mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 14:48:28 -04:00
601 lines
22 KiB
C++
601 lines
22 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || \
|
|
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 || \
|
|
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH || \
|
|
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DARK || \
|
|
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXFMINI
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <pthread.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include "GPIO.h"
|
|
#include "RCInput_RPI.h"
|
|
#include "Util_RPI.h"
|
|
|
|
#ifdef DEBUG
|
|
#define debug(fmt, args ...) do { fprintf(stderr,"[RCInput_RPI]: %s:%d: " fmt, __FUNCTION__, __LINE__, ## args); } while (0)
|
|
#else
|
|
#define debug(fmt, args ...)
|
|
#endif
|
|
|
|
//Parametres
|
|
#define RCIN_RPI_BUFFER_LENGTH 4
|
|
#define RCIN_RPI_SAMPLE_FREQ 500
|
|
#define RCIN_RPI_DMA_CHANNEL 0
|
|
#define RCIN_RPI_MAX_SIZE_LINE 50
|
|
#define RCIN_RPI_MAX_COUNTER (RCIN_RPI_BUFFER_LENGTH * PAGE_SIZE * 2) // 1 circle_buffer
|
|
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH
|
|
#define RCIN_RPI_SIG_HIGH 0
|
|
#define RCIN_RPI_SIG_LOW 1
|
|
// Each gpio stands for a rcinput channel,
|
|
// the first one in RcChnGpioTbl is channel 1 in receiver
|
|
static uint16_t RcChnGpioTbl[RCIN_RPI_CHN_NUM] = {
|
|
RPI_GPIO_5, RPI_GPIO_6, RPI_GPIO_12,
|
|
RPI_GPIO_13, RPI_GPIO_19, RPI_GPIO_20,
|
|
RPI_GPIO_21, RPI_GPIO_26
|
|
};
|
|
#else
|
|
#define RCIN_RPI_SIG_HIGH 1
|
|
#define RCIN_RPI_SIG_LOW 0
|
|
static uint16_t RcChnGpioTbl[RCIN_RPI_CHN_NUM] = {
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO
|
|
#define PAGE_SIZE (4*1024)
|
|
NAVIO_GPIO_PPM_IN
|
|
#else
|
|
RPI_GPIO_4
|
|
#endif
|
|
};
|
|
#endif // CONFIG_HAL_BOARD_SUBTYPE
|
|
|
|
//Memory Addresses
|
|
#define RCIN_RPI_RPI1_DMA_BASE 0x20007000
|
|
#define RCIN_RPI_RPI1_CLK_BASE 0x20101000
|
|
#define RCIN_RPI_RPI1_PCM_BASE 0x20203000
|
|
|
|
#define RCIN_RPI_RPI2_DMA_BASE 0x3F007000
|
|
#define RCIN_RPI_RPI2_CLK_BASE 0x3F101000
|
|
#define RCIN_RPI_RPI2_PCM_BASE 0x3F203000
|
|
|
|
#define RCIN_RPI_GPIO_LEV0_ADDR 0x7e200034
|
|
#define RCIN_RPI_DMA_LEN 0x1000
|
|
#define RCIN_RPI_CLK_LEN 0xA8
|
|
#define RCIN_RPI_PCM_LEN 0x24
|
|
#define RCIN_RPI_TIMER_BASE 0x7e003004
|
|
|
|
#define RCIN_RPI_DMA_SRC_INC (1<<8)
|
|
#define RCIN_RPI_DMA_DEST_INC (1<<4)
|
|
#define RCIN_RPI_DMA_NO_WIDE_BURSTS (1<<26)
|
|
#define RCIN_RPI_DMA_WAIT_RESP (1<<3)
|
|
#define RCIN_RPI_DMA_D_DREQ (1<<6)
|
|
#define RCIN_RPI_DMA_PER_MAP(x) ((x)<<16)
|
|
#define RCIN_RPI_DMA_END (1<<1)
|
|
#define RCIN_RPI_DMA_RESET (1<<31)
|
|
#define RCIN_RPI_DMA_INT (1<<2)
|
|
|
|
#define RCIN_RPI_DMA_CS (0x00/4)
|
|
#define RCIN_RPI_DMA_CONBLK_AD (0x04/4)
|
|
#define RCIN_RPI_DMA_DEBUG (0x20/4)
|
|
|
|
