plane.failsafe.ch3_counter>0)) {
throttle_wait = false;
}
}
/*
output motors and do any copter needed
*/
void QuadPlane::motors_output(void)
{
motors->output();
if (motors->armed()) {
plane.DataFlash.Log_Write_Rate(plane.ahrs, *motors, *attitude_control, *pos_control);
Log_Write_QControl_Tuning();
}
}
/*
update control mode for quadplane modes
*/
void QuadPlane::control_run(void)
{
if (!initialised) {
return;
}
switch (plane.control_mode) {
case QSTABILIZE:
control_stabilize();
break;
case QHOVER:
control_hover();
break;
case QLOITER:
case QLAND:
control_loiter();
break;
case QRTL:
control_qrtl();
break;
default:
break;
}
// we also stabilize using fixed wing surfaces
float speed_scaler = plane.get_speed_scaler();
plane.stabilize_roll(speed_scaler);
plane.stabilize_pitch(speed_scaler);
}
/*
enter a quadplane mode
*/
bool QuadPlane::init_mode(void)
{
if (!setup()) {
return false;
}
if (!initialised) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "QuadPlane mode refused");
return false;
}
switch (plane.control_mode) {
case QSTABILIZE:
init_stabilize();
break;
case QHOVER:
init_hover();
break;
case QLOITER:
init_loiter();
break;
case QLAND:
init_land();
break;
case QRTL:
init_qrtl();
break;
default:
break;
}
return true;
}
/*
handle a MAVLink DO_VTOL_TRANSITION
*/
bool QuadPlane::handle_do_vtol_transition(enum MAV_VTOL_STATE state)
{
if (!available()) {
plane.gcs_send_text_fmt(MAV_SEVERITY_NOTICE, "VTOL not available");
return false;
}
if (plane.control_mode != AUTO) {
plane.gcs_send_text_fmt(MAV_SEVERITY_NOTICE, "VTOL transition only in AUTO");
return false;
}
switch (state) {
case MAV_VTOL_STATE_MC:
if (!plane.auto_state.vtol_mode) {
plane.gcs_send_text_fmt(MAV_SEVERITY_NOTICE, "Entered VTOL mode");
}
plane.auto_state.vtol_mode = true;
return true;
case MAV_VTOL_STATE_FW:
if (plane.auto_state.vtol_mode) {
plane.gcs_send_text_fmt(MAV_SEVERITY_NOTICE, "Exited VTOL mode");
}
plane.auto_state.vtol_mode = false;
return true;
default:
break;
}
plane.gcs_send_text_fmt(MAV_SEVERITY_NOTICE, "Invalid VTOL mode");
return false;
}
/*
are we in a VTOL auto state?
*/
bool QuadPlane::in_vtol_auto(void)
{
if (!enable || plane.control_mode != AUTO) {
return false;
}
if (plane.auto_state.vtol_mode) {
return true;
}
switch (plane.mission.get_current_nav_cmd().id) {
case MAV_CMD_NAV_VTOL_LAND:
case MAV_CMD_NAV_VTOL_TAKEOFF:
return true;
default:
return false;
}
}
/*
are we in a VTOL mode?
*/
bool QuadPlane::in_vtol_mode(void)
{
if (!enable) {
return false;
}
return (plane.control_mode == QSTABILIZE ||
plane.control_mode == QHOVER ||
plane.control_mode == QLOITER ||
plane.control_mode == QLAND ||
plane.control_mode == QRTL ||
in_vtol_auto());
}
/*
main landing controller. Used for landing and RTL.
