mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-10 18:08:30 -04:00
891447d798
the NuttX driver tries to send a sync every 4s, but actually ends up sending at around 4.1s due to poor scheduling. Rather strangely, the oreoled firmware seems to rely on this inaccuracy, and doesn't work with exactly 4s under ChibiOS
693 lines
24 KiB
C++
693 lines
24 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
OreoLED I2C driver. Based primarily on ArduPilot OreoLED_PX4.cpp,
|
|
but with some components from orleod.cpp from px4 firmware
|
|
*/
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_HAL/I2CDevice.h>
|
|
#include <AP_Common/Semaphore.h>
|
|
|
|
#include <AP_BoardConfig/AP_BoardConfig.h>
|
|
#include "OreoLED_I2C.h"
|
|
#include "AP_Notify.h"
|
|
#include <utility>
|
|
|
|
// OreoLEDs start at address 0x68 and add device number. So LED2 is at 0x6A
|
|
#define OREOLED_BASE_I2C_ADDR 0x68
|
|
|
|
#define OREOLED_BACKLEFT 0 // back left led instance number
|
|
#define OREOLED_BACKRIGHT 1 // back right led instance number
|
|
#define OREOLED_FRONTRIGHT 2 // front right led instance number
|
|
#define OREOLED_FRONTLEFT 3 // front left led instance number
|
|
#define PERIOD_SLOW 800 // slow flash rate
|
|
#define PERIOD_FAST 500 // fast flash rate
|
|
#define PERIOD_SUPER 150 // super fast rate
|
|
#define PO_ALTERNATE 180 // 180 degree phase offset
|
|
|
|
#define OREOLED_BOOT_CMD_BOOT_APP 0x60
|
|
#define OREOLED_BOOT_CMD_BOOT_NONCE 0xA2
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// constructor
|
|
OreoLED_I2C::OreoLED_I2C(uint8_t bus, uint8_t theme):
|
|
NotifyDevice(),
|
|
_bus(bus),
|
|
_oreo_theme(theme)
|
|
{
|
|
}
|
|
|
|
//
|
|
// Initialize the LEDs
|
|
//
|
|
bool OreoLED_I2C::init()
|
|
{
|
|
// first look for led on external bus
|
|
_dev = std::move(hal.i2c_mgr->get_device(_bus, OREOLED_BASE_I2C_ADDR));
|
|
if (!_dev) {
|
|
return false;
|
|
}
|
|
|
|
// register timer
|
|
_dev->register_periodic_callback(1000, FUNCTOR_BIND_MEMBER(&OreoLED_I2C::update_timer, void));
|
|
|
|
// return health
|
|
return true;
|
|
}
|
|
|
|
// UPDATE device according to timed_updated. Called at 50Hz
|
|
void OreoLED_I2C::update()
|
|
{
|
|
if (slow_counter()) {
|
|
return; // slow rate from 50hz to 10hz
|
|
}
|
|
|
|
if (mode_firmware_update()) {
|
|
return; // don't go any further if the Pixhawk is in firmware update
|
|
}
|
|
|
|
if (mode_init()) {
|
|
return; // don't go any further if the Pixhawk is initializing
|
|
}
|
|
|
|
if (mode_failsafe_radio()) {
|
|
return; // don't go any further if the Pixhawk is is in radio failsafe
|
|
}
|
|
|
|
set_standard_colors();
|
|
|
|
if (mode_failsafe_batt()) {
|
|
return; // stop here if the battery is low.
|
|
}
|
|
|
|
if (_pattern_override) {
|
|
return; // stop here if in mavlink LED control override.
|
|
}
|
|
|
|
if (mode_auto_flight()) {
|
|
return; // stop here if in an autopilot mode.
|
|
}
|
|
|
|
mode_pilot_flight(); // stop here if in an pilot controlled mode.