#define RCIN_RPI_PCM_CS_A (0x00/4)
|
|
#define RCIN_RPI_PCM_FIFO_A (0x04/4)
|
|
#define RCIN_RPI_PCM_MODE_A (0x08/4)
|
|
#define RCIN_RPI_PCM_RXC_A (0x0c/4)
|
|
#define RCIN_RPI_PCM_TXC_A (0x10/4)
|
|
#define RCIN_RPI_PCM_DREQ_A (0x14/4)
|
|
#define RCIN_RPI_PCM_INTEN_A (0x18/4)
|
|
#define RCIN_RPI_PCM_INT_STC_A (0x1c/4)
|
|
#define RCIN_RPI_PCM_GRAY (0x20/4)
|
|
|
|
#define RCIN_RPI_PCMCLK_CNTL 38
|
|
#define RCIN_RPI_PCMCLK_DIV 39
|
|
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
using namespace Linux;
|
|
|
|
|
|
volatile uint32_t *RCInput_RPI::pcm_reg;
|
|
volatile uint32_t *RCInput_RPI::clk_reg;
|
|
volatile uint32_t *RCInput_RPI::dma_reg;
|
|
|
|
Memory_table::Memory_table()
|
|
{
|
|
_page_count = 0;
|
|
}
|
|
|
|
// Init Memory table
|
|
Memory_table::Memory_table(uint32_t page_count, int version)
|
|
{
|
|
uint32_t i;
|
|
int fdMem, file;
|
|
// Cache coherent adresses depends on RPI's version
|
|
uint32_t bus = version == 1 ? 0x40000000 : 0xC0000000;
|
|
uint64_t pageInfo;
|
|
void *offset;
|
|
|
|
_virt_pages = (void **)calloc(page_count, sizeof(void *));
|
|
_phys_pages = (void **)calloc(page_count, sizeof(void *));
|
|
_page_count = page_count;
|
|
|
|
if ((fdMem = open("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC)) < 0) {
|
|
fprintf(stderr, "Failed to open /dev/mem\n");
|
|
exit(-1);
|
|
}
|
|
|
|
if ((file = open("/proc/self/pagemap", O_RDWR | O_SYNC | O_CLOEXEC)) < 0) {
|
|
fprintf(stderr, "Failed to open /proc/self/pagemap\n");
|
|
exit(-1);
|
|
}
|
|
|
|
// Magic to determine the physical address for this page:
|
|
offset = mmap(0, _page_count * PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS | MAP_NORESERVE | MAP_LOCKED, -1, 0);
|
|
lseek(file, ((uintptr_t)offset) / PAGE_SIZE * 8, SEEK_SET);
|
|
|
|
// Get list of available cache coherent physical addresses
|
|
for (i = 0; i < _page_count; i++) {
|
|
_virt_pages[i] = mmap(0, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS | MAP_NORESERVE | MAP_LOCKED, -1, 0);
|
|
if (::read(file, &pageInfo, 8) < 8) {
|
|
fprintf(stderr, "Failed to read pagemap\n");
|
|
exit(-1);
|
|
}
|
|
_phys_pages[i] = (void *)((uintptr_t)(pageInfo * PAGE_SIZE) | bus);
|
|
}
|
|
|
|
// Map physical addresses to virtual memory
|
|
for (i = 0; i < _page_count; i++) {
|
|
munmap(_virt_pages[i], PAGE_SIZE);
|
|
_virt_pages[i] = mmap(_virt_pages[i], PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED | MAP_NORESERVE | MAP_LOCKED, fdMem, ((uintptr_t)_phys_pages[i] & (version == 1 ? 0xFFFFFFFF : ~bus)));
|
|
memset(_virt_pages[i], 0xee, PAGE_SIZE);
|
|
}
|
|
close(file);
|
|
close(fdMem);
|
|
}
|
|
|
|
Memory_table::~Memory_table()
|
|
{
|
|
free(_virt_pages);
|
|
free(_phys_pages);
|
|
}
|
|
|
|
// This function returns physical address with help of pointer, which is offset
|
|
// from the beginning of the buffer.