*/
void QuadPlane::land_controller(void)
{
if (!setup()) {
return;
}
setup_target_position();
const Location &loc = plane.next_WP_loc;
float ekfGndSpdLimit, ekfNavVelGainScaler;
ahrs.getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
switch (land.state) {
case QLAND_FINAL:
/*
for land-final we use the loiter controller
*/
// run loiter controller
wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw_smooth(plane.nav_roll_cd,
plane.nav_pitch_cd,
get_pilot_input_yaw_rate_cds(),
smoothing_gain);
// nav roll and pitch are controller by position controller
plane.nav_roll_cd = pos_control->get_roll();
plane.nav_pitch_cd = pos_control->get_pitch();
break;
case QLAND_POSITION1: {
Vector2f diff_wp = location_diff(plane.current_loc, loc);
if (land.speed_scale <= 0) {
// initialise scaling so we start off targeting our
// current linear speed towards the target. If this is
// less than the wpnav speed then the wpnav speed is used
// land_speed_scale is then used to linearly change
// velocity as we approach the waypoint, aiming for zero
// speed at the waypoint
Vector2f groundspeed = ahrs.groundspeed_vector();
float speed_towards_target = diff_wp.normalized() * groundspeed;
// setup land_speed_scale so at current distance we maintain speed towards target, and slow down as
// we approach
float distance = diff_wp.length();
// max_speed will control how fast we will fly. It will always decrease
land.max_speed = MAX(speed_towards_target, wp_nav->get_speed_xy() * 0.01);
land.speed_scale = land.max_speed / MAX(distance, 1);
}
// run fixed wing navigation
plane.nav_controller->update_waypoint(plane.prev_WP_loc, loc);
/*
calculate target velocity, not dropping it below 2m/s
*/
const float final_speed = 2.0f;
Vector2f target_speed_xy = diff_wp * land.speed_scale;
float target_speed = target_speed_xy.length();
if (target_speed < final_speed) {
// until we enter the loiter we always aim for at least 2m/s
target_speed_xy = target_speed_xy.normalized() * final_speed;
land.max_speed = final_speed;
} else if (target_speed > land.max_speed) {
// we never speed up during landing approaches
target_speed_xy = target_speed_xy.normalized() * land.max_speed;
} else {
land.max_speed = target_speed;
}
pos_control->set_desired_velocity_xy(target_speed_xy.x*100,
target_speed_xy.y*100);
pos_control->update_vel_controller_xyz(ekfNavVelGainScaler);
const Vector3f& curr_pos = inertial_nav.get_position();
pos_control->set_xy_target(curr_pos.x, curr_pos.y);
pos_control->freeze_ff_xy();
// nav roll and pitch are controller by position controller
plane.nav_roll_cd = pos_control->get_roll();
plane.nav_pitch_cd = pos_control->get_pitch();
/*
limit the pitch down with an expanding envelope. This
prevents the velocity controller demanding nose down during
the initial slowdown if the target velocity curve is higher
than the actual velocity curve (for a high drag
aircraft). Nose down will cause a lot of downforce on the
wings which will draw a lot of current and also cause the
aircraft to lose altitude rapidly.
*/
float pitch_limit_cd = linear_interpolate(-300, plane.aparm.pitch_limit_min_cd,
plane.auto_state.wp_proportion, 0, 1);
if (plane.nav_pitch_cd < pitch_limit_cd) {
plane.nav_pitch_cd = pitch_limit_cd;
// tell the pos controller we have limited the pitch to
// stop integrator buildup
pos_control->set_limit_accel_xy();
}
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw_smooth(plane.nav_roll_cd,
plane.nav_pitch_cd,
desired_auto_yaw_rate_cds() + get_weathervane_yaw_rate_cds(),
smoothing_gain);
if (plane.auto_state.wp_proportion >= 1 ||
plane.auto_state.wp_distance < 5) {
land.state = QLAND_POSITION2;
wp_nav->init_loiter_target();
plane.gcs_send_text_fmt(MAV_SEVERITY_INFO,"Land position2 started v=%.1f d=%.1f",
(double)ahrs.groundspeed(), (double)plane.auto_state.wp_distance);
}
break;
}
case QLAND_POSITION2:
case QLAND_DESCEND:
/*
for final land repositioning and descent we run the loiter controller
*/
// also run fixed wing navigation
plane.nav_controller->update_waypoint(plane.prev_WP_loc, loc);
pos_control->set_xy_target(land.target.x, land.target.y);
// run loiter controller
wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
// nav roll and pitch are controller by position controller
plane.nav_roll_cd = wp_nav->get_roll();
plane.nav_pitch_cd = wp_nav->get_pitch();
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw_smooth(plane.nav_roll_cd,