|
|
}
|
|
|
|
// Slow the update rate from 50hz to 10hz
|
|
// Returns true if counting up
|
|
// Returns false and resets one counter hits 5
|
|
bool OreoLED_I2C::slow_counter()
|
|
{
|
|
_slow_count++;
|
|
if (_slow_count < 5) {
|
|
return true;
|
|
} else {
|
|
_slow_count = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Procedure for when Pixhawk is in FW update / bootloader
|
|
// Makes all LEDs go into color cycle mode
|
|
// Returns true if firmware update in progress. False if not
|
|
bool OreoLED_I2C::mode_firmware_update()
|
|
{
|
|
if (AP_Notify::flags.firmware_update) {
|
|
set_macro(OREOLED_INSTANCE_ALL, OREOLED_PARAM_MACRO_COLOUR_CYCLE);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Makes all LEDs rapidly strobe blue while gyros initialize.
|
|
bool OreoLED_I2C::mode_init()
|
|
{
|
|
if (AP_Notify::flags.initialising) {
|
|
set_rgb(OREOLED_INSTANCE_ALL, OREOLED_PATTERN_STROBE, 0, 0, 255,0,0,0,PERIOD_SUPER,0);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Procedure for when Pixhawk is in radio failsafe
|
|
// LEDs perform alternating Red X pattern
|
|
bool OreoLED_I2C::mode_failsafe_radio()
|
|
{
|
|
if (AP_Notify::flags.failsafe_radio) {
|
|
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,0);
|
|
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,PO_ALTERNATE);
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,PO_ALTERNATE);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,0);
|
|
}
|
|
return AP_Notify::flags.failsafe_radio;
|
|
}
|
|
|
|
|
|
// Procedure to set standard rear LED colors in aviation theme
|
|
// Back LEDS White for normal, yellow for GPS not usable, purple for EKF bad]
|
|
// Returns true GPS or EKF problem, returns false if all ok
|
|
bool OreoLED_I2C::set_standard_colors()
|
|
{
|
|
if (!(AP_Notify::flags.gps_fusion)) {
|
|
_rear_color_r = 255;
|
|
_rear_color_g = 50;
|
|
_rear_color_b = 0;
|
|
return true;
|
|
|
|
} else if (AP_Notify::flags.ekf_bad) {
|
|
_rear_color_r = 255;
|
|
_rear_color_g = 0;
|
|
_rear_color_b = 255;
|
|
return true;
|
|
|
|
} else {
|
|
_rear_color_r = 255;
|
|
_rear_color_g = 255;
|
|
_rear_color_b = 255;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Procedure to set low battery LED output
|
|
// Colors standard
|
|
// Fast strobe alternating front/back
|
|
bool OreoLED_I2C::mode_failsafe_batt()
|
|
{
|
|
if (AP_Notify::flags.failsafe_battery) {
|
|
|
|
switch (_oreo_theme) {
|
|
case OreoLED_Aircraft:
|
|
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,0);
|
|
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 0, 255, 0,0,0,0,PERIOD_FAST,0);
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,PO_ALTERNATE);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,PO_ALTERNATE);
|
|
break;
|
|
|
|
case OreoLED_Automobile:
|
|
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0);
|
|
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0);
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE);
|
|
break;
|
|
|
|
default:
|
|
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0);
|
|
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0);
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE);
|
|
break;
|