|
|
void *Memory_table::get_page(void **const pages, uint32_t addr) const
|
|
{
|
|
if (addr >= PAGE_SIZE * _page_count) {
|
|
return nullptr;
|
|
}
|
|
return (uint8_t *)pages[(uint32_t)addr / 4096] + addr % 4096;
|
|
}
|
|
|
|
//Get virtual address from the corresponding physical address from memory_table.
|
|
void *Memory_table::get_virt_addr(const uint32_t phys_addr) const
|
|
{
|
|
// FIXME: Can't the address be calculated directly?
|
|
// FIXME: if the address room in _phys_pages is not fragmented one may avoid
|
|
// a complete loop ..
|
|
uint32_t i = 0;
|
|
for (; i < _page_count; i++) {
|
|
if ((uintptr_t)_phys_pages[i] == (((uintptr_t)phys_addr) & 0xFFFFF000)) {
|
|
return (void *)((uintptr_t)_virt_pages[i] + (phys_addr & 0xFFF));
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// This function returns offset from the beginning of the buffer using virtual
|
|
// address and memory_table.
|
|
uint32_t Memory_table::get_offset(void ** const pages, const uint32_t addr) const
|
|
{
|
|
uint32_t i = 0;
|
|
for (; i < _page_count; i++) {
|
|
if ((uintptr_t) pages[i] == (addr & 0xFFFFF000) ) {
|
|
return (i*PAGE_SIZE + (addr & 0xFFF));
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
// How many bytes are available for reading in circle buffer?
|
|
uint32_t Memory_table::bytes_available(const uint32_t read_addr, const uint32_t write_addr) const
|
|
{
|
|
if (write_addr > read_addr) {
|
|
return (write_addr - read_addr);
|
|
} else {
|
|
return _page_count * PAGE_SIZE - (read_addr - write_addr);
|
|
}
|
|
}
|
|
|
|
uint32_t Memory_table::get_page_count() const
|
|
{
|
|
return _page_count;
|
|
}
|
|
|
|
// Physical addresses of peripheral depends on Raspberry Pi's version
|
|
void RCInput_RPI::set_physical_addresses(int version)
|
|
{
|
|
if (version == 1) {
|
|
dma_base = RCIN_RPI_RPI1_DMA_BASE;
|
|
clk_base = RCIN_RPI_RPI1_CLK_BASE;
|
|
pcm_base = RCIN_RPI_RPI1_PCM_BASE;
|
|
} else if (version == 2) {
|
|
dma_base = RCIN_RPI_RPI2_DMA_BASE;
|
|
clk_base = RCIN_RPI_RPI2_CLK_BASE;
|
|
pcm_base = RCIN_RPI_RPI2_PCM_BASE;
|
|
}
|
|
}
|
|
|
|
// Map peripheral to virtual memory
|
|
void *RCInput_RPI::map_peripheral(uint32_t base, uint32_t len)
|
|
{
|
|
int fd = open("/dev/mem", O_RDWR | O_CLOEXEC);
|
|
void *vaddr;
|
|
|
|
if (fd < 0) {
|
|
printf("Failed to open /dev/mem: %m\n");
|
|
return nullptr;
|
|
}
|
|
vaddr = mmap(nullptr, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, base);
|
|
if (vaddr == MAP_FAILED) {
|
|
printf("rpio-pwm: Failed to map peripheral at 0x%08x: %m\n", base);
|
|
}
|
|
|
|
close(fd);
|
|
return vaddr;
|
|
}
|
|
|
|
// Method to init DMA control block
|
|
void RCInput_RPI::init_dma_cb(dma_cb_t **cbp, uint32_t mode, uint32_t source, uint32_t dest, uint32_t length, uint32_t stride, uint32_t next_cb)
|
|
{
|
|
(*cbp)->info = mode;
|
|
(*cbp)->src = source;
|
|
(*cbp)->dst = dest;
|
|
(*cbp)->length = length;
|
|
(*cbp)->next = next_cb;
|
|
(*cbp)->stride = stride;
|
|
}
|
|
|
|
void RCInput_RPI::stop_dma()
|
|
{
|
|
dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = 0;
|
|
}
|
|
|
|
/* We need to be sure that the DMA is stopped upon termination */
|
|
void RCInput_RPI::termination_handler(int signum)
|
|
{
|
|
stop_dma();
|
|
AP_HAL::panic("Interrupted: %s", strsignal(signum));
|
|
}
|
|
|
|
// This function is used to init DMA control blocks (setting sampling GPIO
|
|
// register, destination adresses, synchronization)
|
|
void RCInput_RPI::init_ctrl_data()
|
|
{
|
|
uint32_t phys_fifo_addr;
|
|
uint32_t dest = 0;
|
|
uint32_t cbp = 0;
|
|
dma_cb_t *cbp_curr;
|
|
// Set fifo addr (for delay)
|
|
phys_fifo_addr = ((pcm_base + 0x04) & 0x00FFFFFF) | 0x7e000000;
|
|
|
|
// Init dma control blocks.