plane.nav_pitch_cd,
get_pilot_input_yaw_rate_cds(),
smoothing_gain);
break;
case QLAND_COMPLETE:
// nothing to do
break;
}
// now height control
switch (land.state) {
case QLAND_POSITION1:
case QLAND_POSITION2:
if (plane.control_mode == QRTL) {
plane.ahrs.get_position(plane.current_loc);
float target_altitude = plane.next_WP_loc.alt;
if (land.slow_descent) {
// gradually descend as we approach target
plane.auto_state.wp_proportion = location_path_proportion(plane.current_loc,
plane.prev_WP_loc, plane.next_WP_loc);
target_altitude = linear_interpolate(plane.prev_WP_loc.alt,
plane.next_WP_loc.alt,
plane.auto_state.wp_proportion,
0, 1);
}
pos_control->set_alt_target(target_altitude - plane.home.alt);
} else {
pos_control->set_alt_target_from_climb_rate(0, plane.G_Dt, false);
}
break;
case QLAND_DESCEND: {
float height_above_ground = (plane.current_loc.alt - loc.alt)*0.01;
pos_control->set_alt_target_from_climb_rate(-landing_descent_rate_cms(height_above_ground),
plane.G_Dt, true);
break;
}
case QLAND_FINAL:
pos_control->set_alt_target_from_climb_rate(-land_speed_cms, plane.G_Dt, true);
break;
case QLAND_COMPLETE:
break;
}
pos_control->update_z_controller();
}
/*
setup the target position based on plane.next_WP_loc
*/
void QuadPlane::setup_target_position(void)
{
const Location &loc = plane.next_WP_loc;
Location origin = inertial_nav.get_origin();
Vector2f diff2d;
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
diff2d = location_diff(origin, loc);
land.target.x = diff2d.x * 100;
land.target.y = diff2d.y * 100;
land.target.z = plane.next_WP_loc.alt - origin.alt;
if (!locations_are_same(loc, last_auto_target) ||
plane.next_WP_loc.alt != last_auto_target.alt ||
millis() - last_loiter_ms > 500) {
wp_nav->set_wp_destination(land.target);
last_auto_target = loc;
}
last_loiter_ms = millis();
// setup vertical speed and acceleration
pos_control->set_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max);
pos_control->set_accel_z(pilot_accel_z);
}
/*
run takeoff controller to climb vertically
*/
void QuadPlane::takeoff_controller(void)
{
/*
for takeoff we need to use the loiter controller wpnav controller takes over the descent rate
control
*/
float ekfGndSpdLimit, ekfNavVelGainScaler;
ahrs.getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
setup_target_position();
// run loiter controller
wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw_smooth(plane.nav_roll_cd,
plane.nav_pitch_cd,
get_pilot_input_yaw_rate_cds(),
smoothing_gain);
// nav roll and pitch are controller by position controller
plane.nav_roll_cd = pos_control->get_roll();
plane.nav_pitch_cd = pos_control->get_pitch();
pos_control->set_alt_target_from_climb_rate(wp_nav->get_speed_up(), plane.G_Dt, true);
pos_control->update_z_controller();
}
/*
run waypoint controller between prev_WP_loc and next_WP_loc
*/
void QuadPlane::waypoint_controller(void)
{
setup_target_position();
/*
this is full copter control of auto flight
*/
// run wpnav controller
wp_nav->update_wpnav();
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(),
wp_nav->get_pitch(),
wp_nav->get_yaw(),
true);
// nav roll and pitch are controller by loiter controller
plane.nav_roll_cd = wp_nav->get_roll();
plane.nav_pitch_cd = wp_nav->get_pitch();
// climb based on altitude error
pos_control->set_alt_target_from_climb_rate_ff(assist_climb_rate_cms(), plane.G_Dt, false);
pos_control->update_z_controller();
}
/*
handle auto-mode when auto_state.vtol_mode is true
*/
void QuadPlane::control_auto(const Location &loc)
{
if (!setup()) {
return;
}
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
if (plane.mission.get_current_nav_cmd().id == MAV_CMD_NAV_VTOL_TAKEOFF) {
takeoff_controller();
} else if (plane.mission.get_current_nav_cmd().id == MAV_CMD_NAV_VTOL_LAND) {
land_controller();
} else {
waypoint_controller();
}
}
/*
handle QRTL mode
*/
void QuadPlane::control_qrtl(void)
{
land_controller();
if (land.state >= QLAND_POSITION2) {
// change target altitude to home alt
plane.next_WP_loc.alt = plane.home.alt;
verify_vtol_land();
} else {
pos_control->set_alt_target(qrtl_alt*100UL);
}
}
/*
handle QRTL mode
*/
void QuadPlane::init_qrtl(void)
{
// use do_RTL() to setup next_WP_loc
plane.do_RTL(plane.home.alt + qrtl_alt*100UL);
plane.prev_WP_loc = plane.current_loc;
land.slow_descent = (plane.current_loc.alt > plane.next_WP_loc.alt);
land.state = QLAND_POSITION1;