|
}
|
|
}
|
|
return AP_Notify::flags.failsafe_battery;
|
|
}
|
|
|
|
|
|
// Procedure for when Pixhawk is in an autopilot mode
|
|
// Makes all LEDs strobe super fast using standard colors
|
|
bool OreoLED_I2C::mode_auto_flight()
|
|
{
|
|
switch (_oreo_theme) {
|
|
|
|
case OreoLED_Aircraft:
|
|
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,0);
|
|
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 0, 255, 0,0,0,0,PERIOD_SUPER,0);
|
|
if ((AP_Notify::flags.pre_arm_check && AP_Notify::flags.pre_arm_gps_check) || AP_Notify::flags.armed) {
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
|
|
} else {
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b);
|
|
}
|
|
break;
|
|
|
|
case OreoLED_Automobile:
|
|
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0);
|
|
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0);
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
|
|
break;
|
|
|
|
default:
|
|
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0);
|
|
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0);
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
|
|
break;
|
|
}
|
|
|
|
return AP_Notify::flags.autopilot_mode;
|
|
}
|
|
|
|
|
|
// Procedure for when Pixhawk is in a pilot controlled mode
|
|
// All LEDs use standard pattern and colors
|
|
bool OreoLED_I2C::mode_pilot_flight()
|
|
{
|
|
switch (_oreo_theme) {
|
|
|
|
case OreoLED_Aircraft:
|
|
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_SOLID, 255, 0, 0);
|
|
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_SOLID, 0, 255, 0);
|
|
if ((AP_Notify::flags.pre_arm_check && AP_Notify::flags.pre_arm_gps_check) || AP_Notify::flags.armed) {
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,0);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,PO_ALTERNATE);
|
|
} else {
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b);
|
|
}
|
|
break;
|
|
|
|
case OreoLED_Automobile:
|
|
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_SOLID, 255, 255, 255);
|
|
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_SOLID, 255, 255, 255);
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, 255, 0, 0);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, 255, 0, 0);
|
|
break;
|
|
|
|
default:
|
|
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_SOLID, 255, 255, 255);
|
|
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_SOLID, 255, 255, 255);
|
|
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, 255, 0, 0);
|
|
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, 255, 0, 0);
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// set_rgb - Solid color settings only
|
|
void OreoLED_I2C::set_rgb(uint8_t instance, uint8_t red, uint8_t green, uint8_t blue)
|
|
{
|
|
set_rgb(instance, OREOLED_PATTERN_SOLID, red, green, blue);
|
|
}
|
|
|
|
|
|
// set_rgb - Set a color and selected pattern.
|
|
void OreoLED_I2C::set_rgb(uint8_t instance, oreoled_pattern pattern, uint8_t red, uint8_t green, uint8_t blue)
|
|
{
|
|
// get semaphore
|
|
WITH_SEMAPHORE(_sem);
|
|
|
|
// check for all instances
|
|
if (instance == OREOLED_INSTANCE_ALL) {
|
|
// store desired rgb for all LEDs
|
|
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