|
|
/* We are transferring 8 bytes of GPIO register. Every 7th iteration we are
|
|
sampling TIMER register, which length is 8 bytes. So, for every 7 samples of GPIO we need
|
|
7 * 8 + 8 = 64 bytes of buffer. Value 7 was selected specially to have a 64-byte "block"
|
|
TIMER - GPIO. So, we have integer count of such "blocks" at one virtual page. (4096 / 64 = 64
|
|
"blocks" per page. As minimum, we must have 2 virtual pages of buffer (to have integer count of
|
|
vitual pages for control blocks): for every 7 iterations (64 bytes of buffer) we need 7 control blocks for GPIO
|
|
sampling, 7 control blocks for setting frequency and 1 control block for sampling timer, so,
|
|
we need 7 + 7 + 1 = 15 control blocks. For integer value, we need 15 pages of control blocks.
|
|
Each control block length is 32 bytes. In 15 pages we will have (15 * 4096 / 32) = 15 * 128 control
|
|
blocks. 15 * 128 control blocks = 64 * 128 bytes of buffer = 2 pages of buffer.
|
|
So, for 7 * 64 * 2 iteration we init DMA for sampling GPIO
|
|
and timer to ((7 * 8 + 8) * 64 * 2) = 8192 bytes = 2 pages of buffer.
|
|
*/
|
|
|
|
for (uint32_t i = 0; i < 7 * 128 * RCIN_RPI_BUFFER_LENGTH; i++) {
|
|
// Transfer timer every 7th sample
|
|
if (i % 7 == 0) {
|
|
cbp_curr = (dma_cb_t*)con_blocks->get_page(con_blocks->_virt_pages, cbp);
|
|
|
|
init_dma_cb(&cbp_curr, RCIN_RPI_DMA_NO_WIDE_BURSTS | RCIN_RPI_DMA_WAIT_RESP | RCIN_RPI_DMA_DEST_INC | RCIN_RPI_DMA_SRC_INC, RCIN_RPI_TIMER_BASE,
|
|
(uintptr_t)circle_buffer->get_page(circle_buffer->_phys_pages, dest),
|
|
8,
|
|
0,
|
|
(uintptr_t)con_blocks->get_page(con_blocks->_phys_pages,
|
|
cbp + sizeof(dma_cb_t)));
|
|
dest += 8;
|
|
cbp += sizeof(dma_cb_t);
|
|
}
|
|
|
|
// Transfer GPIO (8 bytes)
|
|
cbp_curr = (dma_cb_t *)con_blocks->get_page(con_blocks->_virt_pages, cbp);
|
|
init_dma_cb(&cbp_curr, RCIN_RPI_DMA_NO_WIDE_BURSTS | RCIN_RPI_DMA_WAIT_RESP, RCIN_RPI_GPIO_LEV0_ADDR,
|
|
(uintptr_t)circle_buffer->get_page(circle_buffer->_phys_pages, dest),
|
|
8,
|
|
0,
|
|
(uintptr_t)con_blocks->get_page(con_blocks->_phys_pages,
|
|
cbp + sizeof(dma_cb_t)));
|
|
|
|
dest += 8;
|
|
cbp += sizeof(dma_cb_t);
|
|
|
|
// Delay (for setting sampling frequency)
|
|
/* DMA is waiting data request signal (DREQ) from PCM. PCM is set for 5 MhZ freqency, so,
|
|
each sample of GPIO is limited by writing to PCA queue.
