ardupilot/APMrover2/radio.pde

131 lines
3.8 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
allow for runtime change of control channel ordering
*/
static void set_control_channels(void)
{
channel_steer = RC_Channel::rc_channel(rcmap.roll()-1);
channel_throttle = RC_Channel::rc_channel(rcmap.throttle()-1);
channel_learn = RC_Channel::rc_channel(g.learn_channel-1);
// set rc channel ranges
channel_steer->set_angle(SERVO_MAX);
channel_throttle->set_angle(100);
// setup correct scaling for ESCs like the UAVCAN PX4ESC which
// take a proportion of speed.
hal.rcout->set_esc_scaling(channel_throttle->radio_min, channel_throttle->radio_max);
}
static void init_rc_in()
{
// set rc dead zones
channel_steer->set_default_dead_zone(30);
channel_throttle->set_default_dead_zone(30);
//set auxiliary ranges
update_aux();
}
static void init_rc_out()
{
RC_Channel::rc_channel(CH_1)->enable_out();
RC_Channel::rc_channel(CH_3)->enable_out();
RC_Channel::output_trim_all();
// setup PWM values to send if the FMU firmware dies
RC_Channel::setup_failsafe_trim_all();
}
static void read_radio()
{
if (!hal.rcin->new_input()) {
control_failsafe(channel_throttle->radio_in);
return;
}
failsafe.last_valid_rc_ms = hal.scheduler->millis();
RC_Channel::set_pwm_all();
control_failsafe(channel_throttle->radio_in);
channel_throttle->servo_out = channel_throttle->control_in;
if (abs(channel_throttle->servo_out) > 50) {
throttle_nudge = (g.throttle_max - g.throttle_cruise) * ((fabsf(channel_throttle->norm_input())-0.5f) / 0.5f);
} else {
throttle_nudge = 0;
}
if (g.skid_steer_in) {
// convert the two radio_in values from skid steering values
/*
mixing rule:
steering = motor1 - motor2
throttle = 0.5*(motor1 + motor2)
motor1 = throttle + 0.5*steering
motor2 = throttle - 0.5*steering
*/
float motor1 = channel_steer->norm_input();
float motor2 = channel_throttle->norm_input();
float steering_scaled = motor1 - motor2;
float throttle_scaled = 0.5f*(motor1 + motor2);
int16_t steer = channel_steer->radio_trim;
int16_t thr = channel_throttle->radio_trim;
if (steering_scaled > 0.0f) {
steer += steering_scaled*(channel_steer->radio_max-channel_steer->radio_trim);
} else {
steer += steering_scaled*(channel_steer->radio_trim-channel_steer->radio_min);
}
if (throttle_scaled > 0.0f) {
thr += throttle_scaled*(channel_throttle->radio_max-channel_throttle->radio_trim);
} else {
thr += throttle_scaled*(channel_throttle->radio_trim-channel_throttle->radio_min);
}
channel_steer->set_pwm(steer);
channel_throttle->set_pwm(thr);
}
}
static void control_failsafe(uint16_t pwm)
{
if (!g.fs_throttle_enabled) {
// no throttle failsafe
return;
}
// Check for failsafe condition based on loss of GCS control
if (rc_override_active) {
failsafe_trigger(FAILSAFE_EVENT_RC, (millis() - failsafe.rc_override_timer) > 1500);
} else if (g.fs_throttle_enabled) {
bool failed = pwm < (uint16_t)g.fs_throttle_value;
if (hal.scheduler->millis() - failsafe.last_valid_rc_ms > 2000) {
failed = true;
}
failsafe_trigger(FAILSAFE_EVENT_THROTTLE, failed);
}
}
static void trim_control_surfaces()
{
read_radio();
// Store control surface trim values
// ---------------------------------
if (channel_steer->radio_in > 1400) {
channel_steer->radio_trim = channel_steer->radio_in;
// save to eeprom
channel_steer->save_eeprom();
}
}
static void trim_radio()
{
for (int y = 0; y < 30; y++) {
read_radio();
}
trim_control_surfaces();
}