|
|
_state_desired[i].set_rgb(pattern, red, green, blue);
|
|
if (!(_state_desired[i] == _state_sent[i])) {
|
|
_send_required = true;
|
|
}
|
|
}
|
|
} else if (instance < OREOLED_NUM_LEDS) {
|
|
// store desired rgb for one LED
|
|
_state_desired[instance].set_rgb(pattern, red, green, blue);
|
|
if (!(_state_desired[instance] == _state_sent[instance])) {
|
|
_send_required = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// set_rgb - Sets a color, pattern, and uses extended options for amplitude, period, and phase offset
|
|
void OreoLED_I2C::set_rgb(uint8_t instance, oreoled_pattern pattern, uint8_t red, uint8_t green, uint8_t blue,
|
|
uint8_t amplitude_red, uint8_t amplitude_green, uint8_t amplitude_blue,
|
|
uint16_t period, uint16_t phase_offset)
|
|
{
|
|
WITH_SEMAPHORE(_sem);
|
|
|
|
// check for all instances
|
|
if (instance == OREOLED_INSTANCE_ALL) {
|
|
// store desired rgb for all LEDs
|
|
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
|
|
_state_desired[i].set_rgb(pattern, red, green, blue, amplitude_red, amplitude_green, amplitude_blue, period, phase_offset);
|
|
if (!(_state_desired[i] == _state_sent[i])) {
|
|
_send_required = true;
|
|
}
|
|
}
|
|
} else if (instance < OREOLED_NUM_LEDS) {
|
|
// store desired rgb for one LED
|
|
_state_desired[instance].set_rgb(pattern, red, green, blue, amplitude_red, amplitude_green, amplitude_blue, period, phase_offset);
|
|
if (!(_state_desired[instance] == _state_sent[instance])) {
|
|
_send_required = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// set_macro - set macro for one or all LEDs
|
|
void OreoLED_I2C::set_macro(uint8_t instance, oreoled_macro macro)
|
|
{
|
|
WITH_SEMAPHORE(_sem);
|
|
|
|
// check for all instances
|
|
if (instance == OREOLED_INSTANCE_ALL) {
|
|
// store desired macro for all LEDs
|
|
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
|
|
_state_desired[i].set_macro(macro);
|
|
if (!(_state_desired[i] == _state_sent[i])) {
|
|
_send_required = true;
|
|
}
|
|
}
|
|
} else if (instance < OREOLED_NUM_LEDS) {
|
|
// store desired macro for one LED
|
|
_state_desired[instance].set_macro(macro);
|
|
if (!(_state_desired[instance] == _state_sent[instance])) {
|
|
_send_required = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clear the desired state
|
|
void OreoLED_I2C::clear_state(void)
|
|
{
|
|
WITH_SEMAPHORE(_sem);
|
|
|
|
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
|
|
_state_desired[i].clear_state();
|
|
}
|
|
|
|
_send_required = false;
|
|
}
|
|
|
|
/*
|
|
send a command onto the I2C bus
|
|
*/
|
|
bool OreoLED_I2C::command_send(oreoled_cmd_t &cmd)
|
|
{
|
|
//printf("sending %u\n", cmd.num_bytes);
|
|
_dev->set_address(OREOLED_BASE_I2C_ADDR + cmd.led_num);
|
|
|
|
/* Calculate XOR CRC and append to the i2c write data */
|
|
uint8_t cmd_xor = OREOLED_BASE_I2C_ADDR + cmd.led_num;
|
|
|
|
for (uint8_t i = 0; i < cmd.num_bytes; i++) {
|
|
cmd_xor ^= cmd.buff[i];
|
|
}
|
|
cmd.buff[cmd.num_bytes++] = cmd_xor;
|
|
|
|
uint8_t reply[3] {};
|
|
bool ret = _dev->transfer(cmd.buff, cmd.num_bytes, reply, sizeof(reply));
|
|