|
|
*/
|
|
cbp_curr = (dma_cb_t *)con_blocks->get_page(con_blocks->_virt_pages, cbp);
|
|
init_dma_cb(&cbp_curr, RCIN_RPI_DMA_NO_WIDE_BURSTS | RCIN_RPI_DMA_WAIT_RESP | RCIN_RPI_DMA_D_DREQ | RCIN_RPI_DMA_PER_MAP(2),
|
|
RCIN_RPI_TIMER_BASE, phys_fifo_addr,
|
|
4,
|
|
0,
|
|
(uintptr_t)con_blocks->get_page(con_blocks->_phys_pages,
|
|
cbp + sizeof(dma_cb_t)));
|
|
|
|
cbp += sizeof(dma_cb_t);
|
|
}
|
|
//Make last control block point to the first (to make circle)
|
|
cbp -= sizeof(dma_cb_t);
|
|
((dma_cb_t *)con_blocks->get_page(con_blocks->_virt_pages, cbp))->next = (uintptr_t)con_blocks->get_page(con_blocks->_phys_pages, 0);
|
|
}
|
|
|
|
/*Initialise PCM
|
|
See BCM2835 documentation:
|
|
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
|
|
*/
|
|
void RCInput_RPI::init_PCM()
|
|
{
|
|
pcm_reg[RCIN_RPI_PCM_CS_A] = 1; // Disable Rx+Tx, Enable PCM block
|
|
hal.scheduler->delay_microseconds(100);
|
|
clk_reg[RCIN_RPI_PCMCLK_CNTL] = 0x5A000006; // Source=PLLD (500MHz)
|
|
hal.scheduler->delay_microseconds(100);
|
|
clk_reg[RCIN_RPI_PCMCLK_DIV] = 0x5A000000 | ((50000/RCIN_RPI_SAMPLE_FREQ)<<12); // Set pcm div. If we need to configure DMA frequency.
|
|
hal.scheduler->delay_microseconds(100);
|
|
clk_reg[RCIN_RPI_PCMCLK_CNTL] = 0x5A000016; // Source=PLLD and enable
|
|
hal.scheduler->delay_microseconds(100);
|
|
pcm_reg[RCIN_RPI_PCM_TXC_A] = 0<<31 | 1<<30 | 0<<20 | 0<<16; // 1 channel, 8 bits
|
|
hal.scheduler->delay_microseconds(100);
|
|
pcm_reg[RCIN_RPI_PCM_MODE_A] = (10 - 1) << 10; //PCM mode
|
|
hal.scheduler->delay_microseconds(100);
|
|
pcm_reg[RCIN_RPI_PCM_CS_A] |= 1<<4 | 1<<3; // Clear FIFOs
|
|
hal.scheduler->delay_microseconds(100);
|
|
pcm_reg[RCIN_RPI_PCM_DREQ_A] = 64<<24 | 64<<8; // DMA Req when one slot is free?
|
|
hal.scheduler->delay_microseconds(100);
|
|
pcm_reg[RCIN_RPI_PCM_CS_A] |= 1<<9; // Enable DMA
|
|
hal.scheduler->delay_microseconds(100);
|
|
pcm_reg[RCIN_RPI_PCM_CS_A] |= 1<<2; // Enable Tx
|
|
hal.scheduler->delay_microseconds(100);
|
|
}
|
|
|
|
/*Initialise DMA
|
|
See BCM2835 documentation:
|
|
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
|
|
*/
|
|
void RCInput_RPI::init_DMA()
|
|
{
|
|
dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = RCIN_RPI_DMA_RESET; //Reset DMA
|
|
hal.scheduler->delay_microseconds(100);
|
|
dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = RCIN_RPI_DMA_INT | RCIN_RPI_DMA_END;
|
|
dma_reg[RCIN_RPI_DMA_CONBLK_AD | RCIN_RPI_DMA_CHANNEL << 8] = reinterpret_cast<uintptr_t>(con_blocks->get_page(con_blocks->_phys_pages, 0));//Set first control block address
|
|
dma_reg[RCIN_RPI_DMA_DEBUG | RCIN_RPI_DMA_CHANNEL << 8] = 7; // clear debug error flags
|
|
dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = 0x10880001; // go, mid priority, wait for outstanding writes
|
|
}
|
|
|
|
|
|
// We must stop DMA when the process is killed
|
|
void RCInput_RPI::set_sigaction()
|
|
{
|
|
struct sigaction sa, sa_old;
|
|
|
|
memset(&sa_old, 0, sizeof(sa));
|
|
memset(&sa, 0, sizeof(sa));
|
|
|
|
/* Ignore signals */
|
|
sa.sa_handler = SIG_IGN;
|
|
sigaction(SIGWINCH, &sa, nullptr);
|
|
sigaction(SIGTTOU, &sa, nullptr);
|
|
sigaction(SIGTTIN, &sa, nullptr);
|
|
|
|
/*
|
|
* Catch all other signals to ensure DMA is disabled - some of them may
|
|
* already be handled elsewhere in cases we consider normal termination.