land.speed_scale = 0;
}
/*
start a VTOL takeoff
*/
bool QuadPlane::do_vtol_takeoff(const AP_Mission::Mission_Command& cmd)
{
if (!setup()) {
return false;
}
plane.set_next_WP(cmd.content.location);
plane.next_WP_loc.alt = plane.current_loc.alt + cmd.content.location.alt;
throttle_wait = false;
// set target to current position
wp_nav->init_loiter_target();
// initialize vertical speed and acceleration
pos_control->set_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max);
pos_control->set_accel_z(pilot_accel_z);
// initialise position and desired velocity
pos_control->set_alt_target(inertial_nav.get_altitude());
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
// also update nav_controller for status output
plane.nav_controller->update_waypoint(plane.prev_WP_loc, plane.next_WP_loc);
return true;
}
/*
start a VTOL landing
*/
bool QuadPlane::do_vtol_land(const AP_Mission::Mission_Command& cmd)
{
if (!setup()) {
return false;
}
attitude_control->get_rate_roll_pid().reset_I();
attitude_control->get_rate_pitch_pid().reset_I();
attitude_control->get_rate_yaw_pid().reset_I();
pid_accel_z.reset_I();
pi_vel_xy.reset_I();
plane.set_next_WP(cmd.content.location);
// initially aim for current altitude
plane.next_WP_loc.alt = plane.current_loc.alt;
land.state = QLAND_POSITION1;
land.speed_scale = 0;
wp_nav->init_loiter_target();
throttle_wait = false;
motors_lower_limit_start_ms = 0;
Location origin = inertial_nav.get_origin();
Vector2f diff2d;
Vector3f target;
diff2d = location_diff(origin, plane.next_WP_loc);
target.x = diff2d.x * 100;
target.y = diff2d.y * 100;
target.z = plane.next_WP_loc.alt - origin.alt;
pos_control->set_alt_target(inertial_nav.get_altitude());
// also update nav_controller for status output
plane.nav_controller->update_waypoint(plane.prev_WP_loc, plane.next_WP_loc);
return true;
}
/*
check if a VTOL takeoff has completed
*/
bool QuadPlane::verify_vtol_takeoff(const AP_Mission::Mission_Command &cmd)
{
if (!available()) {
return true;
}
if (plane.current_loc.alt < plane.next_WP_loc.alt) {
return false;
}
transition_state = TRANSITION_AIRSPEED_WAIT;
plane.TECS_controller.set_pitch_max_limit(transition_pitch_max);
return true;
}
void QuadPlane::check_land_complete(void)
{
if (land.state == QLAND_FINAL &&
(motors_lower_limit_start_ms != 0 &&
millis() - motors_lower_limit_start_ms > 5000)) {
plane.disarm_motors();
land.state = QLAND_COMPLETE;
plane.gcs_send_text(MAV_SEVERITY_INFO,"Land complete");
// reload target airspeed which could have been modified by the mission
plane.g.airspeed_cruise_cm.load();
}
}
/*
check if a VTOL landing has completed
*/
bool QuadPlane::verify_vtol_land(void)
{
if (!available()) {
return true;
}
if (land.state == QLAND_POSITION2 &&
plane.auto_state.wp_distance < 2) {
land.state = QLAND_DESCEND;
plane.gcs_send_text(MAV_SEVERITY_INFO,"Land descend started");
plane.set_next_WP(plane.next_WP_loc);
}
if (should_relax()) {
wp_nav->loiter_soften_for_landing();
}
// at land_final_alt begin final landing
if (land.state == QLAND_DESCEND &&
plane.current_loc.alt < plane.next_WP_loc.alt+land_final_alt*100) {
land.state = QLAND_FINAL;
pos_control->set_alt_target(inertial_nav.get_altitude());
plane.gcs_send_text(MAV_SEVERITY_INFO,"Land final started");
}
check_land_complete();
return false;
}
// Write a control tuning packet
void QuadPlane::Log_Write_QControl_Tuning()
{
const Vector3f &desired_velocity = pos_control->get_desired_velocity();
const Vector3f &accel_target = pos_control->get_accel_target();
struct log_QControl_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_QTUN_MSG),
time_us : AP_HAL::micros64(),
angle_boost : attitude_control->angle_boost(),
throttle_out : motors->get_throttle(),
desired_alt : pos_control->get_alt_target() / 100.0f,
inav_alt : inertial_nav.get_altitude() / 100.0f,
baro_alt : (int32_t)plane.barometer.get_altitude() * 100,
desired_climb_rate : (int16_t)pos_control->get_vel_target_z(),
climb_rate : (int16_t)inertial_nav.get_velocity_z(),
dvx : desired_velocity.x*0.01f,
dvy : desired_velocity.y*0.01f,
dax : accel_target.x*0.01f,
day : accel_target.y*0.01f,
};
plane.DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
/*
calculate the forward throttle percentage. The forward throttle can
be used to assist with position hold and with landing approach. It
reduces the need for down pitch which reduces load on the vertical
lift motors.