//printf("command[%u] %02x %02x %02x %s -> %02x %02x %02x\n", cmd.led_num, ret?"OK":"fail", reply[0], reply[1], reply[2]);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
send boot command to all LEDs
|
|
*/
|
|
void OreoLED_I2C::boot_leds(void)
|
|
{
|
|
oreoled_cmd_t cmd;
|
|
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
|
|
cmd.led_num = i;
|
|
cmd.buff[0] = OREOLED_BOOT_CMD_BOOT_APP;
|
|
cmd.buff[1] = OREOLED_BOOT_CMD_BOOT_NONCE;
|
|
cmd.buff[2] = OREOLED_BASE_I2C_ADDR + i;
|
|
cmd.num_bytes = 3;
|
|
command_send(cmd);
|
|
}
|
|
}
|
|
|
|
// update_timer - called by scheduler and updates PX4 driver with commands
|
|
void OreoLED_I2C::update_timer(void)
|
|
{
|
|
WITH_SEMAPHORE(_sem);
|
|
|
|
uint32_t now = AP_HAL::millis();
|
|
|
|
if (_boot_count < 20 &&
|
|
now - _last_boot_ms > 100) {
|
|
// send boot command 20 times
|
|
_boot_count++;
|
|
_last_boot_ms = now;
|
|
boot_leds();
|
|
}
|
|
|
|
// send a sync every 4.1s. The PX4 driver uses 4ms, but using
|
|
// exactly 4ms does not work. It seems that the oreoled firmware
|
|
// relies on the inaccuracy of the NuttX scheduling for this to
|
|
// work, and exactly 4ms from ChibiOS causes syncronisation to
|
|
// fail
|
|
if (now - _last_sync_ms > 4100) {
|
|
_last_sync_ms = now;
|
|
send_sync();
|
|
}
|
|
|
|
// exit immediately if send not required, or state is being updated
|
|
if (!_send_required) {
|
|
return;
|
|
}
|
|
|
|
// for each LED
|
|
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
|
|
|
|
// check for state change
|
|
if (true) {
|
|
switch (_state_desired[i].mode) {
|
|
case OREOLED_MODE_MACRO: {
|
|
oreoled_cmd_t cmd {};
|
|
cmd.led_num = i;
|
|
cmd.buff[0] = OREOLED_PATTERN_PARAMUPDATE;
|
|
cmd.buff[1] = OREOLED_PARAM_MACRO;
|
|
cmd.buff[2] = _state_desired[i].macro;
|
|
cmd.num_bytes = 3;
|
|
command_send(cmd);
|
|
break;
|
|
}
|
|
|
|
case OREOLED_MODE_RGB: {
|
|
oreoled_cmd_t cmd {};
|
|
cmd.led_num = i;
|
|
cmd.buff[0] = _state_desired[i].pattern;
|
|
cmd.buff[1] = OREOLED_PARAM_BIAS_RED;
|
|
cmd.buff[2] = _state_desired[i].red;
|
|
cmd.buff[3] = OREOLED_PARAM_BIAS_GREEN;
|
|
cmd.buff[4] = _state_desired[i].green;
|
|
cmd.buff[5] = OREOLED_PARAM_BIAS_BLUE;
|
|
cmd.buff[6] = _state_desired[i].blue;
|
|
cmd.num_bytes = 7;
|
|
command_send(cmd);
|
|
break;
|
|
}
|
|
|
|
case OREOLED_MODE_RGB_EXTENDED: {
|
|
oreoled_cmd_t cmd {};
|
|
cmd.led_num = i;
|
|
cmd.buff[0] = _state_desired[i].pattern;
|
|
cmd.buff[1] = OREOLED_PARAM_BIAS_RED;
|
|
cmd.buff[2] = _state_desired[i].red;
|
|
cmd.buff[3] = OREOLED_PARAM_BIAS_GREEN;
|
|
cmd.buff[4] = _state_desired[i].green;
|
|
cmd.buff[5] = OREOLED_PARAM_BIAS_BLUE;
|
|
cmd.buff[6] = _state_desired[i].blue;
|
|
cmd.buff[7] = OREOLED_PARAM_AMPLITUDE_RED;
|
|
cmd.buff[8] = _state_desired[i].amplitude_red;
|
|
cmd.buff[9] = OREOLED_PARAM_AMPLITUDE_GREEN;
|
|
cmd.buff[10] = _state_desired[i].amplitude_green;
|
|
cmd.buff[11] = OREOLED_PARAM_AMPLITUDE_BLUE;
|
|
cmd.buff[12] = _state_desired[i].amplitude_blue;
|
|
// Note: The Oreo LED controller expects to receive uint16 values
|
|
// in little endian order
|
|
cmd.buff[13] = OREOLED_PARAM_PERIOD;
|
|
cmd.buff[14] = (_state_desired[i].period & 0xFF00) >> 8;
|
|
cmd.buff[15] = (_state_desired[i].period & 0x00FF);