|
|
* In those cases the teardown() method must be called.
|
|
*/
|
|
for (int i = 0; i < NSIG; i++) {
|
|
sigaction(i, nullptr, &sa_old);
|
|
|
|
if (sa_old.sa_handler == nullptr) {
|
|
sa.sa_handler = RCInput_RPI::termination_handler;
|
|
sigaction(i, &sa, nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Initial setup of variables
|
|
RCInput_RPI::RCInput_RPI():
|
|
curr_tick_inc(1000/RCIN_RPI_SAMPLE_FREQ),
|
|
curr_pointer(0),
|
|
curr_channel(0)
|
|
{
|
|
}
|
|
|
|
RCInput_RPI::~RCInput_RPI()
|
|
{
|
|
delete circle_buffer;
|
|
delete con_blocks;
|
|
}
|
|
|
|
void RCInput_RPI::teardown()
|
|
{
|
|
stop_dma();
|
|
}
|
|
|
|
//Initializing necessary registers
|
|
void RCInput_RPI::init_registers()
|
|
{
|
|
dma_reg = (uint32_t *)map_peripheral(dma_base, RCIN_RPI_DMA_LEN);
|
|
pcm_reg = (uint32_t *)map_peripheral(pcm_base, RCIN_RPI_PCM_LEN);
|
|
clk_reg = (uint32_t *)map_peripheral(clk_base, RCIN_RPI_CLK_LEN);
|
|
}
|
|
|
|
void RCInput_RPI::init()
|
|
{
|
|
uint64_t signal_states(0);
|
|
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2
|
|
int version = 2;
|
|
#else
|
|
int version = UtilRPI::from(hal.util)->get_rpi_version();
|
|
#endif
|
|
set_physical_addresses(version);
|
|
// Init memory for buffer and for DMA control blocks.
|
|
// See comments in "init_ctrl_data()" to understand values "2" and "15"
|
|
circle_buffer = new Memory_table(RCIN_RPI_BUFFER_LENGTH * 2, version);
|
|
con_blocks = new Memory_table(RCIN_RPI_BUFFER_LENGTH * 15, version);
|
|
|
|
init_registers();
|
|
|
|
// Enable PPM or PWM input
|
|
for (uint32_t i = 0; i < RCIN_RPI_CHN_NUM; ++i) {
|
|
rc_channels[i].enable_pin = hal.gpio->channel(RcChnGpioTbl[i]);
|
|
rc_channels[i].enable_pin->mode(HAL_GPIO_INPUT);
|
|
}
|
|
|
|
// Configuration
|
|
set_sigaction();
|
|
init_ctrl_data();
|
|
init_PCM();
|
|
init_DMA();
|
|
|
|
// Wait a bit to let DMA fill queues and come to stable sampling
|
|
hal.scheduler->delay(300);
|
|
|
|
// Reading first sample
|
|
curr_tick = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
|
|
curr_pointer += 8;
|
|
signal_states = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
|
|
for (uint32_t i = 0; i < RCIN_RPI_CHN_NUM; ++i) {
|
|
rc_channels[i].prev_tick = curr_tick;
|
|
rc_channels[i].curr_signal = (signal_states & (1 << RcChnGpioTbl[i])) ? RCIN_RPI_SIG_HIGH
|
|
: RCIN_RPI_SIG_LOW;
|
|
rc_channels[i].last_signal = rc_channels[i].curr_signal;
|
|
}
|
|
curr_pointer += 8;
|
|
|
|
set_num_channels(RCIN_RPI_CHN_NUM);
|
|
|
|
_initialized = true;
|
|
}
|
|
|
|
// Processing signal
|
|
void RCInput_RPI::_timer_tick()
|
|
{
|
|
uint32_t counter = 0;
|
|
uint64_t signal_states(0);
|
|
|
|
if (!_initialized) {
|
|
return;
|
|
}
|
|
|
|
// Now we are getting address in which DMAC is writing at current moment