*/
int8_t QuadPlane::forward_throttle_pct(void)
{
/*
in non-VTOL modes or modes without a velocity controller. We
don't use it in QHOVER or QSTABILIZE as they are the primary
recovery modes for a quadplane and need to be as simple as
possible. They will drift with the wind
*/
if (!in_vtol_mode() ||
!motors->armed() ||
vel_forward.gain <= 0 ||
plane.control_mode == QSTABILIZE ||
plane.control_mode == QHOVER) {
return 0;
}
float deltat = (AP_HAL::millis() - vel_forward.lastt_ms) * 0.001f;
if (deltat > 1 || deltat < 0) {
vel_forward.integrator = 0;
deltat = 0.1;
}
if (deltat < 0.1) {
// run at 10Hz
return vel_forward.last_pct;
}
vel_forward.lastt_ms = AP_HAL::millis();
// work out the desired speed in forward direction
const Vector3f &desired_velocity_cms = pos_control->get_desired_velocity();
Vector3f vel_ned;
if (!plane.ahrs.get_velocity_NED(vel_ned)) {
// we don't know our velocity? EKF must be pretty sick
vel_forward.last_pct = 0;
return 0;
}
Vector3f vel_error_body = ahrs.get_rotation_body_to_ned().transposed() * ((desired_velocity_cms*0.01f) - vel_ned);
// find component of velocity error in fwd body frame direction
float fwd_vel_error = vel_error_body * Vector3f(1,0,0);
// scale forward velocity error by maximum airspeed
fwd_vel_error /= MAX(plane.aparm.airspeed_max, 5);
// add in a component from our current pitch demand. This tends to
// move us to zero pitch. Assume that LIM_PITCH would give us the
// WP nav speed.
fwd_vel_error -= (wp_nav->get_speed_xy() * 0.01f) * plane.nav_pitch_cd / (float)plane.aparm.pitch_limit_max_cd;
if (should_relax() && vel_ned.length() < 1) {
// we may be landed
fwd_vel_error = 0;
vel_forward.integrator *= 0.95f;
}
// integrator as throttle percentage (-100 to 100)
vel_forward.integrator += fwd_vel_error * deltat * vel_forward.gain * 100;
// constrain to throttle range. This allows for reverse throttle if configured
vel_forward.integrator = constrain_float(vel_forward.integrator, plane.aparm.throttle_min, plane.aparm.throttle_max);
vel_forward.last_pct = vel_forward.integrator;
return vel_forward.last_pct;
}
/*
get weathervaning yaw rate in cd/s
*/
float QuadPlane::get_weathervane_yaw_rate_cds(void)
{
/*
we only do weathervaning in modes where we are doing VTOL
position control. We also don't do it if the pilot has given any
yaw input in the last 3 seconds.
*/
if (!in_vtol_mode() ||
!motors->armed() ||
weathervane.gain <= 0 ||
plane.control_mode == QSTABILIZE ||
plane.control_mode == QHOVER) {
weathervane.last_output = 0;
return 0;
}
if (plane.channel_rudder->get_control_in() != 0) {
weathervane.last_pilot_input_ms = AP_HAL::millis();
weathervane.last_output = 0;
return 0;
}
if (AP_HAL::millis() - weathervane.last_pilot_input_ms < 3000) {
weathervane.last_output = 0;
return 0;
}
float roll = wp_nav->get_roll() / 100.0f;
if (fabsf(roll) < weathervane.min_roll) {
weathervane.last_output = 0;
return 0;
}
if (roll > 0) {
roll -= weathervane.min_roll;
} else {
roll += weathervane.min_roll;
}
float output = constrain_float((roll/45.0f) * weathervane.gain, -1, 1);
if (should_relax()) {
output = 0;
}
weathervane.last_output = 0.98f * weathervane.last_output + 0.02f * output;
// scale over half of yaw_rate_max. This gives the pilot twice the
// authority of the weathervane controller
return weathervane.last_output * (yaw_rate_max/2) * 100;
}