|
|
cmd.buff[16] = OREOLED_PARAM_PHASEOFFSET;
|
|
cmd.buff[17] = (_state_desired[i].phase_offset & 0xFF00) >> 8;
|
|
cmd.buff[18] = (_state_desired[i].phase_offset & 0x00FF);
|
|
cmd.num_bytes = 19;
|
|
command_send(cmd);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
};
|
|
// save state change
|
|
_state_sent[i] = _state_desired[i];
|
|
}
|
|
}
|
|
|
|
// flag updates sent
|
|
_send_required = false;
|
|
}
|
|
|
|
void OreoLED_I2C::send_sync(void)
|
|
{
|
|
/* set I2C address to zero */
|
|
_dev->set_address(0);
|
|
|
|
/* prepare command : 0x01 = general hardware call, 0x00 = I2C address of master (but we don't act as a slave so set to zero)*/
|
|
uint8_t msg[] = {0x01, 0x00};
|
|
|
|
/* send I2C command */
|
|
_dev->set_retries(0);
|
|
_dev->transfer(msg, sizeof(msg), nullptr, 0);
|
|
_dev->set_retries(2);
|
|
}
|
|
|
|
|
|
|
|
// Handle an LED_CONTROL mavlink message
|
|
void OreoLED_I2C::handle_led_control(mavlink_message_t *msg)
|
|
{
|
|
// decode mavlink message
|
|
mavlink_led_control_t packet;
|
|
mavlink_msg_led_control_decode(msg, &packet);
|
|
|
|
// exit immediately if instance is invalid
|
|
if (packet.instance >= OREOLED_NUM_LEDS && packet.instance != OREOLED_INSTANCE_ALL) {
|
|
return;
|
|
}
|
|
|
|
// if pattern is OFF, we clear pattern override so normal lighting should resume
|
|
if (packet.pattern == LED_CONTROL_PATTERN_OFF) {
|
|
_pattern_override = 0;
|
|
clear_state();
|
|
return;
|
|
}
|
|
|
|
if (packet.pattern == LED_CONTROL_PATTERN_CUSTOM) {
|
|
// Here we handle two different "sub commands",
|
|
// depending on the bytes in the first CUSTOM_HEADER_LENGTH
|
|
// of the custom pattern byte buffer
|
|
|
|
// Return if we don't have at least CUSTOM_HEADER_LENGTH bytes
|
|
if (packet.custom_len < CUSTOM_HEADER_LENGTH) {
|
|
return;
|
|
}
|
|
|
|
// check for the RGB0 sub-command
|
|
if (memcmp(packet.custom_bytes, "RGB0", CUSTOM_HEADER_LENGTH) == 0) {
|
|
// check to make sure the total length matches the length of the RGB0 command + data values
|
|
if (packet.custom_len != CUSTOM_HEADER_LENGTH + 4) {
|
|
return;
|
|
}
|
|
|
|
// check for valid pattern id
|
|
if (packet.custom_bytes[CUSTOM_HEADER_LENGTH] >= OREOLED_PATTERN_ENUM_COUNT) {
|
|
return;
|
|
}
|
|
|
|
// convert the first byte after the command to a oreoled_pattern
|
|
oreoled_pattern pattern = (oreoled_pattern)packet.custom_bytes[CUSTOM_HEADER_LENGTH];
|
|
|
|
// call the set_rgb function, using the rest of the bytes as the RGB values
|
|
set_rgb(packet.instance, pattern, packet.custom_bytes[CUSTOM_HEADER_LENGTH + 1], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 2], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 3]);
|
|
|
|
} else if (memcmp(packet.custom_bytes, "RGB1", CUSTOM_HEADER_LENGTH) == 0) { // check for the RGB1 sub-command
|
|
|
|
// check to make sure the total length matches the length of the RGB1 command + data values
|
|
if (packet.custom_len != CUSTOM_HEADER_LENGTH + 11) {
|
|
return;
|
|
}
|
|
|
|
// check for valid pattern id
|
|
if (packet.custom_bytes[CUSTOM_HEADER_LENGTH] >= OREOLED_PATTERN_ENUM_COUNT) {
|
|
return;
|
|
}
|
|
|
|
// convert the first byte after the command to a oreoled_pattern