|
|
dma_cb_t *ad = (dma_cb_t *)con_blocks->get_virt_addr(dma_reg[RCIN_RPI_DMA_CONBLK_AD | RCIN_RPI_DMA_CHANNEL << 8]);
|
|
|
|
if (!ad) {
|
|
debug("DMA sampling stopped, restarting...\n");
|
|
init_ctrl_data();
|
|
init_PCM();
|
|
init_DMA();
|
|
return;
|
|
}
|
|
|
|
for (int j = 1; j >= -1; j--) {
|
|
void *x = circle_buffer->get_virt_addr((ad + j)->dst);
|
|
if (x != nullptr) {
|
|
counter = circle_buffer->bytes_available(curr_pointer,
|
|
circle_buffer->get_offset(circle_buffer->_virt_pages, (uintptr_t)x));
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (counter == 0) {
|
|
return;
|
|
}
|
|
|
|
// How many bytes have DMA transferred (and we can process)?
|
|
// We can't stay in method for a long time, because it may lead to delays
|
|
if (counter > RCIN_RPI_MAX_COUNTER) {
|
|
debug("%5d sample(s) dropped\n", (counter - RCIN_RPI_MAX_COUNTER) / 0x8);
|
|
counter = RCIN_RPI_MAX_COUNTER;
|
|
}
|
|
|
|
// Processing ready bytes
|
|
for (;counter > 0x40;) {
|
|
// Is it timer sample?
|
|
if (curr_pointer % (64) == 0) {
|
|
curr_tick = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
|
|
curr_pointer += 8;
|
|
counter -= 8;
|
|
}
|
|
// Reading required bit
|
|
signal_states = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
|
|
for (uint32_t i = 0; i < RCIN_RPI_CHN_NUM; ++i) {
|
|
rc_channels[i].curr_signal = (signal_states & (1 << RcChnGpioTbl[i])) ? RCIN_RPI_SIG_HIGH
|
|
: RCIN_RPI_SIG_LOW;
|
|
|
|
// If the signal changed
|
|
if (rc_channels[i].curr_signal != rc_channels[i].last_signal) {
|
|
rc_channels[i].delta_time = curr_tick - rc_channels[i].prev_tick;
|
|
rc_channels[i].prev_tick = curr_tick;
|
|
switch (rc_channels[i].state) {
|
|
case RCIN_RPI_INITIAL_STATE:
|
|
rc_channels[i].state = RCIN_RPI_ZERO_STATE;
|
|
break;
|
|
case RCIN_RPI_ZERO_STATE:
|
|
if (rc_channels[i].curr_signal == 0) {
|
|
rc_channels[i].width_s0 = (uint16_t)rc_channels[i].delta_time;
|
|
rc_channels[i].state = RCIN_RPI_ONE_STATE;
|
|
}
|
|
break;
|
|
case RCIN_RPI_ONE_STATE:
|
|
if (rc_channels[i].curr_signal == 1) {
|
|
rc_channels[i].width_s1 = (uint16_t)rc_channels[i].delta_time;
|
|
rc_channels[i].state = RCIN_RPI_ZERO_STATE;
|
|
if (1 == RCIN_RPI_CHN_NUM) {
|
|
_process_rc_pulse(rc_channels[i].width_s0,
|
|
rc_channels[i].width_s1);
|
|
}
|
|
else {
|
|
_process_pwm_pulse(i, rc_channels[i].width_s0,
|
|
rc_channels[i].width_s1);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
rc_channels[i].last_signal = rc_channels[i].curr_signal;
|
|
}
|
|
curr_pointer += 8;
|
|
counter -= 8;
|
|
if (curr_pointer >= circle_buffer->get_page_count() * PAGE_SIZE) {
|
|
curr_pointer = 0;
|
|
}
|
|
curr_tick += curr_tick_inc;
|
|
}
|
|
}
|
|
|
|
#endif // CONFIG_HAL_BOARD_SUBTYPE
|