|
|
oreoled_pattern pattern = (oreoled_pattern)packet.custom_bytes[CUSTOM_HEADER_LENGTH];
|
|
|
|
// uint16_t values are stored in custom_bytes in little endian order
|
|
// assume the flight controller is little endian when decoding values
|
|
uint16_t period =
|
|
((0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 7]) << 8) |
|
|
(0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 8]);
|
|
uint16_t phase_offset =
|
|
((0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 9]) << 8) |
|
|
(0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 10]);
|
|
|
|
// call the set_rgb function, using the rest of the bytes as the RGB values
|
|
set_rgb(packet.instance, pattern, packet.custom_bytes[CUSTOM_HEADER_LENGTH + 1], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 2],
|
|
packet.custom_bytes[CUSTOM_HEADER_LENGTH + 3], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 4], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 5],
|
|
packet.custom_bytes[CUSTOM_HEADER_LENGTH + 6], period, phase_offset);
|
|
} else { // unrecognized command
|
|
return;
|
|
}
|
|
} else {
|
|
// other patterns sent as macro
|
|
set_macro(packet.instance, (oreoled_macro)packet.pattern);
|
|
}
|
|
_pattern_override = packet.pattern;
|
|
}
|
|
|
|
OreoLED_I2C::oreo_state::oreo_state()
|
|
{
|
|
clear_state();
|
|
}
|
|
|
|
void OreoLED_I2C::oreo_state::clear_state()
|
|
{
|
|
mode = OREOLED_MODE_NONE;
|
|
pattern = OREOLED_PATTERN_OFF;
|
|
macro = OREOLED_PARAM_MACRO_RESET;
|
|
red = 0;
|
|
green = 0;
|
|
blue = 0;
|
|
amplitude_red = 0;
|
|
amplitude_green = 0;
|
|
amplitude_blue = 0;
|
|
period = 0;
|
|
repeat = 0;
|
|
phase_offset = 0;
|
|
}
|
|
|
|
void OreoLED_I2C::oreo_state::set_macro(oreoled_macro new_macro)
|
|
{
|
|
clear_state();
|
|
mode = OREOLED_MODE_MACRO;
|
|
macro = new_macro;
|
|
}
|
|
|
|
void OreoLED_I2C::oreo_state::set_rgb(enum oreoled_pattern new_pattern, uint8_t new_red, uint8_t new_green, uint8_t new_blue)
|
|
{
|
|
clear_state();
|
|
mode = OREOLED_MODE_RGB;
|
|
pattern = new_pattern;
|
|
red = new_red;
|
|
green = new_green;
|
|
blue = new_blue;
|
|
}
|
|
|
|
void OreoLED_I2C::oreo_state::set_rgb(enum oreoled_pattern new_pattern, uint8_t new_red, uint8_t new_green,
|
|
uint8_t new_blue, uint8_t new_amplitude_red, uint8_t new_amplitude_green, uint8_t new_amplitude_blue,
|
|
uint16_t new_period, uint16_t new_phase_offset)
|
|
{
|
|
clear_state();
|
|
mode = OREOLED_MODE_RGB_EXTENDED;
|
|
pattern = new_pattern;
|
|
red = new_red;
|
|
green = new_green;
|
|
blue = new_blue;
|
|
amplitude_red = new_amplitude_red;
|
|
amplitude_green = new_amplitude_green;
|
|
amplitude_blue = new_amplitude_blue;
|
|
period = new_period;
|
|
phase_offset = new_phase_offset;
|
|
}
|
|
|
|
bool OreoLED_I2C::oreo_state::operator==(const OreoLED_I2C::oreo_state &os)
|
|
{
|
|
return ((os.mode==mode) && (os.pattern==pattern) && (os.macro==macro) && (os.red==red) && (os.green==green) && (os.blue==blue)
|
|
&& (os.amplitude_red==amplitude_red) && (os.amplitude_green==amplitude_green) && (os.amplitude_blue==amplitude_blue)
|
|
&& (os.period==period) && (os.repeat==repeat) && (os.phase_offset==phase_offset));
|
|
}
|